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ABSTRACT 

 

It appears that everybody observes with special attention, the occurrence of big data and its practice. There 
is no disbelief that the big data uprising has instigated. Though the practices of big data propose favorable 
business paybacks, there are substantial privacy implications. Multidimensional generalization 
anonymization scheme is an actual method for data privacy preservation.  Top-Down Specialization (TDS) 
and Bottom-Up generalization (BUG) are two methods to attain multidimensional anonymization. 
However, prevailing methodologies for multidimensional generalization anonymization scheme disconcerts 
parallelization proficiency, thereby missing scalability while managing big data on cloud. TDS and BUG 
suffer from poor performance for certain value of k-anonymity parameter if they are utilized individually. 
In this paper, we recommend a hybrid method that combines TDS and BUG together for competent 
multidimensional anonymization over big data. Additionally, Map reduce based algorithms for two 
components (TDS and BUG) to increase high scalability cloud are designed. Experiment estimations 
determine that the hybrid method expressively progresses the scalability and proficiency of 
multidimensional generalization anonymization system over prevailing methods. 
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1. INTRODUCTION  

Cloud computing and big data, together 
exposes many types of public and personal 
information. From an enterprises outlook, it 
discloses the enterprise to great hazard. Though a 
company cannot be alleged responsible for personal 
data out in the public, could run afoul of legitimate 
and governing issues. Making materials worse, 
persons are disorganized between the private data 
and the ways to handle it. However, it is significant 
to recognize that rising privacy concerns about the 
usage of big data are not restricted to these 
predictable cloud providers. One of the most 
serious privacy traits is, basically, the quality or 
exactness of the data. Another eminence issue is the 
technique that Internet explores terms or 
expressions can be misunderstood, when   this type 
of data are collected [1, 2].  

 
The first step in real use of big data is to 

become highly proficient in acquiring and handling 
cloud services, which are considered a requirement 
for big data to be cost effective.  There must be 

well-defined accountabilities for both the cloud 
supplier and consumers about specific data privacy 
controls that are obligatory. There must also be 
constant observing and examinations of cloud 
services along with any applicable metrics that 
specify levels of data integrity, confidentiality and 
availability. The next approach to enable improved 
use of big data is to instrument joined storage. 
Joined storage is more effective and will reduce the 
probability of faults that impact data quality or 
accurateness [3]. A serious characteristic of 
converged storage that shares to data eminence and 
correctness is data de-duplication, while it has cost 
efficiency welfares as well. Additional preeminent 
practice is to correctly cleanse data, as it helps 
elude a number of the aforementioned privacy 
issues.    

 
Data anonymization, extensively studied and 

widely adopted [4], is an effective way for data 
privacy preservation. Data anonymization refers to 
hiding identity and/or sensitive data for owners of 
data records. Then, the privacy of an individual can 
be effectively preserved while certain aggregate 
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information is exposed to data users for diverse 
analysis and mining. Multidimensional 
anonymization scheme is widely adopted to 
anonymize data sets for privacy preservation, 
producing a better arrangement between data utility 
and distortion. There are two ways to accomplish 
multidimensional anonymization, i.e., Top-Down 
Specialization (TDS) and Bottom-Up 
Generalization (BUG). So far, a series of 
approaches have been proposed for TDS or BUG 
[5, 6, 7, 8]. However, data sets in big data 
applications on cloud have become so large, that it 
is a big challenge for existing multidimensional 
anonymization algorithms to anonymize such data 
sets in a scalable fashion, due to their lack of 
parallelization capability. When TDS and BUG 
methods are implemented separately, it offers poor 
performance for certain value of k-anonimity 
parameter [9].  Specifically, TDS is preferred when 
k is large while BUG is favorable when k is small.  
 

Map-reduce [10], a large-scale data processing 
framework, have been integrated with cloud to 
provide powerful computation capability for 
applications, e.g. Amazon Elastic map-reduce 
(EMR) service [11]. Map-reduce technique is used 
on cloud to address the scalability problem in the 
proposed approach. As the map-reduce 
computation paradigm is relatively simple, it is still 
a challenge to design proper map-reduce jobs for 
TDS and BUG.  
 

In this paper, a highly scalable fusion method 
is proposed which combines TDS and BUG 
composed for multidimensional anonymization 
over big data. The approach automatically 
determines the component that must be used to 
conduct the anonymization when a data set is given, 
by comparing the user- specified k-anonymity 
parameter with a threshold derived from the data 
set. Both components TDS and BUG are developed 
based on map-reduce to advance high scalability. 
Having designed map-reduce based TDS [12], only 
the map-reduce algorithmic design of BUG is 
presented herein. Experimental appraisal reveals 
that the hybrid method expressively advances the 
scalability and effectiveness of multidimensional 
data anonymization over prevailing methods. The 
main contributions of this paper are divided into 
three segments. 
 

Firstly, a mix approach to improve the 
scalability and efficiency of multidimensional data 
anonymization via automatically choosing TDS or 

BUG are suggested. Secondly, a group of 
innovative map-reduce jobs are designed for BUG  

to concretely conduct the computation in a 
highly scalable fashion. Lastly, experimental 
evaluations demonstrate that the hybrid approach 
improves the scalability and efficiency of 
multidimensional anonymization scheme over 
existing approaches. 
 

The remainder sections of this paper are 
ordered as follows. The next section reviews related 
work, and analyzes the problems in existing 
multidimensional anonymization approaches. In 
section III, the preliminary concepts for this 
approach are discussed. Section IV elaborates 
algorithmic details of map-reduce jobs for BUG, 
and Section V formulates the hybrid approach. 
Empirically evaluation of the proposed is discussed 
in section VI. Finally, conclusion and the future 
work is summarized in section VII. 
 
2. RELATED WORK AND PROBLEM 

ANALYSIS  
 

2.1 Related Work  

Privacy preservation on data has been 
extensively investigated and fruitful progress has 
been made by research communities [4]. It is 
briefly reviewed the related work as follows. A 
bulk of privacy models and anonymization 
approaches have been put forth to preserve the 
privacy sensitive information in data sets. k-
anonymity [9] and l- diversity [13] are two basic 
and widely-adopted privacy models to measure the 
degree of privacy-sensitive information disclosure 
against record linkage attacks and attribute linkage 
attacks, respectively. Other privacy models like t-
closeness [14] and m-invariance [15] are also 
proposed for various privacy attack scenarios. 
Numerous anonymizing processes are leveraged to 
anonymize data sets, comprising generalization [5, 
16, 17], anatomization [18], slicing [19], 
disassociation [20], etc. In this paper, generalization 
technique is used which replaces some domain 
values with a parent value in the taxonomy tree. 
Roughly, there are few generalization schemes [4], 
namely, full domain [21], sub-tree [5], 
multidimensional, siblings [16] and cell 
generalization [17]. 
 

This research herein concentrates on the 
multidimensional generalization scheme. Unlike 
sub-tree or cell schemes, multidimensional scheme 
can produce consistent anonymous data that can be 
directly used by existing data mining and data 
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analysis tools. This scheme offers a good trade-off 
between data value and data stability. Thus, this 
scheme has been extensively explored. Top-Down 
Specialization (TDS) [5, 6, 7, 12] and Bottom-Up 
Generalization (BUG) [8] are two ways to 
accomplish the multidimensional scheme. Most 
exiting algorithms exploit indexing data structure to 
assist the process of anonymization. Specifically, 
TIPS (Taxonomy Indexed Partition S) for TDS and 
TEA (Taxonomy encoded Anonymity) index for 
BUG. Although indexing data structures can speed 
up the process of data anonymization, these 
approaches often fail to work in parallel or 
distributed environments like cloud systems 
because the indexing structures are centralized. 
Mohammed et al. [6] proposed a TDS approach 
which however, mainly concerns privacy protection 
against other parities rather than scalability issues. 
Still, this approach only employs information gains 
as the search metric, resulting lower data utility 
than centralized ones. Previous work [12] leverages 
map-reduce to accomplish the intensive 
computation required in big data anonymization via 
TDS. But TDS probably performs slower than 
BUG when k-anonymity parameter is small. 
Scalability and efficiency of anonymization 
algorithms for privacy preservation has drawn 
attention of researchers. R-tree indexing, scalable 
decision trees and sampling techniques are 
introduced to achieve high scalability and 
efficiency [22, 23]. However, the proposed 
approaches aim at multidimensional scheme, 
thereby failing to work for sub-treegeneralization.  
 

Map-reduce have been widely adopted in 
various data processing applications to boost 
scalability and efficiency [24, 25, 26]. Following 
this line, map-reduce is used to advance scalability 
and efficiency in this research on big data 
anonymization in cloud.  
  

2.2 Problem Analysis 

In this section, analysis is made on the problem 
of utilizing Top-Down Specialization (TDS) or 
Bottom-Up Generalization (BUG) alone for 
multidimensional generalization, and the scalability 
problem of existing BUG approaches. At present, 
existing TDS and BUG approaches are developed 
individually for multidimensional generalization 
scheme. Both of them lack the awareness of the 
user-specified k-anonymity parameter. In fact, the 
values of the k-anonymity parameter can impact 
their performance. 
 

Intuitively, if parameter k is large, TDS is more 
suitable while BUG will probably get bad 
performance. The case is reversed when k is small. 
A simple example is described below to 
demonstrate the above intuition. Assume that a data 
set has 10 records with the attribute Job that needs 
generalization for privacy preservation. The 
taxonomy tree of this attribute and attribute value 
of records are depicted in Fig. 1.  

 
 

 
 

 

 

 

 

 

 

 
Figure 1: Taxonomy trees for Job 

 
At one extreme, let k be set as 2. In this case, 

TDS has to specialize several domain values to 
achieve 2-anonymity while BUG will do nothing as 
the data set is already 2- anonymity. At other 
extreme, let k be set as 5. In such a case, TDS will 
do nothing to achieve 5-anonymity while BUG has 
to conduct generalization. It can be seen from the 
example that selecting TDS or BUG according to k 
significantly impacts the performance of the 
multidimensional anonymization scheme. As such, 
it is promising to develop a hybrid approach that 
encompasses TDS and BUG as two components so 
that the high scalability and efficiency can be 
gained regardless of valuing of the k-anonymity 
parameter. The key to the hybrid approach is to 
design a user-friendly method to automatically 
determine the component that should be chosen. 
Although a domain expert is able to determine the 
approach to be preferred to conduct anonymization 
manually according to the value of parameter k. 
Ordinary users in the cloud probably fail to do this 
due to their lack of background knowledge. 
 

As to BUG, the existing approach [8] exploits 
indexing data structure to promote efficiency, 
thereby falling short of high scalability and 
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parallelization in cloud environments. Thus, it is 
worthwhile investigating the methodology to 
develop BUG algorithm with map-reduce in order 
to improve the scalability and efficiency. A 
promising way is to conduct generalization 
operations in parallel. As map-reduce only provides 
primitive programming model to develop map-
reduce jobs to conduct the computation required by 
data anonymization is still critical in the whole 
design and needs intensive research. Above all, the 
problem is to address the design together with 
scalable and efficient BUG algorithm, based on 
map-reduce and to automatically select a 
component for the proposed hybrid approach 
according to parameter k.  
 

3. PRELIMINARY  
 

3.1 Multidimensional Generalization Scheme  

Each generalization or suppression operation 
hides some details in QID. For a categorical 
attribute, a specific value can be replaced with a 
general value according to a given taxonomy.  

 

         In Figure 1, the parent node Professional is 
more general than the child nodes Engineer and 
Lawyer. The root node, ANY Job, represents the 
most general value in Job. For a numerical 
attribute, exact values can be replaced with an 
interval that covers exact values. If taxonomy of 
intervals is given, the situation is similar to 
categorical attributes. More often, however, no pre-
determined taxonomy is given for a numerical 
attribute [27]. Different classes of anonymization 
operations have different implications on privacy 
protection, data utility, and search space. But they 
all result in a less precise but consistent 
representation of original data. A generalization 
replaces some values with a parent value in the 
taxonomy of an attribute. The reverse operation of 
generalization is called specialization. One such 
generalization scheme is Multidimensional 
generalization [28,29].  

 

        Let Di be the domain of an attribute Ai. A 
single- dimensional generalization, such as full-
domain generalization and subtree generalization, is 
defined by a function fi : DAi → D’ for each 
attribute Ai in QID. In contrast, a multidimensional 
generalization is defined by a single function fi : 
DA1 ×· · ·× DAn → D’, which is used to generalize 
qid = <v1, . . . , vn >  to qid’ = ˂u1, . . . , un >  where 
for every vi, either vi = ui or vi is a child node of ui 
in the taxonomy of Ai.. This scheme flexibly allows 
two qid groups, even having the same value on 

some vi and ui, to be independently generalized into 
different parent groups. For example <Engineer, 
Male> can be generalized to <Engineer, ANY_Sex> 
while <Engineer, Female> can be generalized to 
<Professional, Female>. The generalized table 
contains both Engineer and Professional. This 
scheme produces less distortion than the other 
schemes generalization schemes because it needs to 
generalize only the qid groups that violate the 
specified threshold. Note, in this multidimensional 
scheme, all records in a qid are generalized to the 
same qid’, but cell generalization does not have 
such constraint.  

 

       Two operations can be employed to accomplish 
this scheme, i.e., generalization for BUG and 
specialization for TDS, respectively. A 
generalization operation is to replace a domain 
value with its parent in a taxonomy tree while a 
specialization operation is to replace a domain 
value with its all child values. Formally, a 
generalization is represented as 

gen: child(q) → q while a specialization is 
represented as spec: q  →  child(q),  where  q ∈ Di   
is the is a domain value and the set  child(q) 
consists of all child domain values of q. The 
concept of anonymization level [12] is utilized to 
capture the degree of anonymization. Specifically, 
anonymization 

level, denoted as AL, is a vector of domain values 
sets, i.e., 

AL = < DA1 ×· · ·× DAn > which is used to 
generalize qid  to qid’.   
 

      To guide the selection of the best operations in 
the anonymization process, the goodness of a 
candidate generalization or specialization is 
measured by a search metric. The 
information/privacy is used as the search metric for 
this approach, i.e., the Information Gain per Privacy 
Loss (IGPL) for TDS and the Information Loss per 
Privacy Gain (ILPG) for BUG, respectively [4].  

 

     It is briefly describe the way to calculate the 
value of ILPG subsequently.  Given a 
generalization gen: child(q) → q ,the ILPG of the 
generalization is calculated by:  

 

ILPG(gen) = IL(gen) / (PG(gen) + 1 )               (1) 

 

     The term IL(gen)  is the information loss after 
performing gen, and PG(gen) is the privacy gain. 
Both of them are computed via statistical 
information derived from data sets. Let Rx denote 
the set of original records containing attribute 
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values that can be generalized to x. |��|	is the 
number of data records in Rx. Let I(Rx)  be the 
entropy of Rx . Then, IL(gen)  is given by   

 

���	
��  	∑� ∈ 		�����	��� �	|��||��|� 	�	���� �
	�	����		                                                                (2) 

 

       Let AP(gen) denote the anonymity after 
performing gen, while Ac(gen)  be that before 
performing gen. Then, the privacy gain from gen is 
calculated by  

 

	PG�gen�			AP�gen�		-	AC�gen�																													�3�	
3.2 Map Reduce Basics 

  

Map-reduce is a scalable and fault-tolerant data 
processing framework that is capable of processing 
huge size of data in parallel with many low-end 
product computers [10]. In general, a map-reduce 
job comprises of two basic functions, Map and 
Reduce, defined over a data structure named key, 
value pair (key, value). Specifically, the Map 
function can be formalized as Map: (k1, v1) → (k2, 
v2), i.e., Map takes a pair (k1, v1) as input and then 
outputs another intermediate key-value pair (k2, v2). 
These intermediate pairs are consumed by the 
Reduce function as input. Syntactically, the Reduce 
function can be signified as Reduce: (k2, list(v2)) → 
(k3, v3), i.e., Reduce takes intermediate k2 and all its 
equivalent values list(v2) as input and outputs 
another pair (k3, v3).   Usually, (k3, v3) list is the 
results which map-reduce users attempt to obtain. 
An instance running Map function is called 
Mapper, and that running Reduce function is called 
Reducer, respectively. Between Map phase and 
Reduce phase exists a Shuffle phase, during which 
the intermediate key-value pairs are sorted 
according to keys. 
 

4. BOTTOM- UP GENERALIZATION 

USING MAP REDUCE 

 
Bottom-Up Generalization is elaborated using 

map-reduce (MRBUG) in this section. Basically, a 
practical map-reduce program encompasses Map 
and Reduce functions, and a Driver that coordinates 
the macro execution of map-reduce jobs. Thus, the 
Bottom-Up Generalization map-reduce Driver is 
described in section IV. A. Section IV.B and IV.C 
presents the ILPG calculation and data 
generalization map-reduce in detail. 

 
 

4.1 Bottom- Up Generalization Map reduce 

driver  

Basically, Bottom-Up Generalization (BUG) 
approach of anonymization is an iterative process 
starting from the lowest anonymization level. The 
lowest anonymization level contains the internal 
domain nodes in the lowest level of taxonomy trees. 
Each round of iteration includes four major steps, 
namely, checking the current data set whether 
satisfies the anonymity requirement, calculating the 
ILPG, finding the best generalization and 
generalizing the data set according to the selected 
best generalization candidate. Calculating the ILPG 
and generalizing the data set   involve accessing a 
large number of data records, thereby dominating 
the scalability and efficiency of bottom-up 
generalization. An existing approach [8] utilizes 
indexing data structure and retaining statistic 
information to improve the efficiency. But the 
approach suffers from poor scalability and 
efficiency in a big data scenario. Still, the approach 
fails to be adapted into map-reduce since Map-
reduce does not support indexing data structure. As 
such, we propose to develop innovative map-reduce 
jobs for the ILPG computation. As the notion of 
anonymization level is introduced to describe 
anonymization status of a data set, it is unnecessary 
to generalize the data set concretely in each round 
in regards to efficiency. Instead, we abstractly 
generalize the data set over the current 
anonymization level. After the final anonymization 
level is obtained, we anonymize the data set in a 
one-pass map-reduce job. Algorithm 1 presents the 
Bottom-Up Generalization map-reduce (BUGMR) 
driver.  

 
Algorithm 1 is described in detail as follows. 

Firstly, ILPG values of all generalizations are 
initialized (line 1). Line 2 checks whether the 
current anonymized data set satisfies the k-
anonymity requirement. Line 3 finds the best 
generalization genbest  with the highest ILPG value 
and Line 4 generalizes this generalization by 
labeling it as INACTIVE. That a generalization is 
labeled as INACTIVE means the generalization will 
not be considered any more in following rounds, 
abstractly fulfilling anonymization on the data set. 
Let SGSet (gen) denote the set containing 
generalization gen and it’s all siblings in the 
domain taxonomy tree. When the generalizations in 
SGSet (gen) are all labeled as INACTIVE, a new 
higher level generalization should be inserted to 
replace these inactive ones (lines 5, 6 and 7). Note 
that this is a remarkable difference from TDS. Line 
9 updates the privacy gain of each active 
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generalization as the performing genbest probably 
changes the anonymity of the data set. Also, 
information loss computation is required if a new 
generalization has been inserted. As the last step, 
line 11 concretely anonymizes the data set 
according the final anonymization level. Lines 1 
and 9 require ILPG calculation that involves 
accessing to the original data set and computing 
statistic information over the data set. Line 11 also 
needs processing the whole data set. Map-reduce 
technology is applied to conduct the intensive 
computation in these situations. Specifically, we 
design a couple of innovative map-reduce jobs: job 
ILPG Calculation for accomplishing the 
computation required in lines 1 and 9, and job Data 
Generalization for achieving the final concrete 
anonymization in line 11. The ILPG related map-
reduce job is elaborated in Section IV.B, and job 
Data Generalization is in IV.C, respectively.  

 

Algorithm 1. BUGMR Driver 

Input: data set D, anonymization level AL0, anonymity 
parameter k. 
Output: final anonymous data set D*. 

1: Initialize the values of search metric ILPG for each 
generalization 

gen ∈  %&'()   Di  with respect to AL0 via job ILPG 

Calculation; 

2: while ∃gen, Ac (gen) < k 
3: Find the best generalization genbest out of all the active 
ones; 

4: Label genbest as INACTIVE to perform genbest on the 
current 

anonymization level;  

5: if  ∀	gen  ∈  SGSet (genbest)  is labeled as INACTIVE; 

6: Insert a new generalization gennew : child(q) → q 
where  

 Child(q) = { qi │gen’: Child(qi) → qi , gen’∈  
SGSet(genBest)}; 
7: Remove all generalizations in SGSet (genbest)   
8: end if 

9: ALi+1  ← ALi  ;Update ILPG values for all active 
generalization 

candidates in   ALi+1   via ILPG Calculation; 

10: end while 

11: Generalize D to D* in terms of ALi  via job Data 
Generalization; 
 

 

4.2 ILPG Calculation Job  

The ILPG Calculation job is responsible to 
ILPG initialization in line 1 of Algorithm 1 and 
ILPG update in line 9. The computation required in 
ILPG initialization is quite similar to that of ILPG 
update. The Map function of the ILPG Calculation 
is depicted in Algorithm 2, while the Reduce 
function is presented in Algorithm 3. In Algorithm 

2 and 3, the symbol ‘#’ is used to identify whether a 
key is emitted to compute information gain or 
anonymity loss, and ‘$’ is to differentiate the cases 
whether a key is for computing AP (Spec) or  AC 
(Spec).  
 

        Algorithm 2 is detailed as follows. Let NGSet 
denote the set of newly inserted generalizations. 
For ILPG initialization, NGSet is the set of all the 
initial generalizations with respect to AL0 , while 
for ILPG updates, it is set by {gennew} if a new 
generalization is inserted in the iteration of 
Algorithm 1. Line 1 of Algorithm 2 transforms an 
original record into its anonymized form according 
to the current anonymization level, for the sake of 
being counted. To compute |Rp|, |(Rp , sv)|, | Rc | and 
|(Rc , sv)| in (2) for information loss calculation, line 
2 emits the key-value pair to the Reduce function 
for information loss computation if this pair is a 
new generalization candidate. Note that the 
information loss of a generalization will not be 
affected when we perform other generalizations or 
insert a new generalization, while privacy gain will 
probably be impacted as the anonymity of the data 
set will change.  

 

Algorithm 2. ILPG Calculation Map. 

Input: Data record  (IDr r ), r ∈	 D  anonymization level 
AL, NGSet. 
Output: Intermediate key-value pair (key,count). 
1: For each attribute value vi   in r ,find its generalization 
in current 

    AL: geni . Let pi be the parent in geni, and ci be vi  itself 
or pi ’ 
   child that is also vi’ ancestor; 

2: If  geni  ∈ , emit ( ˂ pi , ci ,sv > , count) ; 
3: Construct quasi-identifier qid = < q1 , q2,….., qm >  
where qi 

 

 = -.�, �0		
��	�1	�23�4�56	,��,							7. 9 1≤  i  ≤ m; Emit (<qid , 

$,#> , count);  
  
4: For each  i ∈ 		 :	1, <= , replace qi  in qid with its parent 
pi  if  qi = ci, producing the resultant quasi-identifier qid *  
; emit (<qid , pi  ,#> , count);  
 

 

        Line 3 of Algorithm 2 aims at figuring out the 
anonymity of the data set before performing a 
generalization, i.e., Ac (gen), while line 4 emits key-
value pairs to obtain the anonymity after 
performing a generalization, i.e., Ap (gen). As Ac 

(gen) is unique globally, we just emit the current 
quasi-identifier qid for statistics. As to Ap (gen), 
potential anonymous quasi-identifiers for qid will 
be emitted for computing Ap (gen) for different 
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active generalization candidates. After obtaining Ac 

(gen) and Ap (gen), we can update privacy gain for 
each generalization in terms of (3).  

 
The Reduce function described in Algorithm 3 

mainly aggregates the statistical information to 
calculate information loss and privacy gain. Lines 1 
to 5 calculate information loss in terms of (2). Due 
to that the key-value pairs are sorted by map-reduce 
before being fed to Reducer workers, the Reduce 
function can compute  information loss for 
generalizations in sequence, without requiring large 
amount of memory to retaining statistical 
information. Therefore, the Reduce function is 
highly scalable for calculating information loss. 
The essential of computing anonymity of a data set 
is to find out the minimum QI-group size. Lines 6 
to 10 aim at calculating privacy gain. The Reducer 
workers find out the locally minimum QI-group 
size before and after performing a generalization in 
parallel. Then, we can obtain the globally one in the 
driver program through comparing the outputs of 
Reducer workers. As such, the ILPG Calculation 
Reduce function is highly scalable for both 
information loss and privacy gain computation. 
After obtaining information loss and privacy gain, 
ILPG values can be calculate according to (1). 
 

Algorithm 3: ILPG Calculation Reduce 

Input: Intermediate key-value pair (key , list(count)). 
Output: Information gain (gen, IL(gen)) and anonymity  

(gen, Ac (gen) , (gen , Ap (gen)) for generalizations. 

1: For each key, sum ← ∑ count; 
2: For each key, if key.sv > # ,  update statistical counts: 

3: |(Rc , sv )| ← sum,  | Rc | ← sum +| Rc | ,  |(Rc , sv )| ← 
sum + 

|(Rc , sv )| , | Rp | ← sum +| Rp |; 

4: If all sensitive values for child c have arrived, 
compute I(Rc ); 
5: If all children c of parent p have arrived, compute I(Rp 
) and 

IL(gen) ; emit (gen, IL(gen)); 
6: For each key, if key.sv = #, update anonymity: 

7: If  key.c = $ and  sum < Ap (gen), update current 
anonymity: 

Ap (gen) ← sum; 
8: If key.c > $; 

9: If  sum < Ac (gen), update potential anonymity of  gen 
: 

Ac (gen) ← sum; 
10: Emit (gen , Ap (gen) and emit (gen , Ac (gen) .  

 

 

 

4.3 Data Generalization  

The original data set is concretely generalized 
for data anonymization by a one-pass map-reduce 

job, i.e., Data Generalization. Details of Map and 
Reduce functions of the data specialization Map-
reduce job are described in Algorithm 4.  
 

Algorithm 4 : Data Generalization Map & 

Reduce. 

Input: Data record (IDr , r), r  ∈	D ; final anonymization 
level AL* . 

Output: Anonymous record  r*, count).. 
Map: 

1: For each attribute value vi  in r, find its generalization 
in current 

AL: geni . Let pi  be the parent in geni  and ci be  vi  itself 
or pi’ 

child that is also vi’ ancestor; 

2: Construct quasi-identifier  r* = < q1 , q2,….., qm >  where 
qi 

 

 = -.�, �0		
��	�1	�23�4�56	,��,							7. 9 1≤  i  ≤ m; Emit (r*, 

count);  
Reduce: For each r*; emit sum ← ∑ count; emit (r*, 
sum); 
 
 

The Map function emits anonymous records 
and its count according to the current 
anonymization level. The Reduce function simply 
aggregates these anonymous records and counts 
their number. An anonymous record and its count 
represent a QI-group, and the QI-groups constitute 
the final anonymous data sets. 
 

5. HYBRID APPROACH FOR MULTI-

DIMENSIONAL ANONYMIZATION 

 
5.1 Combining Top-Down Specialization and 

Bottom-Up Generalization  

 
Now that the map-reduce version of Bottom-

Up Generalization (MRBUG) has been developed 
in the last section, the two components, i.e., 
MRTDS [12] and MRBUG, are ready for the 
proposed hybrid approach of multidimensional 
anonymization over big data. In terms of the 
problem analysis in Section II.B, we need to 
determine which component is used to anonymize 
data after the anonymity parameter k is specified by 
a user. It is promising that the hybrid approach can 
automatically give out a threshold K such that if k ≥ 
K , MRTDS is selected, otherwise MRBUG is 
selected. Formally, we define this threshold as 
Workload Balancing Point.  

Definition 1 (Workload Balancing Point) 
anonymity value of a data set, denoted as K, is 
defined as workload balancing point if it satisfies 
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the condition that the amount of computation of 
anonymizing the data set to K-anonymous required 
by MRTDS is equal to that by MRBUG. Once the 
workload balancing point K is identified, it is easy 
to choose which component to be employed. If 8 > 
K, MRTDS is selected because MRBUG will incur 
more computation, whereas MRBUG is selected if 
8 < K. Figuring out the exact value of K is difficult 
since K heavily depends on some properties of data 
sets, like data distribution and skewness. However, 
it is unnecessary to get the exact value because the 
performances of MRTDS and MRBUG make little 
difference when k is valued around K. As such, we 
roughly estimate the value k according to the size of 
the data set and taxonomy trees. 
 

5.2 Workload Balancing Point Estimation  

 
To roughly estimate the workload balancing 

point, we assume that the values of an attribute are 
evenly distributed. The basic idea is to estimate K 
according to the layering of taxonomy trees. Let H 
be the highest height among taxonomy trees. To 
facilitate the estimation, other taxonomy trees with 
height less than H are modified by making their 
height H. A string of dummy nodes are attached to 
their leaf nodes, in order to increase tree height. An 
example is demonstrated in Fig.2 to illustrate the 
above process. The tree TT2 has the highest tree 
height two. As TT1 has height less than two, 
dummy nodes (dashed circles in the right part of 
Fig.2) are added after modification. The height of 
modified version of TT1 is also two. The data 
records in a data set D are logically partitioned by 
the domain value nodes in taxonomy trees. Let Lj 
denote the jth layer of the taxonomy forest. The 
number of domain values of TTi on Lj is denoted as 

Nij. The data set can be partitioned into ∏ 2�@A&'(   
QI-groups in regard to the domain values on level 
Lj. For instance, the data set is partitioned into 4 
groups (2*2=4) on L1 in shown in Fig.2, and 8 
groups (2*4=8) on L2. Since we assume data sets 
are evenly distributed, the average anonymity of 

data set with respect to Lj is Kj = |D| / ∏ 2�@A&'(   i.e., 
the average QI-group size. 

 
 
 
 
 
 

 
         TT1                            TT2                            TT1                            TT2   
 
  

 
 
 
 
 
                 
                    (Original)                              (Modified) 

 
Figure 2: An example of modifying the height of 

taxonomy trees. 
 
        To roughly identify K, we narrow down the 
interval where K is located. Firstly, the computation 
required by MRTDS and MRBUG to achieve Kj -
anonymous on level Lj are estimated as follows. 
The performances of each round in both MRTDS 
and MRBUG are mainly dominated by the 
computation of the anonymity of data sets in the 
loop. Further, the computation required in one 
round of MRTDS and MRBUG, are roughly equal. 
Let Diagram CUnit denote the computation required 
in one round of MRTDS or MRBUG. In MRTDS, 
performing a specialization operation will launch 
IGPL update and incur CUnit computation. So, the 
total amount of computation to specialize D to Lj, 

denoted as �BCDE 				be estimated by   

 

 �BCDE 	∑F'(		
B ∑&'(		A   CUnit          Nil                        (4) 

 
        In MRBUG, unlike MRTDS, performing a 
generalization operation possibly does not trigger 
ILPG update. Generally, several operations can 
launch ILPG update and incur CUnit computation. 

On average, we assume 1/G  operations can do this, 

where 0 ≤ G ≤ 1. Then, the total amount of 
computation to generalize D to Lj, denoted as 

�BHIJ 				can be estimated by  

 

�BHIJ 	∑F'B		KL(∑&'(		A   CUnit .	G	. Nil                       (5) 

 

      The value of j that make �BCDE  equal to �BHIJ    

must be located in interval [J-1, J], where J satisfies 

the condition: �BCDE  ≥  �BHIJ     and �ML(CDE 	 ≤   �ML(HIJ  . 

Once J is identified, we can estimate that the 
workload balancing point K lies within [KJ, KJ-1].  

Let N be the average branch factor of the taxonomy 
forest. As K varies exponentially with respect to j, 
where 1 ≤ j ≤ H, we estimate the workload 
balancing point at the middle position between KJ 
and KJ-1 by the following formula:  
 

K = KJ + |D| . (1/ NA	�BL(�_ 1/ NAB  )                   (6) 
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Once the workload balancing point is estimated, the 
hybrid approach can easily determine which 
component to be chosen, via comparing K with k-
anonymity parameter.   
 

6. EXPERIMENT EVALUATION 

 

6.1 Experiment Settings  

To evaluate the effectiveness and efficiency of 
the hybrid approach, we compare it with MRTDS 
[12] and MRBUG. We denote the execution time of 
the three approaches as THyb, TTDS and TBUG, 
respectively. In general, THyb is similar to TTDS if k 
is larger than K, while THyb is similar to TBUG if k is 
less than K. Estimating K incurs overheads, yet it is 
minor compared with the computation conducted in 
map-reduce jobs. Our experiments are conducted in 
a cloud environment named U-Cloud. U-Cloud is a 
cloud computing environment at University of 
Technology Sydney (UTS).  
 

The Hadoop cluster consists of 20 VMs with 
type m1.medium which has 2 virtual CPUs and 4 
GB Memory. Each round of experiment is repeated 
20 times. The mean of the measured results is 
regarded as the representative. We utilize the Adult 
data set and its generated data sets like [12]. 
 

6.2 Experiment Process and Results  

We measure the change of execution time THyb, 
TTDS and TBUG with respect to anonymity parameter 
k. The size of data set is set as 1000 MB. Equally, 
the data set contains 1.1_107 data records, which is 
big enough to evaluate the effectiveness of our 
approach in terms of data volume or the number of 
data records. Parameter U is set as 0.5.  

 
The measures are shown in the following table:  
 

Table 1: Execution time THyb, TTDS and TBUG  with 
respect to anonymity parameter k 

 
Exp 

(K_I= 5 

*10^Exp) 

1 2 3 4 5 6 7 8 

T_Hyb 0 500 2000 2000 1500 700 500 0 

T_TDS 
50

00 
2000 2000 2500 4000 

450
0 

4700 5000 

T_BUG 0 500 2000 2000 1500 700 500 0 

 
 
      The graph for the above table is given below in 
Fig. 3 which demonstrates the change of THyb, TTDS 
and TBUG with respect to k ranging from 0 to 1.1 
*107. For conciseness, k is indicated by Exp which 
is the exponent of the scientific notation of k, i.e., k 

= 1.1*10Exp. So, Exp ranges from 0 to 7. We can 
see from Fig.4 that the execution time of the hybrid 
approach is kept under a certain level, while both 
MRTDS and MRBUG incur high execution time 
when k is small and large, respectively.  Further, 
the right part of the curve of THyb is near to TBUG, 
while the right part is near to TTDS. This is because 
the hybrid approach utilizes MRTDS and MRBUG 
as components to conduct concrete computation. As 
a conclusion, the experimental results demonstrate 
that the hybrid approach significantly improves the 
performance of multidimensional anonymization 
over existing approaches regardless of the k – 
anonymity parameter.  

 

 
 

Figure 3: Change of execution time w.r.t anonymity 
parameter k. 

 

7. CONCLUSION AND FUTURE WORK  

 
In this paper, we have investigated the 

scalability issue of multidimensional 
anonymization over big data on cloud, and 
proposed a hybrid approach that combines Top-
Down Specialization (TDS) and Bottom-Up 
Generalization (BUG) together. The hybrid 
approach automatically selects one of the two 
components via comparing the user specified k-
anonymity parameter with workload balancing 
point. Both TDS and BUG have been accomplished 
in a highly scalable way via a series of deliberately 
designed map-reduce jobs. Experimental results 
have demonstrated that the hybrid method 
expressively advances the scalability and efficiency 
of multidimensional data anonymization associated 
with prevailing methods. In cloud environment, the 
privacy preservation for data analysis, share and 
mining is a challenging research issue due to 
increasingly larger volumes of datasets, thereby 
requiring intensive investigation. Based on the 
contributions herein, we plan to further explore the 
next step on scalable privacy reservation aware 
analysis and scheduling on large-scale datasets. 
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