
Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

346

GENERIC ANALYSIS METAMODEL BASED ON SERVICE

ORIENTED SOFTWARE DESIGN

NIK MARSYAHARIANI NIK DAUD
1
, WAN M.N. WAN KADIR

2

Software Engineering Department,

Faculty of Computing

Universiti Teknologi Malaysia,

81310 UTM Johor Bahru

Malaysia

E-mail:
 1
mndnik2@live.utm.my,

2
wnasir@utm.my

ABSTRACT

Analyzing software in order to evaluate its quality attributes is not a foreign concept in software lifecycle.

There are many methods that can be implemented to analyze software with some focusing on source code

analysis and others concentrating on analyzing software artifacts from various phases such as design

artifacts. Service oriented software is not excluded from this. As software that uses services as part of its

functionalities, service oriented software designs represent more completed view of the software compared

to other artifacts. This work focus on identifying elements from design artifacts that represent service

oriented software structure and behavior based on standard modeling language for service oriented

architecture. The elements are then represented in a generic metamodel that can be used to analyze the

software. A case study will be used to show how design artifacts from selected standard modeling

language, SoaML being mapped to model based on proposed metamodel.

Keywords: Service oriented software, metamodel, modeling language, SoaML

1. INTRODUCTION

Developing software that implements services as

part of its functionalities is not uncommon these

days. The introduction of service oriented

architecture (SOA) into software development

world had encouraged the reusability of existing

business functionalities by repackaging it into

services. These services are exposed to any

interested party that uses it to develop software.

These software, also known as service oriented

software (SOS), can either be software that partially

implements services as part of software or it could

be a collection of services that work together to

fulfill certain business goals.

SOS bears some similarities with previous

development approach namely component based

software, in that both enforce on abstraction on its

implementation by encapsulating the

implementation. The concept of abstraction realized

loose coupling in between elements in software thus

making it better in quality. SOS however differs

from component based software in that components

usually belong to one organization while services in

software may belong to different organizations.

Services usually offered by different organizations

and can be used by a diversity type of clients thus

services usually technology agnostic and support

location transparency [1]. Implementing SOA in

software take the abstraction to another level as

services are closely related to business compare to

component based that is more on technical level.

Services are considered more as realization of

business functionality while component based is

created from the implementation modularization

view.

These dissimilarities bring new problems in

developing software. For example, having

distributive ownerships for services implemented in

software is making analyzing software more

complicated as one cannot perform code analysis

due to copyright issues and code absence. Analysis

on SOS however can be done using other artifacts

such as design artifacts. Elements in SOS and its

relationships can be studied based on design

artifacts of SOS. Apart from this, relation between

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

347

services and business functionalities need to be

considered while analyzing SOS.

Analyzing software is a common process that can

be adapt in any phases in software lifecycle. Inputs

for software analysis are usually taken from

software artifacts belonging to different phases of

software lifetime, starting from requirement phase

up to maintenance. On the early age of software

development, analysis is done mainly based on

program code though in recent years, due to

diversity of software development techniques such

as model driven architecture (MDA), other artifacts

such as document specification and design artifacts

has also been used as input of software analysis[2].

To analyze SOS based on design artifacts is

challenging as there are few modeling language

proposed to design SOS. Each modeling languages

cater specific area in SOS. To come out with design

artifacts that can be used to analyze quality of SOS,

a generic metamodel is proposed. Metamodel is one

of concepts introduced in MDA that can be defined

as model used to describe model. This paper will

discuss on the proposed generic metamodel.

This paper is structured as followed: Section 2

provides background on SOS design and

metamodel. Apart from that, selected SOS modeling

language will be briefly discussed. Section 3

discusses on elements available in SOA design

artifacts. Further explanation on the chosen key

elements from SOS development perspectives will

be inserted. Section 4 presents the proposed generic

metamodel that is built based on selected key

elements and its relationships. This is followed by

application of the metamodel using a simple travel

agency reservation system as a case study. Finally,

Section 5 concludes this paper.

2. BACKGROUND

Software development processes are geared up

towards using model as it main artifact by

promoting model as at par with codes. This

innovation is especially accelerated with the

introduction of MDA, one of OMG initiatives[3]. In

MDA approach, models are used as enabler to

communicate between stakeholders in

understanding software. One of the main concepts

introduce in MDA is metamodel. Metamodel can be

described as model that describes modeling and is

derived from Meta Object Facility (MOF), a

language used to describe metamodel. Metamodel

can be used as tool in describing specific domain[4-

5]. The relationships between metamodel and its

predecessor and successor can be seen in figure 1.

Figure 1: MDA metamodel Layer

There are 4 layers in metamodeling where M0 is

excluded from figure 1 as it represented real world.

M1 represents the usual model that has been used to

model real world such as UML model or any

domain specific model. Metamodel resides in M2

layer where models in this layer are used to describe

model. For example, to use UML model, there are

certain syntax and semantics that user need to know

in order to use UML model. This syntax and

semantics is described using UML metamodel that

in turn are described using MOF, a metametamodel

which resides in M3.

Other metamodel can be created to represent a

domain specific model. This is known as custom

based metamodel. Apart from using metamodel,

UML had a special flexibility known as UML

profile. Using UML profile, one can extend UML

metamodel by using stereotype that enabled user to

use UML model for more specific domain. The

advantage of using UML profile over domain

specific metamodel is that user can used existing

tool for UML to create their model. Using both

approaches, many researchers had proposed

metamodel for SOA.

In SOA related researches, metamodel has been

used as tool to describe elements and relationships

of the area [6-8]. Each metamodel differs based on

researchers point of interest. For example,

metamodel is used to define on privacy policy in

SOA [9] and fault tolerant of SOS [10]. On the other

hand, more generic metamodel had also been

proposed such as SoaML by OMG[11]. SoaML or

SOA Modeling has been accepted as standard with

its specification releases on 2012.

MOF

UML

metamodel

Custom

based
metamodel

UML model model

M3:

Metametamodel

M2:

Metamodel

M1:

Model

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

348

PIM4SOA [12] is another example of

metamodel that had been proposed as a generic

model . PIM4SOA or Platform Independent Model

for SOA is proposed to support MDA approach. The

metamodel focuses on modeling business processes’

interactions. What makes it different from other

metamodel is that PIM4SOA focuses on four

aspects which are service, process, information and

quality of service[12]. This metamodel has been

implemented as part of plug-ins for sourceforge

tool. Another attempt to model SOA at PIM level is

done by [13].

Service Component Architecture (SCA) is a

collection of specifications published by OASIS

group in 2005 to cater on development of SOS.

SCA can be divided into four major models and for

this paper the scope will be on SCA Assembly

model [14]. SCA Assembly model specify on

structure encompasses of components and how they

are linked to each other. It is supposed to be

technology agnostic though most of SCA model

elements are materialized as XML implementation.

Service Reference Modeling Language (SRML)

is a modeling language proposed from SENSORIA

project, a collaboration project between universities

in Europe ended on 2010. It is a technology

agnostic language which specifically focuses on

service excluding middleware infrastructure of

SOA[15] . SRML supports its syntax structure

using formal semantic thus its documentation

focuses more on this aspect.

The selection of these modeling languages is by

no mean trying to ignore others proposed works.

These modeling languages are selected as references

on what elements of SOS are commons in these

SOS designs. Though there are many metamodel

proposed for development of SOS, each cover

different aspects of SOS thus a generic metamodel

is proposed. The generic metamodel is specifically

being used for analyzing quality in SOS.

3. KEY ELEMENTS IN SERVICE

ORIENTED SOFTWARE DESIGN

Software design can be viewed from two

perspectives that are architectural design and low

level design. Architectural design perspective deals

with software by viewing components and

connections in software. Components reflect

elements available in software where the

relationships and structure of these components are

shown based on connections. Interactions between

components to describe on how a software achieves

its’ functionalities are emphasized at architectural

design level. As opposed to this, low level design

operates on implementation design structures.

Details on operations and parameters are such

examples on the focus of low level design as this

level is one step closer to software’s

implementation.

Going through this, most of modeling languages

cover both levels but for this work, the focus would

be on architectural level design. To analyze on

software structure and behavior, the level of

interactions and dependencies between components

in software are important segments to be studied.

Architectural level design covers both segments of

software thus it is already sufficed for software’s

analysis.

Works in SOS modeling have branched into

many specific areas especially with the rising of

web services technology, attracting researchers to

focus their works in this area. Some have been

working on more general level without being too

dependent on any technology. Modeling SOS is

different from other area in SOA as it usually

ignores other services’ infrastructures such as

service middleware and service registry. This is due

to the fact that SOS is viewed from developers’

perspective and the mechanism on how services are

published and delivered are not their main concerns.

It is more on how services interact with components

of software and how can it be removed or added

dynamically during runtime without disrupting

software’s functionalities is more important for

developers.

Most service modeling design supports this idea,

generally. SoaML, a modeling language which

implements UML Profile as extension from UML

2.0, includes stereotypes such as participant and

component diagram to model components’

interactions and structures. SCA assembly model, an

initiative from open OASIS, is used to model

services from service component aspects. The same

goes to SRML, a language proposed by research

collaboration named SENSORIA, where SRML

Module structure is used to model components’

architecture of a service. As a support for MDA

approach, a modeling language specifically for SOA

at platform independent level, PIM4SOA has been

developed. Using these four modeling language as

main references, key elements for service

component is identified as can be seen in Table 1.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

349

Analysis on current modeling languages is done

based on structure and behavior of software.

Elements that are identified to represent SOS’s

structures are component, service, service interface

and connection between these elements. The

connections are divided into two types,

interconnection representing connections between

elements at architecture level and intra-connection

representing connections within composite element

be it service or component. Behavior analysis of

SOS is done from static interaction and dynamic

interaction. This is necessary as one of the unique

attributes for SOS is the capability for the software

to add and remove any services during runtime thus

reflecting a dynamic interaction.

Study had been done on four aforementioned

service modeling languages that cover SOS

generally without being too specific in certain

aspects. The study covers on both structure and

behavior that may represent service modeling. As

described in Table 1, four key elements in SOS had

been selected which are component, interface,

connection and service. Each of them is further

divided into two subcategories except for

component.

The component element exists in three selected

service modeling except for PIM4SOA. For

interface element there are two types of interfaces

that need to be considered. Those are served

interface and required interface. Served interface

acts as access to service for user while required

interface is includes when a service required certain

operations from other elements in order to fulfill it

task. For SoaML, service port and required port are

considered as interface as these elements are typed

by interface either it is service interface element or

simply an interface. Both SCA and SRML include

served and required interfaces. PIM4SOA had an

element called endpoint that can be interpreted as

access for service usage.

The next element in SOS to be considered is

service. In service modeling, service is treated as

abstract concept where most of the time it is

realized by other concepts. In this case, in each

service modeling language, concepts that are

considered to realize service are chosen. Service are

categorized into two categories, atomic and

composite, where atomic service represents the

simpler version of service that contains only

implementation and interface whilst composite

service covers more complex service that contains

services interaction with each other to achieve

certain business functionality. A pure SOS can also

be seen as a composite service. Each modeling

language has its own concept that can be translated

into both atomic and composite service as can be

seen in Table 1.

 The last element, connection element is used as

connectors between other elements in SOS.

Connections are divided into interconnection and

intra-connection for analysis purpose.

Interconnection is connection used between

services in composite service and at software level.

This is treated as analysis from architectural level

perspectives. Intra-connection is used to connect

internal elements in a service such as interface and

component. PIM4SOA is the only modeling that

didn’t mentioned on connections as it uses

messages for elements’ interactions.

From behavior of SOS view, this study shows

that behaviors in SoaML, SCA and SRML are

usually represented using behavioral diagrams from

UML 2.0. Apart from this, BPEL files are also used

to represent workflow of business process activity.

However, runtime behavior such as adding and

removing services are rarely mentioned. Thus, in

this study, these two behaviors will be included into

proposed metamodel. Table 2 summarizes on

behavior included in these modeling languages.

It can be summarized that component, interface,

service and connection are key elements needed in

representing SOS as it presents in all three service

modeling language except for PIM4SOA. This

might be attributed by the fact that PIM4SOA tends

to represent SOS at a very high level as compared to

others modeling languages. Thus it didn’t cover on

low level design aspects. Based on this study, a

generic metamodel is proposed using the elements.

The metamodel is discussed in next section.

4. GENERIC ANALYSIS METAMODEL

Previous section discussed on the extraction of

key elements from design artifacts based on existing

service modeling languages. Using these identified

elements, a metamodel is proposed specifically for

quality analysis based on structures and behaviors of

SOS. Metamodel technique is elected to represent

existing elements its relationship due to several

factors. Metamodel allows for easy mapping

between models based on MDA approach. The

proposed generic metamodel is shown in figure 2.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

350

Figure 2: Generic Metamodel

This metamodel is generated using Eclipse

Modeling Tool. Each key element is represented in

this metamodel where relationships between these

elements are elaborated. The structure of this

metamodel is divided into two main models that are

service oriented software model and service model.

Service oriented software model represents elements

that exist in architecture level of the software,

emphasizing on connections between services in

order to fulfill a business goal while service model

represents elements at low level design.

From architecture perspective, there are four

main elements in this model. The elements are

component, service, interface and connection.

Component and service represent elements that

implement business functionalities in SOS.

The first rule for elements in SOS is that SOS

must at least contain one instance for each element.

Component element has implementationType

attribute that store the value of implementation type

for the component. Examples of the type are .java or

.bpel. Service element has two attributes which are

description and protocol. Description stores

information about the service while protocol store

name of file that elaborates on behavior of the

service. Connection is used to define connection

between components and services where the

interactions for service are represented using

interface.

The service model contains four elements which

are component, service, interface and connection.

The second rule for elements is that service must at

least have one instance of component, interface and

intra-connection. A service must at least have one

served interface and may not have any required

interface at all. All connections in SOS are required

to be done through interface elements. Two service

specific elements, served interface and required

interface inherited from interface element.

This generic metamodel focuses more on

relationships in SOS and elements exist in it. This is

due to the fact that this metamodel is generated for

quality analyzing purpose. Behavior of SOS is not

included as part of the metamodel as it will be

represented using graph transformation system

approach. The discussion on behavior of SOS will

not be included in this paper.

Table 1: Key Elements in Service Modeling from Structural Aspect

Service

modeling

language

Feature (Structure)

Component

Interface Service Connection

Served Required Atomic composite Inter-

connectio

n

Intra-

connection

SoaML Component

Service

port

Request

port

Participant Services

Architecture

Service

channel

Service

channel

SCA

Assembly

model

Component

Service Reference Service

component

Composite Wire Promotion

SRML

Module

Structure

Node Serves-

interface

Requires

interfaces

Service

module

Activity

module

Wire

interface

connector

PIM4SOA - Endpoint - Collaboration Collaboration - -

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

351

Table 2: Key Elements in Service Modeling from Behavioral Aspect

5. CASE STUDY

The proposed Generic Metamodel is applied on

a case study of Travel Agency Booking System.

This case study is selected as it shows simple

interactions between services in order to fulfill

certain business goal which in this case is making

reservation for travel agency. The system consists of

4 main services; travel agency system, hotel

booking services, transportation component and

flight booking services. Travel agency system acts

as the main component in this software by

connecting to three other external services in order

to book hotel, flight and transportation for the travel

agency’s customers. These three services will return

confirmation on whether the reservation is

succeeded.

To model this case study, SoaML is chosen as

modeling language where selected diagrams will be

produced to represent the case study. The selected

diagrams servicesArchitecture diagram and

participant diagram, and component diagram.

servicesArchitectures diagram represents the

interaction between participants at architecture level

and participant diagram shows on the structure at

service component level. Component diagram

simply represent component available in the

software. These three diagrams will be used as

inputs to come out with its equivalence model based

on proposed metamodel.

Implementation of this case study is done using

Eclipse Modeling Tool. Eclipse is an open source

framework that enabled user to create adds-on to its

framework. It also enables the use of ATL (Atlas

Transformation Language) that is used as

transformation language for this case. Transforming

sample model can be explained based on the

following Figure 3. Basically, a sample model based

on SoaML metamodel will be generated and will be

used as input for a transformation program using

ATL. The output will be a model that is compliance

to generic metamodel.

Figure 3: Transformation model

A sample of the SoaML model can be seen from

Figure 4. The sample is in XMI filetype with

servicesArchitecture as the main model. As depicted

in SoaML metamodel, a servicesArchitecture

contains participant and serviceContract. Some of

the participant is shown in the Figure 4, for example

the “travel agency” participant. This figure only

shows part of the whole model. A transformation

program is developed based on mapping rules. For

example, servicesArchitecture from SoaML model

is mapped into service oriented software in generic

metamodel. The result is automatically generated

and portion of the result model can be seen in Figure

5.

Service

modeling

language

Feature (Behavior)

Dynamic Static

Add service Remove service Invoke Reply Receive Close

SoaML - - � � � �

SCA

Assembly

model

- - � � � �

SRML

Module

Structure

� � � � � �

PIM4SOA � � � � � �

SoaML

Metamodel

Generic

Metamodel

SoaML

model

Generic

model

ATL

Transformation

program

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

352

Figure 4: Sample of input model

Figure 5: Sample of output model

6. CONCLUSIONS AND FUTURE WORKS

Software design can be represented by multi

type of designs. Even for SOS which is a new type

of software, many works have been proposed

regarding on modeling its’ design. This work

proposes a refined version of current design artifacts

that generalize elements in SOS modeling. A study

had been made on standard, published works on

modeling language for SOA such as SoaML. Key

elements exist in the modeling language are

identified. Based on the elements, a generic

metamodel is proposed and presented in this paper.

A simple case study on travel booking system is

chosen to show on how the proposed metamodel can

be transformed from selected service modeling

language, in this case, SoaML. The case study

shows that the generic metamodel managed to refine

existing model, by representing key elements of the

models.

This paper focuses only on structural aspect of

generic metamodel for SOS. Behavioral aspect is

out of this paper scope. Future works will include on

showing the representation of behavioral aspect and

analyzing the metamodel from quality perspectives.

It is hoped that this work will help in SOS developer

to analyze their software behavior.

ACKNOWLEDGEMENT

The authors would like to express their deepest

gratitude to Research Management Center (RMC),

Universiti Teknologi Malaysia (UTM) and Ministry

of Education Malaysia for their financial support

under Fundamental Research Grant Scheme (Vot

number R.J130000.7828.4F216).

REFERENCES

[1] M. Papazoglou, "Service-oriented

computing: Concepts, characteristics and

directions," in WISE: Web Information

Systems Engineering, 2003, 2003, pp. 3-12.

[2] D. Jackson and M. Rinard, "Software

analysis: a roadmap," presented at the

Proceedings of the Conference on The

Future of Software Engineering, Limerick,

Ireland, 2000.

[3] S. J. Mellor, et al., MDA Distilled:

Principles of Model-Driven Architecture

Boston: Addison-Wesley, 2004.

[4] C. Atkinson and T. Kühne, ""The Role of

Metamodeling in MDA"," in International

Workshop in Software Model Engineering,

Dresden, Germany, October 2002.

[5] R. Gjataj, "Metamodel Based Editor for

Service Oriented Architecture " Master,

Department of informatics, University of

Oslo, 2007.

[6] L. Baresi, et al., "Style-based modeling and

refinement of service-oriented

architectures," Software & Systems

Modeling, vol. 5, pp. 187-207, 2006/06/01

2006.

[7] N. A. Delessy and E. B. Fernandez, "A

Pattern-Driven Security Process for SOA

Applications," in Availability, Reliability

and Security, 2008. ARES 08. Third

International Conference on, 2008, pp.

416-421.

[8] C. Marin, et al., "A MDE Approach for

Power Distribution Service Development,"

in Service-Oriented Computing - ICSOC

2005. vol. 3826, B. Benatallah, et al., Eds.,

ed: Springer Berlin Heidelberg, 2005, pp.

552-557.

[9] D. S. Allison, et al., "Metamodel for

privacy policies within SOA," in Software

Engineering for Secure Systems, 2009.

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmi:XMI xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"

xmlns:genMet="genMet">
 <genMet:serviceOrientedSoftware

name="travelBookingSystem">
 <hasComponent name="travel agency">

 <hasComponent implementationType="java"

name="bookingModule"/>

 <hasComponent implementationType="java"

name="transportQuery"/>

 <hasComponent implementationType="java"

name="flightQuery"/>

 <hasComponent implementationType="java"

name="hotelQuery"/>

 </hasComponent>

 <hasComponent name="transport">

 <hasComponent implementationType="java"

<xmi:XMI xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI" xmlns="soaml">

<servicesArchitecture name="travelBookingSystem">
 <containsParticipant name="travel agency">

 <containsComponent name="bookingModule"
type="java">

 <hasServicePort>
 <typedBy interfaceName="mainInterface"

operation="bookTransportInterface"/>
 </hasServicePort>

 </containsComponent>

 <containsComponent name="transportQuery"

type="java">

 <hasRequestPort>

 <typedBy interfaceName="transportInterface"

operation="bookTransportInterface"/>

 </hasRequestPort>

 </containsComponent>
 <containsComponent name="flightQuery" type="java">

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

353

SESS '09. ICSE Workshop on, 2009, pp.

40-46.

[10] F. Mahdian, et al., "Modeling Fault

Tolerant Services in Service-Oriented

Architecture," in Theoretical Aspects of

Software Engineering, 2009. TASE 2009.

Third IEEE International Symposium on,

2009, pp. 319-320.

[11] Object Management Group. (2012, 30

October 2013). Service Oriented

Architecture Modeling Language.

Available:

http://www.omg.org/spec/SoaML/1.0.1/

[12] G. Benguria, et al., "A platform

independent model for service oriented

architectures," in Enterprise

interoperability, ed: Springer, 2007, pp.

23-32.

[13] M. López-Sanz, et al., "Modelling of

Service-Oriented Architectures with

UML," Electronic Notes in Theoretical

Computer Science, vol. 194, pp. 23-37,

2008.

[14] M. Beisiegel, et al. (2011, 31 October

2013). Service component Architecture

Assembly Model Specification. Available:

https://www.oasis-

open.org/committees/download.php/42321/

sca-assembly-1.2-spec-wd04.pdf

[15] J. Abreu and J. Fiadeiro, "A Coordination

Model for Service-Oriented Interactions,"

in Coordination Models and Languages.

vol. 5052, D. Lea and G. Zavattaro, Eds.,

ed: Springer Berlin Heidelberg, 2008, pp.

1-16.

