
Journal of Theoretical and Applied Information Technology
 20

th
 March 2015. Vol.73 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

275

EMPIRICAL EVALUATION OF COMPLEXITY METRICS

FOR COMPONENT BASED SYSTEMS

1
MWALILI TOBIAS,

 2
WAWERU MWANGI,

 3
KIMWELE MICHAEL

1School of Computing and Information Technology

Jomo Kenyatta University of Agriculture and Technology

P. O. Box 62000- 00200 Nairobi, Kenya

2School of Computing and Information Technology

Jomo Kenyatta University of Agriculture and Technology

P. O. Box 62000- 00200 Nairobi, Kenya

3School of Computing and Information Technology

Jomo Kenyatta University of Agriculture and Technology

P. O. Box 62000- 00200 Nairobi, Kenya

E-mail: 1tmwalili@jkuat.ac.ke, 2kimwele@icsit.jkuat.ac.ke, 3waweru_mwangi@icsit.jkuat.ac.ke,

ABSTRACT

Reuse-based software engineering is gaining currency as an approach for constructing software applications
that are based on existing software components. Factors that have contributed to increased reliance on
software components include increased dependability, reduced process risk, standards compliance and
reduced time to market. Software components are usually delivered and handled as “black boxes,” which
tremendously increases risks associated component integration, system testing and deployment. Due to
these risks, metrics for evaluating the quality of component-based systems must be developed and
validated. In this work, we analyze the Interface Complexity Metric for JavaBeans components and propose
an enhanced metric. We also perform validation of the proposed metric and make recommendations for
future research work.

Keywords: CBSD, Component complexity, Complexity metrics, Software complexity, Quality metrics

1. INTRODUCTION

The earliest approach to accelerating software
delivery relied on function reuse. With the
paradigm shift towards object-oriented
development, object-based reuse became the
preferred way of achieving the objective. Over
time, object reuse has failed to provide the required
level of abstraction to model and construct complex
systems, within budget and time constraints. Due to
these limitations, Component-Based Software
Engineering (CBSE) or Component-Based Software
Development (CBSD) has emerged [1]. According
to Sommerville [2], the CBSE is a process that
defines implements and integrates components into
a system. It involves the use of already existing
software components to assemble a system, without
building from scratch [3].

A software component is a unit of composition [4]
with a clearly defined interface. It can be deployed
and composed independently by third party
developers. A software component can also be
described as an independent service provider which
has two interfaces, a “provides-interface” that
specifies the services provided by the component
and a “requires-interfaces” that specifies what
services must be provided by other components in
the system [2].

The CBSD approach has potential advantages over
object-base reuse, namely; reduced development
time, increased flexibility, reduced process risks,
and enhanced quality, low maintenance costs and
standardization. Despite these promises, the CDSD
approach is faced by numerous challenges, which
include user requirements satisfaction, components
interoperability, component trustworthiness and

Journal of Theoretical and Applied Information Technology
 20

th
 March 2015. Vol.73 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

276

inability to predict the quality of the constructed
system.

The above challenges underline the ever growing
need for techniques that could improve the process
of component selection and evaluation, by
introducing efficient tools for estimating and
predicting the quality of target components.

The objectives of this work include:-

I. Review on metrics for component-
based systems (CBS), and identify
existing gaps or limitations.

II. Propose new or enhanced metrics for
CBS, based on identified gaps or
limitations.

III. Perform an empirical evaluation of the
proposed metrics.

IV. Make recommendations for further
research work.

2. LITERATURE REVIEW

A component model defines a standard for
implementing, documenting and deploying
components based on a particular technology. Over
time different technologies for component models
have emerged. They include, Sun’s JavaBeans,
OMG’s CORBA Component Model (CCM),
Microsoft’s .NET and OSGI Open Service Gateway
Initiative (OSGI). Since the JavaBeans and .NET
models are the most widely used, we will give a
brief description of their architecture.

2.1 JavaBeans Component Model

The JavaBeans component model is a Sun
technology, for integrating components developed
using the Java language. According to Ivica [5]
JavaBeans Application Programming Interface
defines a software component model for Java, this
allows developers to create and deploy components
that can be assembled into applications by users.
The interface for this model is defined by methods,
properties, event sources, and event listeners as
depicted in Figure 1.

Figure 1: Interface of a JavaBean component and its
ports. (Source: Ivica, [5])

The Java Bean is designed to run inside a builder
tool (Composition time) and also at run-time
(execution time) within the generated application.
A simple Java object can be used to implement a
component with the object being encapsulated in
the component, where the mapping between object
methods and component is done in an implicit
version as long as the object and the component
adhere to the standard java naming convention. In
other cases, a component could be implemented by
wrapping a legacy object that does not follow the
standard naming convention.

The Java Bean component model is designed to
support different ways of assembling components,
such that builder tools can allow visual direct
plugging together of Java Bean while users write
Java classes or simple scripting language that
interact with and control a set of beans. The model
also provides a set of methods for packaging
components as archives for deployment [5].

2.2 The .NET Component Model

The .NET is a Microsoft technology, first released
in July of 2000 and billed as a whole new
development framework for windows. The .NET
technology serves as a foundation for all Microsoft
technologies. The .NET is basically a class library
with tools needed to write applications based on
various programming languages which include C#,
VB, C++, Jscript, etc. Fig. 2 shows the architecture
of the .Net framework.

Journal of Theoretical and Applied Information Technology
 20

th
 March 2015. Vol.73 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

277

Figure 3: The .NET Framework Architecture (Source:
Microsoft TechNet [6])

2.3 Software Metrics: An Overview

According to IEEE [7], a metric is a measurable
quantity, the degree to which a system or
component possesses a given property. When
discussing metrics for software components, we
will confine ourselves to attributes that can be
measured and evaluated.

Perhaps the earliest known software metric is size
oriented Kilo Lines of Code (KLOC), which has
been used as an input to derive measurements such
as effort, error rate and documentation. Application
of KLOC is straight forward where LOC are an
available and can be easily counted. Metrics
derived from KLOC are biased in some aspects
since LOC measures are programming language
dependent. Also, for reuse-based approach source
codes are precompiled and may be completely
unavailable.

Albrecht[8] proposed Function-oriented metrics,
based on a measure called the function point (FP).
Function points are calculated using countable
aspects of the software as assessments for software
complexity. The function points so derived then can
be used to compute metrics for software, for
example, productivity, quality, documentation, etc.

Widely referenced software metric is the
cyclomatic complexity proposed by McCabe [9]. It
uses graph theory to measure software complexity.
It looks at the program’s control flow graph and
determines the minimum number of paths in that
graph. McCabe argued that this number determines
the complexity (cyclomatic complexity) of the
program.

Halstead [10] devised a metric, based on two
quantities: the number of distinct operators in the
program and the number of distinct operands in the
program. From these numbers, one can construct
the “Halted Length” which is the measure of the

complexity of the program. Usually the “Halted
length” is calculated after the code is written but is
also used for the measurement of programming
effort.

Chidamber and Kemerer [11] proposed a suite of
six object-oriented metrics. These metrics provided
a paradigm shift towards object orientation in the
development of software metrics and have had a
major influence in the construction of metrics for
CBSD.

Sedigh [12] proposed three categories for CBS
metrics. They include management, requirements
and quality-based metrics. These metrics are broad
recommendations and suffer from lack of
formalism and therefore not easy to validate. To
provide a firm ground for formalization
Washizaki’s [13] proposed the several metrics for
measuring reusability of software components,
which include:-

(a) Rate of Component Observability (RCO)
given by

������ � ��	��	�����	
�	��������
��	
�	�
���	�

��	��	�
�
��	
�	���	������	�
���

 …. (1)

A very low RCO value indicates a component that
is difficult to understand while a very high RCO
value means users will have difficulties in finding
specific properties among the available ones

(b) Rate of component customizability (RCC)

������ � ��.��	��
��	
�		��������
��	
�	�
���	�	

��.��	�
�
��	
�	���	������	�
���

 …. (2)

A low RCC value implies poor adaptability of the
component, while a very high one indicates a break
in the encapsulation of the component.

(c) Self-Completeness of Component’s Return
Value (SCCr)

���	��� � ��.��	��
�	�������	
�	�
���	�

��.��		�������	
�	�
���	�

….. (3)

It is a degree of the component’s self-completeness
and independence. The higher the value is, the
higher the component portability.

Self-Completeness of Component’s Parameter
(SCCp)

���
���
� ��	��	�������	����	
�	�����	�		��	�����	�

��. ��	�������	��	�����	�

Journal of Theoretical and Applied Information Technology
 20

th
 March 2015. Vol.73 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

278

.....(4)

This metric measures the self-completeness of the
information dealt by the component. A low value
indicates a low dependency of the component on
the exterior.

Miguel [14] implemented formal specifications for
the Washizaki’s metrics. Working within the
framework of UML 2.0 they applied Object
Constrained Language (OCL) to automatically
compute metrics from fine-grained Java Beans
components. Sharma[15] proposed the Interface
Complexity Metric (ICM) that based on complexity
factors derived from components interface methods
and properties; our work study focuses on the ICM
whose details are discussed in the next section.
Other recent research initiatives on metrics for
CBSD could be attributed to Navneet [17], this
research work performed a survey of existing
metrics for CBSD.

The outcome of this survey indicated the need for
development of complexity metric that can measure
the component complexity without going into
internal details of components. As a continuation of
the previously mentioned survey, Navneet [18]
highlighted the shortcomings of component existing
metrics especially the fact that most of the existing
metrics can only be used to asses small programs or
components, while others rely on parameters that
are difficult to measure in practice. They proposed
a new metric called, The Components Complexity
Metric for Black Box Components CCM (BB),
based on interface methods complexity and
coupling complexity between the components.
However, they did not perform empirical or
theoretical validation for the proposed metric.

2.4 The Interface Complexity Metric

Sharma [17] proposed the Interface Complexity
Metric (ICM). This section gives a brief description
the ICM and points some limitations against which
we make a proposal for an improved ICM metric.

 The ICM models the external behavior of the
component as aggregation components methods
and properties complexity factors given by
Equation (5)

������ � �����
 � ��!�
�

���

�

��

….(5)

Where, ���
 is the complexity of the ��� interface

method and �!� is the complexity of the "��

property. A and B are the weight values for
methods and properties respectively. For their study
the fixed A=b=1 and as such, the complexity metric
reduced to Equation (6)

������ �����
 ����!�
�

���

�

��

…..(6)

The complexity of an interface method is computed
based weighed values that are assigned to each
return values or argument according to its data type
as summarized in Table 1 below.

Table 1: Assigned complexity weights (Source:

Sharma, [17] pp 28)

 Assigned weight for each type of argument/

Return value

No of

Args

Simple

(Int,

double)

Medium

(Date,

String)

Complex

(Vector,

Array)

Highly

Complex

(Objects

references,

User
defined)

1-3 0.10 0.15 0.20 0.25

4-6 0.20 0.30 0.40 0.50

7-9 0.30 0.45 0.60 0.75

>=10 0.40 0.60 0.80 0.10

 To validate the proposed metric they performed an
empirical analysis based for JavaBeans components
collected from websites (JarsD.com,
ElegantJBeans.com, and Oreilly.com). For each of
the JavaBeans component they computed;
Component execution time (default values of
parameters) and Components Interface Complexity.
They also performed a correlation analysis
Washizaki’s metrics for customizability and
readability of a component. The results indicate a
strong correlation between complexity and
execution time, negative correlation between
complexity and customizability and negative
correlation between complexity and readability.

2.5 Limitations of the ICM

A Scatter plot analysis of the data set provided by
Sharma [17] shows that there is a positive positive
linear relationship between the ICM the size

Journal of Theoretical and Applied Information Technology
 20

th
 March 2015. Vol.73 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

279

(Number of methods + Properties) of its interface
class (Figure 3). Further, correlation analysis results
provided in Table 3 shows a very strong positive
correlation between the complexity and number of
methods and properties.

Figure 3: Scatter Plot For ICM Against Size

Table 3: Correlation Analysis For ICM Against

Component Size

Characteristic Correlation

ICM VS No of Methods 0.8398

ICM VS No of Properties 0.4925

ICM VS Size 0.6051

An interpretation of these results indicates that
complexity of a component will increase with its
size. Based on this, we could argue that the ICM
and size are equivalent since they provide the same
information. This fact is very significant, given that
the functionality of a particular component is
accessed via the interface. The ICM will, therefore,
punish (give a low rating) to an elaborate
component that provides broad spectrum of
functionalities to the user and give credit to a
component that has limited functionalities. We also
note that the data set used by Sharma [17] to
validate ICM is limited in size. For these reasons,
we are proposing an enhancement to the ICM as
well as an in-depth empirical analysis for the
proposed metric.

3. PROPOSED INTERFACE COMPLEXITY

METRIC

The previous section highlighted some limitations
associated with the ICM. Our concern here is the
fact that the ICM grows with the size of the
component interface. Based on the ICM, suppose a
given component of size M is determined to have
complexity factor C, later suppose the developer
provides new functionalities by adding new

methods and properties, thereby increasing
components self-completeness. If D is the resultant
new complexity factor, it follows that the relation
D>C will always be true. This means that, due to
“increased” complexity the new improved
component will be rated low; while true sense it is
now much more self-contained than the previous
one.

We, therefore, propose a Bounded ICM (BICM),
it’s bounded in such a way that it may not
necessarily grow with the size, as shown in
Equation (7)

 ������ � �∑ ���

�

��

� � ∑ ��!��
���

�

 …….. (7)

 Where, ���
 is the complexity of the ��� interface

method and �!� is the complexity of the "��

property. M and N represents the count of
component methods and properties respectively
while A and B are the weight values. The proposed
metric may guarantee that the complexity does not
grow with size, and can ne bounded to a definite
interval [a,b], for example [0,1].

4. EMPIRICAL ANALYSIS OF THE BICM

METRIC

To perform the analysis, we downloaded 36 sample
JavaBeans components from the components super
store, ComponentSource.com. The analysis was
carried out in a series of steps as discussed below.

4.1 Extraction of façade class interface

information

Class reflection technology was used generate the
components façade class methods interface, and
properties. For each method in the façade class we
extracted the methods return type, and a list of
method argument types. We also captured the
property data-type for all properties in the class.
Tables 4 and 5 shows sample data summarized
from a components façade class.

Table 4: Sample methods data derived from a

components façade class

Journal of Theoretical and Applied Information Technology
 20

th
 March 2015. Vol.73 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

280

Table 5: Sample properties data derived from a

components façade class

4.2 Computation of components metrics

Using the data summarized in the previous step, we
computed various parameters and metrics for all the
sampled components. The ICM and BICM metrics
were computed using Equations 6 and 7
respectively. The weights in Table 1 were used for
assigning complexity factors for methods
arguments and class properties. The Washizaki’s
metrics, SCCR and SCCP were computed using
Equations 3 and 4 in that order. The results of these
computations are presented in Table 6 below,
where table headings M and P represents
components façade class methods and properties
count respectively and Size the sum of methods and
properties. The rest of the headings are as discussed
previously.

Table 6: Tabulation of components Size against

ICM, BICM, Washizaki’s SCCR and SCCP

4.3 Correlation Analysis for ICM and BICM

The scatter plot in Figure 4, which is generated
using data in table 6, indicates that there exists a
linear relationship between size and ICM.
Correlation coefficient for ICM against Size is
0.9346 (Table 7). We note that this factor is
positive and close to 1.0, this outcome, confirms
that indeed ICM increases with the size of
component. As argued in the previous section, the
ICM will, therefore, punish (give a low rating) to an
elaborate component that provides expanded
functionalities to the user and give credit to a
component that lacks essential functionalities.

Journal of Theoretical and Applied Information Technology
 20

th
 March 2015. Vol.73 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

281

Figure 4: Scatter plot for ICM against size

To see how BICM behaves, we generated the
scatter plot for BICM against size (Figure 5). The
scatter plot, analyzed together with the weak
negative correlation of -0.0575 (Table 7) indicates
that BICM does not grow with the size of a
component. This is a desirable outcome for this
experiment since the BICM may be deemed to have
eliminated the limitations of ICM.

.

Figure 5: Scatter plot for BICM against size

In order to validate the BICM against other metrics
in literature, we computed the correlation between
BICM and Washizaki’s metrics, Self-Completeness
of Component’s Return Value (SCCr) and Self-
Completeness of Component’s Parameter (SCCp)
The results, (Table 7) show a positive correlation
between the BICM and SCCP. This implies that
BICM may be used to evaluate component quality
characteristics such self completeness,
independence and portability

Table 7: Correlation analysis for components Size

against ICM, BICM and Washizaki’s SCCR and

SCCP

Characteristic Coefficient

ICM VS Size 0.9346

BICM VS Size -0.0575

BICM VS SCCR 0.0940

BICM VS SCCP 0.3275

5. CONCLUSION AND RECOMMENDATION

FOR FURTHER WORK

Component-based software engineering approach
promises delivery software products within
constrained time and budget. Metrics for CBS have
been introduced and developed. We have presented
an empirical analysis of existing and proposed
metrics for JavaBeans components. In particular we
have carried out in-depth analysis for the Interface
complexity metric (ICM) and showed that it fully
depends on the number of interface method and
properties (size). A component quality evaluation
based on the ICM would, therefore, be biased
against components that provide increased services
by via added methods.
We also suggested an improvement to the ICM and
proposed a new metric BICM. The analysis of the
BICM reveals that it is independent of interface
size. We also validated the BICM against existing
metrics and demonstrated that the BICM can be
applicable in evaluating components self-
completeness, independence and portability.
 We however note that there some aspects of
complexity this study did not address, for example,
the BICM defined in Equation (1), has the
customization constants A and B. in our study these
constants were assumed to equal to 1(one), further
work is, therefore, needed to study how the BICM
when the component customization constants are
loaded. We performed an empirical analysis for
each component as a stand-alone. There is therefore
need to investigate how the BICM will behave at
system level, that is when components are
composed into a system and its overall system-
BICM computed.

Journal of Theoretical and Applied Information Technology
 20

th
 March 2015. Vol.73 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

282

REFERENCES:

[1] Mahmood, S. Lai R. Kim Y.S. (2007), Survey
of component based software development,

IET Software, 1 (2), pp 57-66

[2] Sommerville, I. (2007). Software Engineering,
8th Edition. Pearson Education Limited, pp
440-450

[3] Kaur, K. and Singh H. (2010). Candidate
Process Models for Component Based
Software Development. Journal Of Software
Engineering 4(1): 16-29

[4] Szyperski, C., Gruntz, D, and Murer, S.(2002).
Component software –beyond object –oriented
programming 2nd Edition. Addison- Wesley
pp 27-38

[5] Ivica C and Magnus L,(2002) "Building
Reliable Component-Based Software

Systems", Archtech House Inc, pp 57-70

[6] Microsoft TechNet: Introduction to NET,
http://technet.microsoft.com/en-
us/library/bb496996.aspx,accesed 19th July
2014

[7] IEEE, (1993), IEEE Software Engineering
Standards, Standard 610.12-1990, pp. 47–48

[8] Albrecht, A.J.(1979), “Measuring Application
Development Productivity,” Proc. IBM
Application Development Symposium,
Monterey, CA, October 1979, pp. 83–92.

[9] McCabe T, (1976) "A Software Complexity
Measure", IEEE Trans. Software Engineering

SE-2 (4), pp 308-320

[10] Halstead, M., (1977) Elements of Software

Science, North-Holland

[11]] Chidamber, S. R., & Kemerer, C. F. (1994).
A metrics suite for object-oriented design.
IEEE Transaction on Software Engineering,

20(6), 476-493.

[12] Sedigh Ali, S Gafoor, A. Paul, Raymond
A.,"Software Engineering Metrics for COTS-
based Systems", IEEE Computer, May 2001.
pp 44-50

[13] Hironori Washizaki, Hirokazu Yamamoto &
Yoshiaki, Fukazawa.(2003) A Metrics Suite for
Measuring Reusability of Software
Components. In 9th IEEE International
Software Metrics Symposium (METRICS
2003), Sydney, Australia. IEEE Computer
Society

[14] Miguel G, Fernando B(2004), Formalizing
metrics for COTS (“Proceedings of the
International Workshop on Models and
Processes for the Evaluation of COTS

Components (MPEC'04)” , EEI

[15]] Sharma Arun (2009), Design and Analysis of
Metrics for Component Based Software
Systems, Phd Thesis, Thapar University

(Punjab), India

[16] Weyuker, E.J., 1988. Evaluating Software
Complexity Measures, IEEE Transactions on
Software Engineering, Vol. 14, Issue 9, pp:

1357-1365

[17] Navneet Kaur and Ashima Singh (2013a), A
Complexity Metric for Black Box
ComponentsInternational Journal of Soft
Computing and Engineering (IJSCE) ISSN:
2231-2307, Volume-3, Issue-2, May 2013

[18] Navneet Kaur and Ashima Singh (2013b)
Component Complexity Metrics : A Survey,
International Journal of Advanced Research
inComputer Science and Software Engineering,
Volume 3, Issue 6, June 2013

