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ABSTRACT 

 
Traveling salesman problem is a classic combinatorial optimization problem NP-hard. It is often used to 
evaluate the performance of new optimization methods. We propose in the present article to evaluate the 
performance of the new Hunting Search method to find better results for the traveling salesman problem. 
Hunting Search is a meta-heuristic inspired by the method of group hunting of predatory animals. It is part 
of the evolutionary algorithms used to solve the continuation optimization problems. The work presents an 
adaptation of this method in a discrete case by redefining operations of the method into operations of 
permutation in the path of the visited cities of the traveling salesman. The proposed method was tested on 
the instances of reference of TSPLib Library and it gave good results compared to the recent optimization 
methods. 
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1. INTRODUCTION  

 
Traveling salesman problem (TSP) [1] is to find 

the shortest path to visit a given number of cities. 
The traveler just goes to each city once and returns 
to the city of departure. TSP is a combinatorial 
optimization problem of NP-hard class whose 
computational complexity increases exponentially 
by increasing the number of cities. The importance 
of this problem appears in many application areas 
such as transportation [2] and logistics [3]. Several 
combinatorial optimization problems in various 
fields are modeled as TSP such as the problem of 
Vehicle Routing [4] and the problem of Optimal 
Foraging [5]. In order to solve the TSP, several 
methods have been proposed: exact methods such 
as Branch-and-Bound algorithm [6], Cutting-Plane 
[7] and Brunch-Cut method [8]. Approximate 
methods such as Lin-Kernighan (LK) [9], Local 
Search [10], Descent [11], Tabou Search (TS) [12], 
Genetic Algorithm (GA) [13], Simulated Annealing 
(SA) [14], Ant Colony Algorithm (ACO) [15, 16], 
Bee Colony Optimization (BCO) [17], Particle 
Swarm Optimization (PSO) [18] and Harmony 
Search (HS) [19]. Exact methods are efficient only 
for the TSP small instances as it gives an exact 
optimum in a long duration. Approximate methods 
are used to solve TSP instances of all sizes as it 

gives an approximate optimum in a short duration 
compared to exact methods. Researchers are still 
looking for methods that are more effective; that is 
why we propose the Hunting Search method for 
solving TSP. 

Hunting Search (HuS) is an approximate 
continuous optimization method proposed by R. 
Oftadeh et al [20]. It is a meta-heuristic method 
inspired by group hunting of some animals such as 
wolves and lions. They are hunters who organize 
their position to surround the prey; each of them is 
relative to the position of others and especially in 
relation to the position of their leaders. 

This paper proposes the use of the new powerful 
HuS method for solving a combinatorial 
optimization problem; the TSP, to find better 
optimized results. This adaptation to the discrete 
case is done by redefining the signification of each 
HuS parameter, searching the best parameters 
values and redefining the HuS operators. 

The paper is structured into six sections; the 
second section provides more detailed and 
description of the TSP. The third section presents 
the method HuS. Different parameters and 
techniques of HuS that are suitable for TSP are 
explained in the fourth section. However, numerical 
results obtained from the application of HuS on 
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instances of TSPLib Library are presented in the 
fifth section and the last section is the conclusion of 
the whole work. 

2. TRAVELING SALESMAN PROBLEM 

TSP is a combinatorial optimization 
problem (or discrete optimization) where the best 
solution is defined by an objective function of a 
subset of a feasible solution from discrete set of 
feasible solutions. 

Let E be the set of discrete feasible 
solutions, S is the subset of the feasible solutions of 
E, � ∶ � → � is the objective function. The problem 
is to find: 

�� �	�
�� ∶ � ∈ ��											
�� 
 

E is the set of feasible Hamiltonian cycles, 
S is the set of Hamiltonian cycles measured by the 
objective function. The objective function gives the 
distance of a Hamiltonian cycle defined as follows: 

 

�
�� � 	���������
��, �����
���
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Such as � ∈ �, �� vertices of �, � number of 
vertices of � and ��������&��, �'(	is the distance 
between �� and �'. 

 

3. HUNTING SEARCH METHOD 

HuS is an algorithm for solving continuous 
optimization problems. It is a meta-heuristic that 
uses the techniques of group hunting of some 
animals such as dolphins. The hunting group is 
represented by a set of solutions where each hunter 
is represented by one of these solutions. The leader 
of the hunting is the best solution. A hunter is 
characterized by its position that defines the 
distance between him and the other hunters. 

During the hunt, hunters change their 
positions to better encircle their prey by movements 
toward their leader or by correcting their position 
relative to each other. Finally, if they are very close 
to each other or stuck, they have to be reorganized.  

HuS is an evolutionary algorithm since it 
evolves a population of individuals (hunters) via 
operator selection and variation, in a manner 
similar to the evolution of living beings. 

HuS algorithm is as follows: 
Initialize the parameters 

Initialize the Hunting Group (HG) 
Make a loop of NE iterations 

Make a loop of IE iterations 

Move toward the leader 

Correct the positions 
If the distance between the best  

and the worst hunter<EPS 

      Leave the loop iterations  

        of IE to the reorganization 

End if 

End loop iterations of IE 

Reorganization hunters 
End loop iteration of NE 

 
4. ADAPTING HUNTING SEARCH TO THE 

TRAVELING SALESMAN PROBLEM 

4.1 Initialize the Hunting Group 

It represents the group of hunters (set of 
the initial solution) by a two-dimensional array HG 
of NC columns and HGS rows. It can also be 
represented as a matrix HG=(h1, h2, …, hHGS) of 
content (numbers and positions of the cities to be 
visited by the traveling salesman) randomly 
generated by the computer from a map of cities. 
Each row of the matrix will represent a solution to 
the problem. The distance traveled by the traveling 
salesman in each solution is calculated by the 
objective function (2) and define the best solution. 

Where 

NC (Number of Cities) is the number of cities to be 
visited by the traveling salesman. 

HGS (Hunting Group Size) is the number of 
manipulated solutions. 

 

 

 

Example contents of a table cell 

City number: 5 
Position: x=345.0, y=750.0 
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Figure 1: Illustration of the general form of a set of 

solutions 

4.2 Move Toward the Leader 

The new matrix HG’=(h1’, h2’, …, h’HGS) 

is built by a movement of the hunters toward the 
leader as follows: 

hi’ = hi + rand x MML x (hL – hi)      (3) 

Where 

MML (Maximum Movement toward the Leader) is 
a number between 0 and 1 representing closer rate 
of a hunter to the leader. 

Rand is a uniform random number that varies 
between 0 and 1. 

hL is the leader. 

(hL – hi) refers to the distance between the best and 
the ith hunter. In this problem (TSP), the distance 
between two solutions is the number of cells of the 
two arrays that represents the two solutions that 
don’t have the same content (the same cities). 

The operation '+' means copying a part of 
a solution in another one. Here, we talk about 
copying a part of the solution representing the 
hunter hL in the solution representing the hunter hi, 

rand×MML×(hL-hi) is the size of the part of the 

hunter hL to put in the hunter hi. For example, if 
rand=0.6, MML=0.3 and (hL – hi)=22; the size of 
the part to be taken is four cells. Figure 2 is an 
example of copying a part of three cells from the 
hunter hL in hunter h1. 

 

 

 

h1 5 3 2 1 6 4 

h2 1 2 3 5 4 6 

hL 2 6 5 4 3 1 

h4 6 5 3 4 1 2 

 

 

 

h1 2 6 5 4 3 1 

h2 1 2 3 5 4 6 

hL 2 6 5 4 3 1 

h4 6 5 3 4 1 2 

Figure 2: A hunter moving toward the leader 

A new hunter is valid only if it is better 
than the old one, otherwise, we keep the old. 

4.3 Correct the Positions 

This is the stage where the hunters change 
their position relative to each other, the new group 
of hunters HG’=(h1’,h2’, …, h’HGS), which for 
every hunter hi, we have hi=(hi

1
, hi

2
, …, hi

NC
) is 

built through exchanges between these hunters of 
some parts of their solution as follows:  
 
  hi

j’ 
Є { h1

j
, h2

j
, h3

j
, …, h

j
HGS }  

               With the probability HGCR 

  hi
j’
←    i=1,…,NC and  j=1,…,HGS    

(4) 

hi
j’ 

Є { hi
1
, hi

2
, hi

3
, …, hi

NC
 }  

               With the probability (1-HGCR) 

Where 

HGCR (Hunting Group Consideration Rate) is a 
number between 0 and 1 which represents the 
probability that a hunter makes a move to another 
hunter as copying a part of the solution representing 
the first one in the solution representing the second 
as described in (4) in the case of HGCR. Figure 3 is 
an example of copying a part of two cells from the 
hunter h3 into the hunter h1. 

 

 

 

h1,1 h1,2 h1,3 … h1,NC 

h2,1 h2,2 h2,3 … h2,NC 

h3,1 h3,2 h3,3 … h3,NC 

… … … … … 

hHGS,1 hHGS,2 hHGS,3 … hHGS,NC 
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h1 5 3 2 1 6 4 

h2 1 2 3 5 4 6 

h3 2 6 5 4 3 1 

h4 6 5 3 4 1 2 

 

 

 

h1 2 3 5 4 6 1 

h2 1 2 3 5 4 6 

h3 2 6 5 4 3 1 

h4 6 5 3 4 1 2 

Figure 3: Position correction of the hunter h1 

relative to hunter h3 in the case of HGSR 

(1-HGCR) is the probability that a hunter changes 
its position with a permutation of k cells (k>=2) 
from its solution in a random manner as described 
in (4). Figure 4 is an example of swapping four 
cells from hunter h1. 

h1 5 3 2 7 1 6 4 

h2 1 2 3 6 5 4 7 

h3 2 6 5 4 7 3 1 

h4 6 7 3 5 4 1 2 

 

 

 
h1 2 3 5 7 4 6 1 

h2 1 2 3 6 5 4 7 

h3 2 6 5 4 7 3 1 

h4 6 7 3 5 4 1 2 

Figure 4: Position correction of the hunter h1 in the 

case of (1-HGCR) 

 
4.4 Reorganization hunters 

During the process of the hunt, hunters 
may get blocked in a position (local solution) as 
they can’t have their prey. If this is the case, we 
made a reorganization to have another opportunity 
to find the best position (final solution). 

The reorganization is the creation of a new 
group of hunters of random values from the old 
one. This new group of hunters replaces the old 
group, but preserves the previous best hunter. 

We made reorganization in two cases:  

• When the difference between the 
distance traveled by the leader and the 
worst hunter is less than EPS. 

• When we end an epoch (when the IE 
loop iterations are finished). 

Where 

NE (Number of Epochs) is the number of times to 
run the IE loop during the search. 

IE (Iteration per Epoch) is the number of times to 
move toward leader and correct the hunters’ 
position. 

EPS (Epsilon) is the minimum distance between 
the leader and the worst hunter. 

5. EXPERIMENTAL RESULTS 

This section presents performance tests of 
HuS algorithm on Euclidean instances of TSPLIB 
Library [21]. The tests were performed on a 
computer processor Intel (R) Core (TM) i5-2450M 
CPU 2.50GHz @ 2.50 GHz and 4 GB of RAM. 
The adaptation of the proposed algorithm is coded 
into a program language C# on visual studio 2012. 
10 times tested for each instance.  

Table 1 shows the HuS parameter values used in 
the tests. 

Table1: Parameters Values 

Parameters Values 
Hunting group size 

(HGS) 
100 

Maximum movement 
toward leader (MML) 

0.4 

Hunting group 
consideration rate 

(HGSR) 
0.4 

Maximum number of 
epochs (NE) 

10 

Iteration per epoch 
(IE) 

50 

To determine the best HuS parameters 
values, we did some tests on the following four 
instances of TSPLib Library: 
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The two graphs in Figure 5 show the 
variation of the execution time of our program by 
varying the parameter values of HGS. 

 

 

Figure 5: Run time obtained by varying HGS 

parameter value 

We can see that for instances of size less 
than 99, the best value is HGS=20. For instances of 
size greater than or equal to 99, the best value is 
HGS=100. 

The two graphs in Figure 6 show the 
variation of the NE parameter values required to 
achieve the optimum by varying the parameter 
values of HGS. 

 

 

Figure 6: NE obtained by varying HGS parameter 

value 

According to the graphs, we can see that 
increasing the size of the HGS lowers NE. We can 
also see that the maximum number of epoch needed 
to achieve the optimum for HGS=20 and HGS=100 
is NE=10. 

The two graphs in Figure 7 show the 
variation of the percentage of TN compared to EN 

by varying the parameters values of MML and IE. 
TN (Number of times Trapped) is the number of 
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times that hunters are trapped because of the 
difference between the distance traveled by the 
leader and the worst hunter, when it is less than 
EPS. 

 

 

FIGURE 7: TN/EN(%) OBTAINED BY VARYING MML AND IE 

PARAMETERS VALUE 

 

 

 

 

 

 

According to the graphs, we can see that a 
high value of MML or IE causes rapid convergence 
of the worst hunter toward leader. 

Table 2 shows numerical results obtained by HuS 
applied to some TSP instances of TSPLIB. The first 
column contains the name of the instance. The 
second column contains the number of nodes in the 
instance. The third column contains the optimal 
solution in TSPLIB Library. The fourth column 
contains our best solution. The fifth column 
contains our worst solution. The sixth column 
contains the percentage of success in getting the 
optimum in ten tests. The seventh column contains 
the percentage of error in obtaining the wrong 
solution. The eighth column contains our best run 
time of the program while getting our best solution, 
a maximum run time is fixed at 3600 seconds. The 
error percentage is calculated as follows: 
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Table 2: Numerical Results Obtained By Hus Applied To Some Tsp Instances Of Tsplib 

 

Instance Size Opt Best Sol Worst Sol Suc. (%) Err. (%) Time (sec) 

eil51 51 426 426 426 100 0 0.51 

berlin52 52 7542 7542 7542 100 0 0.16 

st70 70 675 675 675 100 0 1.42 

eil76 76 538 538 538 100 0 33.89 

pr76 76 108159 108159 108159 100 0 8.35 

rat99 99 1211 1211 1211 100 0 11.79 

kroA100 100 21282 21282 21282 100 0 7.18 

kroB100 100 22141 22141 22141 100 0 11.25 

kroC100 100 20749 20749 20749 100 0 6.48 

kroD100 100 21294 21294 21294 100 0 74.63 

kroE100 100 22068 22068 22121 60 0 47.13 

rd100 100 7910 7910 7905 100 0 10.49 

eil101 101 629 629 633 20 0 51.37 

lin105 105 14379 14379 14379 100 0 28.39 

pr107 107 44303 44303 44326 20 0 99.3 

pr124 124 59030 59030 59030 100 0 18.43 

bier127 127 118282 118282 118616 50 0 88.90 

ch130 130 6110 6110 6126 50 0 59.40 

pr136 136 96772 96920 97376 0 0.15 2282.2 

pr144 144 58537 58537 58537 100 0 34.4 

ch150 150 6528 6528 6559 20 0 1304.90 

kroA150 150 26524 26524 26535 40 0 2468.04 

kroB150 150 26130 26130 26143 40 0 774.2 

pr152 152 73682 73682 73682 100 0 79.38 

u159 159 42080 42080 42259 30 0 310.51 

d198 198 15780 15833 15869 0 0.34 3600 

kroA200 200 29368 29368 29368 30 0 7452.75 

gil262 262 2378 2454 2499 0 3.20 1745.12 

a280 280 2579 2598 2697 0 0.74 2666.45 

Among the 29 TSP instances of reference 
evaluated in the table 2, the proposed HuS has 
solved in a good duration 25 TSP instances. The 
percentage of error of the four unresolved TSP 
instances in less of 3600 seconds is only between 
0.15% and 3.20%. 

Table 3 compares average results obtained 
by the proposed HuS and the existing methods such 
as Harmony Search, Ant colony algorithm, Particle 
Swarm Optimization and the Genetic Algorithm.
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Table 3: The Average Results Obtained By Many Methods 

 

Instance Opt HuS HS [18] ACO [22] & [23] PSO [20] GA [19] 

eil51 426 426 426.3 430 [23] 436.9 429 

berlin52 7542 7542 7542 7594 [22] 7832 - 

st70 675 675 675 750 [22] 697.5 - 

eil76 538 538 540.2 552.6 [23] 560.4 - 

kroA100 21282 21282 21282 21457 [23] - 22141 

 
According to the table, we can see that 

average results obtained by HuS are the best, 
comparing to the other methods.  

Figure 8 compares average run times 
obtained by the methods HuS and HS for the four 
following Euclidean instances of TSP: eil51, st70, 
kroA100 and pr107.

 

Figure 8: The Average Run Time Obtained By Hus And Hs For Some Instances Of Tsp 

According to the graph, we can clearly 
see that average run time obtained by HuS for 
the four instances of TSP are better than those of 
HS. 
 
6. CONCLUSION 

In the present paper, we have proposed 
an adaptation of the Hunting Search method to 
solve in an efficient way the combinatorial 
optimization problem; the TSP. Permutation 
operations were defined in order to achieve the 
adaptation as well as the simulation on TSPLib 
Library instances. This way helps to determine 

the best parameters values of the HuS algorithm. 
The average of obtained optimum and the 
average of obtained run time of each instances 
are better compared to the recent methods such 
as Genetic Algorithm, Ant colony algorithm, 
Particle Swarm Optimization and Harmony 
Search, which encourage the use of Hunting 
Search method to solve similar problem. 
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