
Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

27

AN ANALYTICAL WAY TO IMPROVISE TEST EXECUTION

AND REVIEW OF SOFTWARE METRICS FOR THE

SOFTWARE QUALITY

CHANDU P.M.S.S.

 Research Scholar, Department of CSE, Sathyabama University, Chennai, India.

chandupmss@gmail.com

 ABSTRACT

The escalating density of today’s software products, combined with ever-increasing costs of software
breakdown have pushed the need for testing to new peaks. The successful execution of the control over
software quality requires software metrics. Using effective software metrics we can monitor requirements,
predict development resources, tracking development progress and minimize the maintenance cost. The
main objective is to improvising the performance of testing with various attributes connection with metrics
for gaining low cost and high quality Software.
The propose research work is to identify the possible measuring attributes of software test execution and
test review processes. This work introduces a novel framework called vector space model, to recognize
software metrics related to test execution and test review phases also to identify the support of such metrics
for the measurable attributes. Moreover, it is important to analyze the assumptions in the calculation of the
metrics. The metrics studied against each attribute needs to be assessed for their practicality in terms of
project’s context and benefits to the testing team.

Keywords: Software metrics, Vector Space Model (VSM), software testing life cycle, Software complexity,

Software Test Execution and Test Review.

1. INTRODUCTION

Increase in competition and leaps in
technology have forced companies to adopt
innovative approaches to assess themselves with
respect to processes, products and services. This
assessment helps them to improve their business
so that they succeed and make more profits and
acquire higher percentage of market. Many
organizations around the globe are developing
and implementing different Standards to improve
the quality needs of their Software. In order to
face the innovative and rapidly changing
challenges posed by software industry, the
testing process should be able to find the
schedules and costs that improve the
profitability, efficiency and effectiveness of the
business [3]. So, the main thing of effective
testing effort is measuring and knowing what is
done [16].Software metrics is the cornerstone in
assessment and also foundation for any business

improvement.

The below mentioned are the objectives of
this paper:

1. Resolving the main phases in the Software
Testing Life Cycle

2. Understanding the measurements role in
software testing process improvement.

3. Investigation of test review and test
execution process attributes

4. Analysis of resolutions supported by the
metrics and when to gather them.

5. Observing the present metric support for the
identified test execution and test review
processes.
Several organizations are bringing to

realize the important role that software metrics
can play in planning and controlling software
projects, as well as improving software
processes, products and projects overtime. Such
improvements results in increased productivity
and quality, and reduced cycle time all of which
made a company competitive in the software
business [12].The main aim of this paper is to
enquires the support of metrics offered for the
test execution and test review activities in
parallel validation as well as development testing
model, which enables the organizations to have

best knowledge in software testing process.

2. RELATED WORK

At high maturity organizations, metrics
are expected to play a key role in overall process

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

28

management as well as in managing the process
of a project. It is the keystone in evaluation and
foundation for any business improvement. It
helps in an organization for acquiring the
information needed and to improve the
productivity, products and services, and to
achieve the desired goal in the software life cycle
model. The quality of software is corresponding
to our expectations results in development
process [6]. Software metrics are essential to
maintain the high quality of project and also cost
effective. It tells the progress of the project, so it
helps to maintain the standards. To maintain the
metrics, it’s very important to have a
communication between the teams to get details
about project.

The scientific community has combined
a large literature survey on software metrics [4].
The study of software metrics aggregation has
been presented in the previous work. These
aggregate functions metrics also can be used to
review the software maintainability index [7].
Predicting the software metrics defects using
with formulas introduced by Chidamber and
Kemerer’s [11] where the problems of linear
regression depends on the linear character also
between the dependent and independent
variables. It is increasing the dependency among
those variables. The number of defects is
unconditional over the original value in the
software metrics. One way to reduce cost
through defects prediction is in using software
metrics in general and based on the call graph in
particular to predict and improve possible
problems in the software design [1]. An intuitive
expectation is given into class increasing from
adverse number of defects than increasing from
metrics. Software quality models are frequently

used to calculate the threshold value of software

quality [8].

The aggregate information ranging from
smaller elements or methods to larger elements
has been recognized by Squale E. [8]. Another
popular approach in selecting distributions and
fitting its parameters is to approximate the metric
values observed [2]. Consolidating the different
views leads us to categorized software testing
life cycle into test planning, test design, test
execution and test review phases. In previous
work there are measurable attributes and related
metrics for test planning and test design was
discussed [5]. The study of this paper is to
identify measurable attributes for software test
execution and test review phases. And to
investigate the identified metrics with related
equations which can be used beneficial and
valuable to the organization gaining low cost and
high quality software. Such improvements
results in increased productivity and quality, and
reduced cycle time all of which make a company
competitive in the software business.

3. SOFTWARE TESTING LIFE CYCLE

Consolidating the different views leads us
to categorized software testing life cycle into test
planning, test design, test execution and test
review phases. In previous work there are
measurable attributes and related metrics for test
planning and test design was discussed [5]. The
Software Testing Life cycle model architecture is
illustrated in fig.1. With the help of this diagram
any one can understand the various phases of
STLC.

Entry

Figure 1 Software Testing Life cycle phases

Fig. 1 Software Testing Life cycle phases [5]

Test planning Test strategies

 Test strategy, risk,

 Responsibilities, priorities Test Cases & Procedures

Entry

 Test Review Results Test Review Results Metrics

 Exit

Test

Planning

Test

Design

Test

Execution

Test

Review

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

29

Measurement is the process by which
numbers or symbols are assigned to attributes of
entities in the real world in such a way as to
describe them according to clearly defined
unambiguous rules. Software metrics can be
classified into three categories.
3.1 Product metrics describes the characteristics
of the product such as size, complexity, design
features, performance and quality level.

3.2 Process metrics: It can be used to improve
software development and maintenance i.e., the
effectiveness of defect removal during
development, the pattern of testing defect arrival
and the response time of the fix process.
3.3 Project metrics: It is mainly to adjust the
project to avoid the problems or risks and help to
optimize the development plans.

4.1. Measurable Attributes For Test

Execution

 In this phase the testing team will
handle the testing process based on the test plans
organized and test cases created. Then errors will
be informed back to the development team for
rectification and retesting will be executed. The
following are the measurable attributes which are

identified in this work.

4.1.1 Progress: Parameters that help identify
test progress to be matched against success
criteria. Progress metrics are collected
iteratively over time. Tracking the test
execution progress gives early indication if the
testing activity is behind schedule and to flag
appropriate measures to deal with the situation.

4.1.2 Size: Size of system is usually counted as
lines of code (KLOC) or function points (FP). It
identifies the quantity of test cases executed,
failed, passed or blocked. This is an important
factor used to monitor the test execution status
and represent the status of execution phase in a
quantitative manner. Measures that establish the
quantity of test cases executed, passed, failed are
required to determine how good a test case was
handled by the execution environment

4.1.3. Cost: Metrics supporting testing budget
estimation are required foe test execution phase.
The amount of resources and memory utilized
during testing execution should be measured in
order to identify cost effectiveness of tool. The
resources such as operating systems, databases

and programming languages used are taken into
account. The measures that identify system
memory utilization and total cost of various
resources installation are used to represent this
measurable attribute.
4.1.4 Quality: Quality is the result of high
intention, sincere effort, intelligent direction
and skillful execution. The effectiveness of test
execution phase should be measured to identify
how good the execution phase was completed.
The measures that identify test cases executed
per day, test procedures retested during the test
execution, the number of defects accepted or
valid, and rejected and test cases failed at first
time execution are used to measure the quality
of test execution phase.

4.2 Measurable Attributes For Test Review

The purpose of the test review process is to
analyze the data collected during testing to
provide feedback to the test planning, test design
and test execution activities. Different
assessments can be performed as part of test
review which includes reliability analysis,
coverage analysis and overall defect analysis [5].

4.2.1 Quality: The quality of test review phase
should be measured to identify the status of test
review phase. This phase identifies how good the
entire software testing goals are achieved during
all the three phases. The measures that measure
the total lines covered by testing, the total test
procedures covered, system interfaces covered,
total errors discovered, capability of a code
reviewer in examining the code, efficiency of the
testing team in discovering the defects and the
amount of system functionality successfully
demonstrated.
4.2.2 Progress: The operations of test review
phase should be monitored in order to identify
defects and delays in the testing life cycle. The
metrics that measure number of test cases
executed in the test suite and the defects found
per unit of time are useful in measuring the
progress of the review phase.

The set of 22 measures considered in
this work is listed in Table 1. These 22 measures
serve as the basis for information retrieval and

expert opinion.

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

30

S.NO. Measures

1 No. of Test Cases Executed

2 No. of Test Cases Passed

3 No. of Test Cases Failed

4 No. of Test Cases Blocked

5 Defect Acceptance

6 Defect Rejection

7 First Run Failure

8 Test Execution Productivity

9 Test Case Retesting

10 Time remaining to complete the

testing

11 Memory Usage of Tool

12 Test coverage

13 System Coverage Analysis

14 Test Case Execution Status

15 Error Discovery Rate

16 Inspection Rate

17 Defect Detection Rate

18 Current quality ration

19 Code Coverage

20 Test Efficiency

21 Risky Areas Identification

22 Tool Support

Table 1: Set of 22 Measures

5. PROPOSED METHODOLOGY

In the research work we are proposing a
methodology called Vector Space Model. A lot
of traceability recovery methods utilize the
Vector Space Model as a basic algorithm. The
model converts the documents into vector where

each term represents dimension of vector. It
classifies the metrics as per the cosine similarity
between attribute and metrics documents.

 This model was initially introduced by
Gerard Salton [13]. In this model all related
objects for a data retrieval system are indicated
as vectors. The terms of vectors are words in the
documents, queries. Ki (Each Term) is indicated
as t-dimensional vector, where t- number of
different term in the collection.

 if xr is rth term of vector ci, then

 Ci = (x1, x2, x3, x4… xt)

 xr = 0 ⇔ r ≠ i

 xr = 1 ⇔ r = i

i.e., c1 = (1, 0,0,0,0,..,0)

 c2 = (0, 1,0,0,0,..,0)

 c3 = (0, 0, 1, 0, 0,..,0)

 .

 .

 .

 ct = (0,0,0,0,0,..,1)

 The C = {c1, c2...ct} creates the
canonical basis for space Ct and it is linearly
unrelated with each other.

 The terms are pair wise orthogonal. As
a result the relevant terms are assumed to be
independent. The set C of term represent the
query and document vectors.

 The document dj represented by the
vector dj can be defined as:

 dj = (w1,j , w2,j ,..., wt,j)

or

The vectors for query can be defined as

 q = (w1,q , w2,q ,..., wt,q)

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

31

 or

In above equations, wi,q and wi,j are the
weights of ith term in query q, and document j.
VSM employs TF- IDF [13] as a weighting
technique since it is the most efficient
information retrieval method.

The frequency of every term occurred in
the document is selected for similarity
calculation. Consequently the documents are
linked based on the degree of similarity. The
significance of a document for specific query is
directly proportional to the distance among the
respective vectors.

More closely a document in the vector
space to the query represents more degree of
similarity between them. Finally the answers are
returned for the set of query. Once the
computation is made, it is painless to arrange a
list of documents i.e. ranking and their respective

degrees of relevance to the query.

 In this work, metric and attribute
documents are first preprocessed then given as
input to the VSM. During preprocessing the
terms in documents are stemmed to improve the
accuracy of our classification process. VSM
calculates the similarity of every metric with
respect to attributes. The attribute which has the
maximum cosine similarity with a chosen metric
is selected and metric is classified. The metrics
are compared with all the possible attributes in
order to provide maximum metric support for the

identified phases.

6. RESULTS & DISCUSSION

The proposed system is implemented in Java
platform JDK 7 and MySQL server. The
definition

for metrics and attributes are stored as XML
property files and they are pre-processed for

VSM

 Fig. 2 Proposed Systems - VSM

Results

The Figure 2 shows the classification
results of VSM achieved by the proposed
system. The metrics with higher score value to
the identified attribute is taken for further

classification.

The Table II represents all the possible
metrics involved in Test execution phase of
software testing life cycle. This table displays the
VSM score for each metric with respect to the
identified attributes. From the listing, it’s said
that higher the value of similarity represents
greater metric support for the corresponding
attribute.

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

32

S.No

 Metric

 Test Execution

Progress Quality Cost Size

1 No. of Test

Cases Executed
0.931 0.75 0.132 0.124

2 No. of Test
Cases Passed

0.435 0.577 0.447 0.223

3 No. of Test

Cases Failed
0.435 0.471 0.447 0.288

4 No. of Test
Cases Blocked

0.416 0.597 0.597 0.554

5 Defect
Acceptance

0.408 0.258 0.447 0.583

6 Defect Rejection 0.408 0.258 0.447 0.583

7 First Run Failure 0.449 0.277 0.627 0.683

8 Test Case

Retesting
0.234 0.892 0.544 0.231

9 Test Execution
Productivity

0.955 0.088 0.111 0.124

10 Time remaining
to complete the
testing

0.416 0.588 0.503 0.606

11 Memory Usage

of Tool
0.304 0.561 0.894 0.441

12 Tool Support 0.454 0.332 0.789 0.776

 Table II Results Of VSM – Test Execution Phase

The Table III represents all the possible
metrics involved in Test Review phase of
software testing life cycle. When compared to
test execution phase, this one has limited number
of measurable attributes. The metrics are finally
classified under right attributes based on their

similarity scores.

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

S.NO

Metric

Test Review

Progress Quality

1 Test coverage 0.666 0.524

2 System Coverage Analysis 0.904 0.607

3 Test Case Execution Status 0.589 0.612

4 Error Discovery Rate 0.641 0.592

5 Inspection Rate 0.614 0.339

6 Defect Detection Rate 0.449 0.071

7 Current quality ratio 0.580 0.550

8 Code Coverage 0.710 0.438

9 Test Efficiency 0.267 0.281

10 Risky Areas Identification 0.456 0.256

Table III Results Of VSM – Test Review Phase

The Figure 3 represents the graphical
representation of number of metrics under
attributes of test execution and test review phase.
From the figure, it’s clear that attribute progress
achieves maximum metric support in both the

execution and review phases. In order to express
the success of test execution and review phases
in terms of quality, size and cost additional
metrics have to be identified.

0

1

2

3

4

5

6

Number of

metrics

Progress Quality Cost Size

Measurable Atttributes

Test execution

Test review

Fig.3 Metrics Classification By VSM

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

34

7. CONCLUSION

 The aim of this research was to identify
possible attributes in test execution and test
review phases so as to provide maximum metric
support for those attributes. To achieve this
objective, 22 software engineering metrics and
their complete description was constructed and
measurable attributes were identified. Since no
experimental data is available to support the
problem discussed in this paper, Vector Space
Model, an information retrieval technique was
opted to literally classify the metrics under
chosen attributes.

This proposed work will be very helpful for IT
organizations in constructing the metrics plan for
its software test execution and test review
processes. The measurable attributes identified
by this work can be an important factor to
achieve successful testing process. It’s observed
that such an effort will direct to effective
decision making about various software testing
activities. The future work would be
investigating how these metrics work by using
related equations to enhance the confidence level
of the metrics support identified by this work.
The further investigation of this work is to
identify appropriate metrics for test execution
and test review phases to minimize time, cost
and maximize the quality of the software

 REFERENCES

[1] Hesham Abandah, Izzat Alsmadi2 (2013),
‘Call Graph Based Metrics To Evaluate
Software Design Quality’, International
Journal of Software Engineering and Its
ApplicationsVol. 7, No. 1, January, 2013
pp.525-548.

[2] G Concas, M Marchesi (2012), ‘ An empirical
study of software metrics for assessing the
phases of an agile project’, Int. Journal of
Software Engineering and Knowledge
Engineering,vol.22, pp.525-548.

[3]Sheikh Umar Farooq, S.M.K.Quadri,Nesar
Ahmad (2011), ‘Software Measurements
and Metrics : Role in Effective Software
Testing’, Int.Journal of Engineering
Science and Technology,Vol.3,No.1.

[4]Kitchenham, B.A (2010),’ what’s up with
software metrics? – A preliminary mapping
study’, Journal of. Systems and Software
Elsevier,, vol. 83, Issue 1, pp. 37-51.

[5]Wasif Afzal and Richard Torkar (2008),

‘Incorporating Metrics in an Organizational
Test Strategy’, Int. Conference on Software
verification and validation Workshop,
pp.236-245.

[6] Paul Oman , Jack Hagemeister (2008),
‘Construction and testing of polynomials
predicting software maintainability’, IEEE
Computer Society, vol.24 , pp.251-266.

[7] Paul Oman , Jack Hagemeister (2008),
‘Construction and testing of polynomials
predicting software maintainability’, IEEE
Computer Society, vol.24 , pp.251-266.

[8]Heitlager, I., Kuipers, T., and Visser J (2007),
‘A Practical Model for Measuring ... of
Information and Communications
Technology’, IEEE Computer Society pp.
30–39.

[9] Subramanyam R and Krishnan M. S (2003),
‘Empirical analysis of CK metrics for
object-oriented design complexity:
implications for software defects
Software’, IEEE Transactions on software
Engineering, vol. 29, issue: 4, pp. 297- 310.

[10]Yu P, Systa T, Muller H (2002), ‘Predicting

fault-proneness using oo metrics. an

industrial case study. ...’,IEEE Computer

Society ,pp.99–107.

 [11]Chidamber S.R. and Kemerer F (1994), ‘A
Metrics Suite for Object Oriented Design’,
IEEE Trans. Software Eng., vol. 20, no. 6,
pp. 476- 493.

[12] Michael K.Daskalantonakia (1992), ‘A
Practical View Of Software Measurement
and Implementation Experiences Within
Motorola’, IEEE Transactions on Software
Engineering, Vol.18, No. 11.

[13]Salton, G. (1971). The SMART Retrieval
System: Experiments in Automatic
Document Processing. Englewood Cliff,
NJ: Prentice Hall.

14] Myers G. J. “The Art of Software Testing”.
John Willey & Sons, Inc., New York,
USA, 2006.

[15]S. R. Rakitin (2001), ‘Software
Verification and Validation for Prac-
titioners and Managers . Artech House,
Inc., Norwood, MA,USA, 2nd edition

[16].R. S. Pressman. Software Engineering – A

Practitioner’s Approach. McGraw Hill
Education Asia, 2005

[17] http://en.wikipedia.org/wiki/Software_testing

