
Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

59

IMPLEMENTATION OF RANDOMIZED TEST PATTERN

GENERATION STRATEGY

1
 DR.T.PREM JACOB

1Asstt Prof., Department of Computer Science and Engineering, Sathyabama University, Chennai

E-mail: 1premjac@yahoo.com

ABSTRACT

Software testing involves running a piece of software on selected input data and checking the output for
correctness. In order to test the software units randomized testing will be effective. Thoroughness depends
on certain parameters settings like relative frequency on which the method are being called. This system
that uses genetic algorithm for finding the parameters that optimize the test coverage of random unit testing.
For designing the GA we have used the feature subset selection tool for accessing the content representation
and the size within genetic algorithm. The proposed system ensures that all possibilities of errors in the
code are randomly checked. It is an effective system to detect possibility of runtime errors. The randomized
testing using genetic algorithm will call the test cases in a random manner. They will provide the inputs for
testing also automatically and it starts testing by calling a test case of random length it will stop the working
when it finds any error it can be viewed using minimization. It is faster than conventional testing methods
and it is effective in finding the error in the code effectively.

Keywords: Randomized Testing, Genetic Algorithm, Test Case, Unit Testing, Test Pattern.

1. INTRODUCTION

Software testing is a complex activity and it is

inevitable in ensuring the quality of the software. It
accounts for nearly 50% of the total development
cost of the software[1]. Knowing this, the software
quality managers try to reduce testing costs and
time.

Many methodologies and metrics have been
developed towards the improvement of the software
quality. In order to reduce the number of residual
faults, various approaches have been proposed.
Software testing detects the presence of faults that
cause failure in a program. It is time consuming and
expensive task[2][3]. It consumes nearly 50% of the
software system development resources.

Software testing involves running a piece of
software on selected input data and checking for
correctness[4]. The software product is released
only after undergoing proper development process
such as bug fixing and testing[5].

The randomized testing found faults more often
for the same CPU time, and never took
prohibitively longer, compared to the conventional
test suites that we used. A genetic algorithm is a
programming technique that mimics biological
evolution as a problem-solving strategy[6][7].

2. MOTIVATION

The objective of testing is to write quality code

but doing this requires testing it with inputs to see it
behavior. Random testing is a testing in which to
test function, f(a,b) randomly select arguments, a
and band apply them to f. If there is an error, a bug
has been found. Depending upon the dimensionality
and domain of f, one might wait a very long time
before getting a representative set of inputs to f.

 Random Testing is still random, but consciously
select new “random” inputs to f() that are “well
away” from any previous input attempt to cover the
input space of f() in a more intelligent manner. As
the title suggest it will generate test cases in a
random manner and help in unit testing of the
software. Random Testing selects test cases from
the entire input domain randomly and
independently[8]. The main advantages are, it is
intuitively simple and also it allows statistical
quantitative estimation of the software’s reliability.
In this randomization is used in the selection of
target method call sequence and arguments to
method calls.

Here genetic algorithm is used to find the
parameters for randomized unit testing. Genetic
algorithm by the use of fitness evaluation, cross
over and mutation find good parameters and it will
be to the Randomized unit testing engine[9].

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

60

Figure 1: Overall Approaches

Wrapper class is written for each class under
testing. Functions having test functions are tested
randomly by supplying random inputs using genetic
algorithm. Whenever a failure occurs testing is
stopped there.

Genetic Algorithm is quite effective for rapid
global search of large, non-linear and poorly
understood spaces. It is a model of Machine
learning. Behavior derived from metaphor of some
of the mechanisms of evolution in nature [10]. It is
based on population. The main aim is to find the
run time errors in a software unit under test.

3. ARCHITECTURE

 The Randomized Testing Engine selects a test
fragment randomly from the Test wrapper which
will make a call to the function to be tested. It then
executes the GA. The Genetic algorithm monitors
the chromosomes, performs GA operations to
create off -springs and retains the chromosome that
has the highest fitness ever encountered. This most
fit chromosome in each generation is the output of
each iteration of GA. The chromosome contains the
parameter settings for testing like number of
method calls, value pool range etc. After finding
the most fit chromosome (based on maximum code
coverage), that chromosome is returned to the
randomized testing engine.
 The Randomized testing engine which
takes the chromosome description as input selects
the value from the value pool of appropriate data
type encoded in best chromosome and invokes the
chosen random function from the test wrapper. The
testing engine runs test cases until a bug is detected
or for a user-specified number of times.
Randomized unit testing generates new test cases
with new data every time it is run, so if Nighthawk
finds a parameter setting that achieves high

coverage, a test engineer can automatically generate
a large number of distinct, high-coverage test cases
in very less time.

4. PROPOSED SYSTEM

GA generating unit tests should search method
parameter ranges, value reuse policy, and other
randomized testing parameters.
The test runner selects a random test fragment from
the test wrapper. Then, it will execute the genetic
algorithm by creating an initial population for GA
The initial population will be considered as the
zeroth generation of GA. The current generation
undergoes crossover and mutation operations to
create offspring’s. From this offspring’s the fitter
chromosomes are selected as the next population of
GA and less fit offspring’s are discarded. Selection
is done probabilistically based on fitness of the
chromosomes.
 Simultaneously, the best chromosome
among the generated offspring’s is returned to the
test runner. A chromosome having maximum code
coverage is considered as fitter than other
chromosomes. The test runner based on the
parameter of each test fragment chooses an
appropriate value pool from the list of value pools
in the chromosome and invokes the test fragment.
Each command generated is stored in a data
structure which can be reproduced in case the test
fails. Thus the test runner creates the test case by
choosing values and invoking the methods in test
wrapper one by one randomly.
 Meanwhile the Genetic Algorithm will be
executing in the background returning the next best
chromosome to the testing engine to carry out the
testing until the code fails or test Case of specified
length completes. In the wrapper class testing
functions are written[11][12].

Error Reporting

Test Cases

Genetic

Algorithm

Randomized

Testing Engine

Test

Wrapper

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

61

Figure 2: Architecture Of The Proposed System

The Testing Engine will select a method from it and
find type of methods, arguments etc. The best
chromosome found out using genetic algorithm will
select the input values from the value pools. Based
on this testing is done and the failure is
reported[13][14][15]. Whenever the functions are
called in a random sequence, if a bug is found it
will stop working there.

5. ALGORITHM

constructRunTestCase

Input: A set M of target methods, a
chromosome c

Output: A test case

Steps:

1) For each element of each value pool of
each primitive type in IM, choose an initial
value that is within the bounds for that
value pool.

2) For each element of each value pool of
each other type t in IM.

a) If t has no initializers, then set the
element to null.

b) Otherwise, choose an initialize
method I of t, and call
tryRunMethod(I,c). If the call
returns a non-null value, place the
result in the destination element.

Selection based
on fitness

(Next generation)

Mutation

Crossover

Current

generation

Best

Value Pools

 :

 :

 :

 :

 :

Test

Test

Software

under test

Initial

population

for GA

 RUT Engine

Test Runner

Invoke

Testing

Data

Structure

to store

test data

Output

Output File

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

62

3) Initialize test case k to the empty test case.

4) Repeat n times, where n is the number of
method calls to perform:

a) Choose a target method m € CM.

b) Run tryRunMethod(m,c). Add the
returned call description to k.

c) If tryRunMethod returns a
method call failure indication,
return k with a failure indication.

5) Return k with a success indication.

It takes a set M of target methods and a
chromosome c as inputs. It begins by initializing
value pools, and then constructs and runs a test
case, and returns the test case. It uses an auxiliary
method called tryRunMethod, which takes a
method as input, calls the method, and returns a call
description. In the algorithm descriptions, the word
“choose” is always used to mean specifically a
random choice which may partly depend on c.

6. ALGORITHM

constructRunTestCase

Input: A method m, a chromosome c.

Output: A call description.

Steps:

1) If m is non-static and not a constructor:

a) Choose a type t € IM which is a
subtype of the receiver of m.

b) Choose a value pool p for t.

c) Choose one value recv from p to
act as receiver for the method
call.

2) For each argument position to m:

a) Choose a type t € IM which is a
subtype of the argument type.

b) Choose a value pool p for t.

c) Choose one value v from p to act
as the argument.

3) If the method is a constructor or is static,
call it with the choosen arguments.
Otherwise, call it on recv with the chosen
arguments.

4) If the call throws AssertionError, return a
failure indication call description.

5) Otherwise, if the call threw another
exception, return a call description with an
exception indication.

6) Otherwise, if the method return is not void
and the return value ret is non null:

a) Choose a type t € IM that is a
supertype of the return value.

b) Choose a value pool p for t.

c) If p is not a primitive type, or if t
is a primitive type and ret does
not violate the p bounds, then
replace an element of p with ret.

d) Return a call description with a
success indication.

tryRunMethod considers a method call to fail if
and only if it throws an AssertionError. It does not
consider other exceptions to be failures since they
might be correct responses to bad input parameters.
We facilitate checking correctness of return values
and exceptions by providing a generator for “test
wrapper” classes.

Return values may represent new object
instances never yet created during the running of
the test case. If these new instances are given as
arguments to method calls, they may cause the
method to execute statements never yet executed.
Thus, the return values are valuable and are
returned to the value pools when they are created.

7. RESULT AND PERFORMANCE

ANALYSIS

a) Significance of Genetic Algorithm

 With the application of genetic algorithm

the time taken by randomized testing to detect the

bugs was considerably reduced.

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

63

Table 4.3: Time For Imoney Unit Testing With And

Without GA

Without GA (in sec) With GA (in sec)

0.109 0.046

0.094 0.047

0.063 0.047

0.047 0.094

0.078 0.063

0.094 0.063

0.078 0.031

0.078 0.046

0.047 0.078

0.156 0.040

0.0844 s 0.0555 s

 This table shows the significance of using GA by
doing time comparison. This is done by performing
ten runs.

 After the ten runs when we take the average
time, the time taken for testing without GA is
0.0844 seconds.

 The time taken for testing using GA is 0.0555
seconds. From this it is clear that time for testing
using GA is less compared to the testing without
GA.

Table 4.4: Time Taken For Testing Of Bank Account

With And Without GA

Without GA (in sec) With GA (in sec)

0.078 0.063

0.031 0.047

0.015 0.062

0.016 0.016

0.125 0.047

0.031 0.031

0.063 0.078

0.063 0.062

0.062 0.031

0.047 0.016

0.0531 s 0.0453 s

Table 4.5: Performance Analysis For Test Cases With

And Without GA

Random without GA Random GA

Test case I Timing

0.0844

Test case I
Timing

0.0555

Test case II Timing

0.0531

Test case II
Timing

0.0453

Needs manual

intervention in designing
value pools to detect some

bugs in test case II
a) Unable to detect

Withdraw()/Deposit() bug

with a zero amount
b) Unable to detect

Withdraw()/Deposit() bug
with -ve amount

Automatic

detection

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

64

8. CONCLUSION AND FUTURE

ENHANCEMENT

Software units are tested effectively by
randomized testing. The main aim of testing is to
write quality code but doing this requires testing it
with inputs to see it behavior r test. This system is
able to find the run time errors in a code. Future
enhancement can be done in the system by using
some methods of fuzzy system in it. It can be
applied to generate efficient value pools and cross
over rules. Another enhancement is the same
framework may be ported to suit to other
programming languages like c, c++, .net etc.

REFRENCES:

 [1] Prem Jacob .T and Ravi .T, 2013, “An Efficient
Method for Regression Test Selection”,
International Journal of Software Engineering
and Technology, Vol.5, No.6, pp.218-222.

[2] Prem Jacob .T and Ravi .T, 2013, “Optimization
of test cases by prioritization”, Journal of
Computer Science, Vol.9, No.8,

pp.972-980.

[3] Prem Jacob .T and Ravi .T, 2013, “Optimal
Regression Test Case Prioritization using
genetic algorithm”, Life Science Journal,
Vol.10, No.3, pp.1021-1033.

[4] Prem Jacob .T and Ravi .T, 2014, “A Novel
Approach for Test Suite Prioritization”, Journal
of Computer Science, Vol.10, No.1, pp.138-
142.

[5] Prem Jacob .T and Ravi .T, 2013, “Regression
Testing: Tabu Search Technique for Code
Coverage”, Indian Journal of Computer Science
and Engineering, Vol.4, No.3, pp.208-215.

[6] Prem Jacob .T and Ravi .T, 2013, “An Optimal
Technique for Reducing the Effort of
Regression Test”, Indian Journal of Science and
Technology, Vol.6, No.8, pp.5065-5069.

[7] Wappler, 2006, “Evolutionary unit testing of
object-oriented software using a hybrid
evolutionary algorithm”, In Evolutionary
Computation, pp.851-858.

[8] Last, 2006, “Effective black-box testing with
genetic algorithms”, In Hardware and Software,
Verification and Testing, Springer Berlin
Heidelberg, pp.134-148.

[9] Srivastava, 2009, “Application of genetic
algorithm in software testing”, International
Journal of software Engineering and its
Applications, Vol.3, No.4, pp.87-96.

[10] Jones, 1996, “Automatic structural testing using
genetic algorithms”, Software Engineering
Journal, Vol.11, No.5, pp.299-306.

[11] Ribeiro, 2008, “A strategy for the evaluation of
feasible, unfeasible test cases for evolutionary
testing of the object-oriented software”,
Proceedings of the 3rd international workshop
on Automation of software test, pp.85-92.

[12] Rajappa, 2008, “Efficient software test case
generation using genetic algorithm based graph
theory”, In First International Conference on
Emerging Trends in Engineering and
Technology, pp.298-303.

[13] Gupta, 2008, “Using genetic algorithm for unit
testing of object oriented software”, In
Emerging Trends in Engineering and
Technology, First International Conference,
pp.308-313.

[14] Francisca Emanuelle, 2006, “Using Genetic
algorithms for test plans for functional testing”,
44th ACM SE proceeding, pp.140-145.

[15] Doungsard, 2006, “An automatic test data
generation from UML state diagram using
genetic Algorithm”, In Proceedings of
International Conference on Software,
Knowledge, Information Management and
Applications, pp.1-5.

