
Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

473

 COMPARATIVE EVALUATION OF SERVICE INTERFACE

APPROACHES TO SYSTEM INTEGRATION FOR

OPERATION CENTER

1
NORZIANA YAHYA,

 2
ABDUL HANAN ABDULLAH

1
Faculty of Computing, UTM, Skudai, Johor, Malaysia

2
Faculty of Computing, UTM, Skudai, Johor, Malaysia

E-mail:
1
ziana76@gmail.com,

2
hananfsksm@gmail.com

ABSTRACT

System integration of an operation center has become more complex and heterogeneous due to rapid

innovations in the IT industry. Problems arise when a new integration requirement emerges due to

complexity of the system integration architecture. To simplify the system integration, interoperability has to

be emphasized at the design stage. Architectural design is the stage wherein the process to identify the

interfaces involved in the system integration needs to be considered. Approaches to simplifying system

integration via service interface design have been the subject of many research studies. In this paper, case

study on two (2) traffic operation centers in Malaysia i.e. Transport Management Centre of Kuala Lumpur

City Hall and Traffic Monitoring Centre of Malaysian Highway Authority were conducted to identify gaps

amongst the system integration approaches used in both operation centers. Three (3) prominent approaches

of system integration used by both operation centers were chosen, explored and discussed, namely, method-

oriented interface, message-oriented interface and resource-oriented interface. The result of a systematic

comparison of the approaches mentioned is also presented. Six (6) criteria were established to make

comparison on the approaches: interoperability, uniformity, scalability, reusability, heterogeneity, and

compatibility. The objective was to determine the best contemporary approach to service interface design in

centralized system integration. The outcome of the evaluation was examined and improvement to the

service interface design is proposed. The study is very significant as an attempt to establish a practice

reference for enhancement of the current system integration as well as serve as a guide for future

deployment of operation centers.

Keywords: Service Interface Design; System Integration; Method-Oriented Interface; Message-Oriented

Interface; Resource-Oriented Interface

1. INTRODUCTION

The complexity of systems integration increases

in line with number systems involved in an

operation center. This indirectly creates potential to

present big problem to the operation center and

make the system unmanageable. When a new

integration requirement emerges, it can cause many

conflicting interfaces. To prevent system integration

from becoming too complex to manage, it is

necessary to determine the components of the

system integration as early as the design stage.

Several studies have emphasized that the success of

interactions among the systems is dependent on

how well the service interfaces are exposed [6],

[24].

An approach proposed by Wei et al. [26] was

aimed at resolving the tight coupling problem and

interface complexity of WebService based on an

XML-RPC interactive model. Through the

comparison and analysis of WebService based on

REST and traditional XML-RPC, the REST-based

WebService was proposed. The approach also

explained the advantages of the interactive model

based on REST in Web-scale applications and set

out the design method of this WebService.

Zhao et al. [28] who studied the possible

composition of the abstract resource and run time

service methods had proposed a method for a

RESTful Web service composition based on linear

logic. The study had also introduced a formal

definition of RESTful Web services which also

covered the development of resource-oriented and

self-declarative methods.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

474

Many research efforts have dealt with the service

interface in system integration. Zhang et al. [27]

and Kalasapur et al. [9], the interface matching

method was used in interface integration. The

matching was done on the semantic description of

the parameters' input and output. Another study

stressed the importance of determining the

architecture and design of the components,

subsystems and processes, and the effect of the

interface on the process of integration [20]. In this

paper, three (3) prominent approaches related to

service interface design, namely, the method-

oriented, message-oriented and resource-oriented

approaches are described, refers from [12] [8] as

well as other related works [6] and [24].

In Section 2, each approach is briefly described.

In Section 3, explanation of the criteria used in the

evaluation of the approaches is provided. The

evaluation results are presented in Section 4. Based

on the results and analysis carried out, a solution

model called Service Interface Mediator was

recommended and described in section 5. Finally,

the conclusion and future work is presented in

Section 6.

2. APPROACHES IN SERVICE

INTERFACE DESIGN

Poorly designed service interfaces give negative

effect to all applications using them. In contrast,

well-designed service interfaces can speed up

integration development and make solution more

responsive to business needs. As such service

interface design approach play important roles in

system integration [2], [16].

Many approaches to system integration with

regard to service interface design have been

identified by previous researchers [6] and [24].

Based on preliminary study conducted on the traffic

operation centers mentioned earlier, 3 most

common approaches to service interface design

were chosen i.e. method-oriented, message-oriented

and resource-oriented approaches. Each approach is

described in the following sub-sections.

2.1 Method-Oriented Interface

Method-oriented interface is a design approach

that allows a program or application to call

procedures located in other domains or machines.

The application is exposed as one or more network

objects, each with a unique set of functions or

service interfaces which can be invoked. The

service interfaces have a large set of operations and

each operation performs a certain function. Service

consumers have to know the exact definition of the

service interface. In an environment where separate

applications are communicating, any changes to the

interface will require the service to be updated. This

type of design can cause tightly coupled interfaces

and also cause a lot of work in a large system in the

case of changes to the interfaces. A good example

of a method-oriented interface is the Remote

Procedure Call (RPC) [11].

2.2 Message-Oriented Interface

In message-oriented design, service consumers

consume a service defined in message structures

instead of invoking function calls. The service

endpoint embedded in the messages is sent to the

Web service. In message-oriented design, the

interface is fixed and changes are only made to the

message structure. All the messages are described

by using XML schema. However, the design makes

it difficult to interpret and understand the

functionality provided by a service. The structure of

the messages that the service can handle needs to be

examined in order to understand the functionality of

the service. In message-oriented design, XML plays

a major role, whereas the Web Services Description

Language (WSDL) plays a minor role.

2.3 Resource-Oriented Interface

The resource-oriented interface or constrained

interface [18] is an interface that adheres to a fixed

set of standardized operations. An example of a

resource interface is HTTP. HTTP defines the

operations of PUT, POST, GET, and DELETE

which are then applied to resources, located with

Unified Resource Locators (URLs). With

constrained interfaces, it is possible to build large

distributed systems. Since the interface is

standardized, it does not have to be updated. REST-

style architecture, resource-oriented interfaces and

content-oriented interfaces are used in lieu of

constrained interfaces.

3. COMPARATIVE EVALUATION

CRITERIA

This section briefly describes the criteria applied

for the evaluation of the three (3) approaches to

service interface design. The capability of the

resulting system is analyzed in relation to how well

it meets some relevant criteria. The indicators used

to measure the capability are ranked as low,

medium and high. A brief explanation of each

criterion in the context of this research is provided

in the following sub-sections.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

475

3.1 Interoperability

Interoperability is the ability of two or more

systems to work together to allow for information

exchange [23] to enable them to operate effectively

together [7] by adhering to common standards. The

integration of different systems to use different data

models and formats is achieved through common

communication languages and protocols.

3.2 Uniformity

Uniformity of interface refers to shared

terminology or mechanism that promote shared data

model for interacting abstract objects from different

applications [13]. The main objective is to promote

a single method or mechanism that applies to all the

interfaces involved in the system integration.

3.3 Scalability

Scalability is the ability of a system, or

application to handle a growing number of

integrated components in a capable manner. It also

demonstrates the ability of a system to be enlarged

to accommodate its growth. The base concept of

scalability is the ability for a system or application

to accept increased components without impacting

its performance and objective [1]. A system is

scalable if its performance improves after adding

new component, proportionally to the capacity

added.

3.4 Reusability

Reusability of interface refers to the ability of

an interface which has functionalities to be reused

for composing a new service or interface. This

encourages interfaces with extra capabilities to be

built for future usage scenarios. The interfaces also

could be reused by multiple business processes.

Reusable functions/logics reduce implementation

time and effort, increase quality of service, and

localize code modifications when a change in

implementation is required. Thus, it eliminates the

need for creating a new interface entirely and also

can be reused by various business processes instead

of reused by a particular business process only.

3.5 Heterogeneity

Heterogeneity refers to heterogeneous interface

through which various systems with different

platforms are able to be integrated. The

heterogeneous interface demonstrates higher degree

of interoperability amongst systems containing data

resources with multiple types of formats. Standard

principles conforming software interfaces used in

common by different systems allowing them to

communicate with each other.

3.6 Compatibility

Compatibility is a characteristic of software or

system components which can operate satisfactorily

together. It refers to the visibility of the same

function or interface to be used by two or more

applications or systems which are intended to

operate cooperatively on the same or on different

computers. They may also be compatible in one

environment and incompatible in another [10].

4. RESULTS OF APPLYING EVALUATION

CRITERIA

This section presents the results of the

comparative evaluation of each of the three

approaches to system integration. Table 1 shows

the grading scheme for all the criteria used in the

comparative evaluation. Table 2 summarizes the

results of the comparative evaluation.

Table 1: Grading Scheme For All Criteria Used In

Comparative Evaluation.

4.1 Interoperability

4.1.1 Method-Oriented Interface

The method-oriented interface conforms to

SOAP and XML specifications of which its

implementation depends on. In the case of Action

values of " " and null in the SOAP specifications,

different implementations may interpret the values

differently due to ambiguous definition in the

specification. Not all implementations support both

values and this may lead to non-interoperable. It is

also not clear how an XML-RPC with a void return

and no out parameters should be represented as a

service. It could be represented as an empty

envelope or as an empty response element or as "No

Response" code (HTTP 204).

Conclusion: low interoperability

Criteria Grading

Interface Features

Interoperability Low to High

Uniformity Low to High

Extensibility Low to High

Scalability Low to High

Reusability Low to High

Compatibility Low to High

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

476

4.1.2 Message-Oriented Interface

The message-oriented interface able to

accommodate changes of services of a business for

its information systems. It able to send and receive

messages between distributed systems over

heterogeneous platforms. It also creates loose

coupling between participants in the systems.

Integration with heterogeneous components is

formed by an interface layer that allows them to

communicate despite their differences. In this way,

applications distributed on different network nodes

able to communicate among them regardless of

operating environment that they are hosting. The

application interface able to link the applications

without adapting source and target systems.

Conclusion: high interoperability

4.1.3 Resource-Oriented Interface

Most resource-oriented approaches require an

HTTP library to be available for most of the

operations. Uniform Resource Identifier (URI) in

HTTP is a string of characters used to identify a

name of a resource. This is an important concept of

resource as global identifier. An application

interacts with a resource (e.g. document or image)

by knowing the resource identifier and the action

required. With HTTP, resources can be manipulated

and their representations can be exchanged across

different domains.

Conclusion: high interoperability

4.2 Uniformity

4.2.1 Method -Oriented Interface

The concept of uniformity is to promote

generalization of interfaces between interacting

components or applications in system integration.

In method-oriented architecture, a client must know

exactly the object identity and also the object type

prior to communicate with an application. The

application is exposed as one or more network

objects, each with a unique set of functions or

interfaces which can be invoked. This situation

creates low uniformity due to limitation of

generalization of the interfaces.

Conclusion: low uniformity

4.2.2 Message-Oriented Interface

The evaluation of message-oriented interface is

same as for method-oriented interface. Both

interfaces cannot be generalized into a single

interface, as such we need to treat each kind of

interface name differently. The result is also same

as the method-oriented interface.

Conclusion: low uniformity

4.2.3 Resource-Oriented Interface

In resource-oriented architecture, all networked

resources are defined and addressed in a standard

way in which they share a uniform interface to

transfer their respective states. This is one of the

most distinctive features of the resource-oriented

architecture due to specific set of constraints

imposed on the behavior of interacting components.

The set of constraints ensure that the interactions

use a consistent interface [15].

Conclusion: high uniformity

4.3 Scalability

4.3.1 Method -Oriented Interface

Low interoperability and reusability in method

oriented architecture limits its scalability. Please

refer to interoperability and reusability sections

pertaining to the method oriented interface.

Conclusion: low scalability

4.3.2 Message -Oriented Interface

The message-oriented interface provides the

most scalable way for sharing data and

functionality. It is suitable for integration in large

transaction volumes. This is due to the nature of the

messaging type interfaces which does not require

the client to suspend its work until complete.

Conclusion: high scalability

4.3.3 Resource-Oriented Interface

The resource-oriented interface is more scalable

and is more maintainable over time. Simplicity is

the key factor due to the constraints of the design

style. The interface is easier to understand and work

with and more predictable. The client-server

architecture in resource-oriented simplifies

component implementation and increases the

scalability of server components [3]. Due to its high

reusability and uniformity, the composition of new

components is not an issue and these factors

encourage the growth of integrated systems.

Conclusion: high scalability

4.4 Reusability

4.4.1 Method -Oriented Interface
The method-oriented interface offers the

separation of functionality between client and

server components. Each component has to focus

on a particular function. Reusability of the server

functionality across the client components is limited

within a certain domain and platform only.

Conclusion: low reusability

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

477

4.4.2 Message-Oriented Interface

The message-oriented approach provides more

reusable functions compared to the method-oriented

approach due to the sent or received messages being

in text form (XML format). The modification of

contents of the message does not affect the

integration interoperability. However, the limitation

of interface generalization may decrease the

reusability of its functions.

Conclusion: medium reusability

4.4.3 Resource-Oriented Interface

Resource-oriented architecture demonstrates

higher degrees of decoupling and interoperability

between components. In addition, abstraction of its

interface uniformity promotes decoupling and

independence between interacting components,

leading to evolution-tolerance and reusability [13].

Conclusion: high reusability

4.5 Heterogeneity

4.5.1 Method -Oriented Interface

The method-oriented interface is a client/server

infrastructure. Even though it allows interaction

over different machines but it still depends on the

language, platform and protocol used for the

integration. It is interdependent and requires the

simultaneous availability of all subsystems.

Conclusion: low heterogeneity

4.5.2 Message-Oriented Interface

The message-oriented architecture supports

interoperable systems and applications interactions

over a network where clients and servers are

platform-independent. It also enables heterogeneous

systems communicate over the HTTP protocol used

on the Web.

Conclusion: high heterogeneity

4.5.3 Resource-Oriented Interface

The resource-oriented interface is designed to

support various interoperable systems interacts over

network world-wide regardless of their platforms.

As such, the architecture able to support high

degree of heterogeneity and as of today it is the

most widely implemented in the world.

Conclusion: high heterogeneity

4.6 Compatibility

4.6.1 Method -Oriented Interface

For low-scale and simple integration, the

development efforts for the method-oriented

interface are low but when the systems grow it may

become complex. Changes in one system may have

effects on a few systems and this may cause

incompatibility.

Conclusion: low compatibility

4.6.2 Message-Oriented Interface

The message-oriented interface is a text-based

environment which is common for all systems, and

compatibility is therefore not an issue.

Conclusion: high compatibility

4.6.3 Resource-Oriented Interface

Due to its uniformity features, the resource-

oriented interface will give high compatibility for

all applications dealing with it within the same

environment.

Conclusion: high compatibility

As described in this section, each interface

design approach has advantages and disadvantages

based on the selected criterion. The results

presented in Table 2 show that the resource-

oriented interface is the best solution for system

integration.

Table 2: Result Of Comparative Analysis Of The

Three System Integration Approaches.

5. SERVICE INTERFACE MEDIATOR

Based on the analysis outcome stated in

previous section, a new interface concept called

Service Interface Mediator (SIM) was proposed to

provide a unified service interface as depicted in

Figure 1.

Criteria
Method-

Oriented

Message-

Oriented

Resource-

Oriented

Interface

Features

Interoperability Low High High

Uniformity Low Low High

Scalability Low High High

Reusability Low Medium High

Heterogeneity Low High High

Compatibility Low High High

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

478

Figure 1: Preliminary Architecture of Service

Interface Mediator

The SIM comprises of five main components

as described below:-

a. Interface Schema Mapper (ISM)

Service Interface Mediator is the first point

contact between any integrated system and

main application. The first component to

identify the service interface type from service

consumer is Interface Schema Mapper (ISM).

The ISM has two (2) subcomponents i.e.

Transformer and Converter. The Transformer

is used to transform service(s) into compatible

form agreed between integrated systems. The

Converter such as XML converter is used to

do data conversion in order to make it

compatible and acceptable to the receiving

system.

b. Interface Registry (IR)

IR is where all service interfaces to be

published are registered.

c. Method-oriented Interface(MT)

Service Interface will invoke an application-

specific operation based on the service name

given.

d. Message-oriented Interface(MS)

Service Interface will read the body of

message and do appropriate action based on

the instruction given.

e. Resource-oriented Interface(RS)

Service Interface will request the target

resource based on the input given.

In the SIM application, the client browser or

applications invokes an application-specific

operation on a service endpoint with input

arguments. WSDL files will be used by the main

application to describe the operations that the

interface supports and the parameters that the

operations handle. XML schema will be used to

describe the interface schema parameter structures.

6. CONCLUSION AND FUTURE WORK

The most important factor in establishing

system integration is interoperability. Depending on

the operational requirements and constraints of an

operation center, the selection of the approach is

crucial. The decision to use a message-oriented or

method-oriented approach depends on the choice of

protocols, architecture and products.

The resource-oriented interface was found to

be the best approach in this study. It applies Web

principles to design which make a system easy to

maintain. Web services use a uniform set of

operations, so it stands to reason that there is less

complexity and high compatibility in the resource-

oriented interface. Due to its uniform features, such

an interface is able to reduce the cost by ensuring it

is only written once, rather than once for each

application it has to deal with.

Since the method-oriented approach works on

object interfaces, changes in one system may affect

another system interacting with it. The system

complexity will become high when the system

expands and much effort needs to be put in to

maintain the system; this increases the total cost

ownership. The message-oriented approach is able

to reduce the system complexity. As such, it

provides high compatibility.

Selection of a single approach to systems

integration for an operations center is not very

practical due to various systems with various

technologies involved in the system integration.

Therefore, the concept of Service Interface

Service Interface Mediator

Resource

Oriented

Message

Oriented

Method

Oriented

Interface Registry

HTTP / HTTPS / XML / SOAP

Main Application

Interface Schema

Mapper
Transformer

Converter

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

479

Mediator is an option for the integration solutions.

Further study on technological support within the

framework of the Service Interface Mediator is

required. Study on limitations and advantages of

present technology will help to generate a better

interface design. The design shall serves as a

reference and guide for future operation centers.

7. ACKNOWLEDGEMENT

The author wishes to express their sincere

gratitude to the Transport Management Centre of

Kuala Lumpur City Hall and Traffic Monitoring

Centre of Malaysian Highway Authority for

providing very good platforms to pursue these

research activities. For further information about

both operation centers, please refer to

www.itis.com.my and www.llm.gov.my respectively.

REFRENCES:

[1] Bondi, A.B. (2000). Characteristics of scalability

and their impact on performance. Proceedings

of the 2nd International Workshop on Software

and Performance, Ottawa, Ontario, Canada,

ISBN 1-58113-195-X, pp. 195 - 203.

[2] Djavanshir, G. R. and Khorramshahgol, R.

(2007). Key Process Areas in Systems

Integration. IT Professional, vol. 9, pp. 24-27.

[3] Fielding, R. T. (2000). Architectural Styles and

the Design of Network-based Software

Architectures. Phd Thesis, University of

California, Irvine.

[4] Garlan, D. (2000). Software Architecture: a

Roadmap. ICSE '00 Proceedings of the

Conference on The Future of Software

Engineering.

[5] Gorton, I. (2006). Essential Software

Architecture. Springer-Verlag.

[6] Henkel, M. and Zdrakovic, J. (2005).

Approaches to Service Interface Design. In

Proceedings of the Web Service Interoperability

Workshop, First International Conference on

Interoperability of Enterprise Software and

Applications (INTEROP-ESA'2005). Geneva,

Switzerland: Hermes Science Publisher.

[7] Hura, M., McLeod, G., Schneider, J, et al.

(2000). Interoperability: A continuing

Challenge in Coalition Air Operations. Chapter

2 "A broad Definition of Interoperability".

RAND Monograph Report, 2000.

[8] Integrated Transport Information System of

Dewan Bandaraya Kuala Lumpur (DBKL).

[Online]. Available: http://www.itis.com.my

[9] Kalasapur, S., M. Kumar, et al. (2005). Seamless

service composition (SeSCo) in pervasive

environments. Proceedings of the first ACM

international workshop on Multimedia service

composition. Hilton, Singapore, ACM: 11-20.

[10] Krishna, C. M., Shin, K. G. (1997). Real-Time

Systems (McGraw-Hill Series in Computer

Science).

[11] Krzyzanowski , P. (2014).Distributed Systems.

Chapter 3: Remote Procedure Calls Remote

Procedure Calls. [Online]. Available:

http://www.cs.rutgers.edu/~pxk/416/notes/15-

rpc.html

[12] Lebuhraya Malaysia (LLM). [Online].

Available: http://www.llm.gov.my

[13] Marvin V. Zelkowitz (1989). Requirements for

a Software ccsEngineering Environment:

Proceedings of the University of Maryland

Workshop, May 5-8, 1986.

[14] Michael, A., K. Kostas, et al. (2011). Towards

an Interpretation Framework for Assessing

Interface Uniformity in REST. Proceedings of

the Second International Workshop on RESTful

Design: 47-50.

[15] Mitchell, K. (2011) A Matter of Style: Web

Services Architectural Patterns. Chief Architect,

Agogo Networks, Inc.Vienna Virginia, USA.

[16] Nilsson, E.G, Nordhagen, E. K, Oftedal. G,

(1990). Aspects of System Integration, Center

for Industrial research (SI).

[17] O'Connor, J.T, Hubers, M.J. (2002). System

Integration Standards Development Efforts For

Facilities Engineering and Construction. A

Report for Construction Industry Study.

University of Texas at Austin.

[18] Orchard, D., (2003). The four Major

Constraints to Loosely Coupled Web Services,

Webservices.org, [Online]. Available:

htttp:///www.webservices.org/index.php/article/

articleprint/1246/1/24/

[19] Peng, Y.-Y., S.-P. Ma, et al. (2009).

REST2SOAP: A framework to integrate SOAP

services and RESTful services. IEEE

International Conference on Service-Oriented

Computing and Applications, SOCA' 09,

December 14, 2009 - December 15, 2009,

Taipei, Taiwan, IEEE Computer Society.

[20] Rasmi, J., Anithashree, C., et al.

(2008).Exploring the Impact of Systems

Architecture and Systems Requirements on

Systems Integration Complexity. IEEE Systems

Journal, vol. 2, no. 2, June 2008. IEEE

Computer Society.

Journal of Theoretical and Applied Information Technology
 31

st
 March 2015. Vol.73 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

480

[21] Rowe, D., Leaney, J.R (1997) Evaluating

evolvability of computer based systems

architectures - an ontological approach, Proc.

International Conference on the Engineering of

Computer Based Systems.

[22] Silva, A. C. and Loureiro. G., (2011). System

integration issues - Causes, consequences &

mitigations. Industrial Engineering and

Engineering Management (IEEM), 2011 IEEE

International Conference on.

[23] Slater, T., (2012). "What is Interoperability?",

Network Centric Operations Industry

Consortium - NCOIC, 2012.

[24] Teo, H. M. and Kadir, W. M. N. W. (2006). A

Comparative Study of Interface Design

Approaches for Service-Oriented Software. XIII

ASIA PACIFIC SOFTWARE ENGINEERING

CONFERENCE (APSEC'06).

[25] Watson, R. (2011). RESTful Web Applications

and Services. Burton IT research.

[26] Wei, N., M. Song, et al. (2011). A novel

WebService architecture based on REST.

International Conference on Smart Materials

and Intelligent Systems, SMIS 2010, December

17, 2010 - December 20, 2010, Chongqing,

China, Trans Tech Publications.

[27] Zhang, J., Yu, S., Ge, X., Wu, G. (2006).

Automatic Web Service Composition Based on

Service Interface Description. ; In International

Conference on Internet Computing (2006):120-

126

[28] Zhao, X., E. Liu, et al. (2011). A two-stage

RESTful web service composition method

based on linear logic. 9th European

Conference on Web Services, ECOWS 2011.

September 14, 2011 - September 16, 2011,

Lugano, Switzerland, IEEE Computer

Society.

