
Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

167

FRAMEWORK FOR SELECTION OF TEST CASES USING

AN ETCS APPROACH

Dr. A. PRAVIN

Department of Computer Science and Engineering
Sathyabama University

Chennai
E-mail: pravin_ane@rediffmail.com

ABSTRACT

 Inorder to authorize the application after reconstruction Regression Testing is conducted. A horde of
analysts worked on this activity to upgrade this process. The regression test is time consuming and the cost
involved is high. Our goal is to upgrade the value of fault detection and to diminish the time consumption.
This can be done by selecting few test cases and are processed accordingly. The selection process
automatically detects the fault during the earlier stage itself. In this paper a method based on the analysis
that is carried out on the execution of each application .The analysis is done to find out how far the methods
communicate with other and the result is captured. Based on the result obtained the test cases are selected
from the set. The proposed Effective Test Case Selection method (ETCS) selects the test case once the
application has been modified. The Effective Test Case Selection method will in turn increases the fault
detection ratio by detecting faults earlier in the testing process.

Keywords: ETCS, Regression Testing, Method analysis, Test Case, Test Behavior Extraction.

1. INTRODUCTION

 Regression test analyses the entire part where
the change is performed. It will confirm whether
that group of modification yields to any new
trouble in the working of the given application. It’s
not possible for us to execute the entire Test Case
during the process because it will consume time
and the amount spent will be more. A.Pravin et al
proposed that new set by which it can be
processed in a minimum amount of duration and
which covers maximum fault[1]. Many methods are
used to improve the selection process. A.Pravin et
al devised reduced selection method which
improves the test case that is extracted from the old
suite[2]. Whenever we are going to do the
Ranking all these details are taken for further use.
The set of input data is given to the application
during the testing process and outcome is evaluated
based on the user expectation. We need to design
and group the data called as test cases. A.Pravin et
al claimed that it is possible for us to trace and
extract errors in the part of software using neural
network concept. There is no need of having
knowledge in detail about the code or the weight
allocation[3]. We can say that the process is going
in a correct path, if it can be able to detect faults at
the starting point. The next process is to deliver the
detail to an expert to repeat the evaluation process
in a manner which is evaluated differently from the
person who had tested already. A. Pravin et al

described that by using the genetic approach we can
be able to select a set of quality test cases when
compared to the random approach[4]. The test case
design is to be considered as an important process.
Production of effective sets will improve the
testing process, so that the time taken for
performing the test operation will be minimized.
The errors will be eliminated so that the quality will
be enhanced because of satisfying the user
requirement.

2. RELATED WORK

 For conducting analysis on the change both
static and dynamic features are used.

 Xiaoxia R et al describes that the test is
selected after static change analysis is performed
[6]. Apiwattanapong T et al says that they have
conducted only that set of analysis [5]. Sneed M H
designed a process to find how far the
communication exist between the different
functionality when it is under execution [7]. Mary
Jean Harrold et al have designed a framework and
they have focussed on some experimental process
such as the outcome after change and the process
for providing support to the maintenance part [8].
Lingming Zhang et al proposed a general
architecture by which the input test data can find
the block where the outcome is going wrong by
priotitization [9]. Arvinder Kaur performed an

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

168

experimental work on coverage of code by means
of a genetic algorithm which gives a test output
that will contain an ordered form [11]. Milos
Gligoric et al have mainly concentrated their work
towards the statements that performs the function
and how they are being checked by providing
various test data [10]. Neerja Gupta describes the
techniques used for object oriented programs and
for aspect oriented programming [12]. Abhishek
Singhal explains about the approach which he has
designed for prioritization and also tried it with his
own algorithm to overcome the time for that
purpose [13]. T.Prem Jacob et al have been
investigated modified genetic algorithm for
selection of test cases and prioritization [14]. J.
Andrews et al have been investigated different
strategies for improving the performance of a given
application [15].

3. SELECTION PROCESS

The process is subdivided as

a) Passing information between the
functionalities and their outcome

b) Evaluation after the change
c) Final selection

a) Passing information between the

functionalities and their outcome

 There will be a set of different functionalities in
the corresponding application which is to be
evaluated. The major process is to trace the
behavior when the functionalities communicate
with each other during the execution. The figure 1
shows the different test input called as Test Cases
and the set of function that are affected during the
process.

 Depends upon the functional communication
Figure 1 describes the path which gives the
information about the various classes within each
module. The interaction between methods and their
behavior is traced. The captured method is invoked
while executing the application.

 We are going to enable the tracking of code
using the steps.

 Start: The initial process is to set the values
for the variable in the executional environment.

 Initialization of Events: The event is
initialized using function delegates.

 Extract events: The event related information
is extracted.

b) Evaluation after the change

 In this research we have considered the java
or C# code for communication between functions.
Some of the process used to detect the affected
method is listed.

� Identification of methods which are not
modified after performing more set of
comparison .

� At last it is going to analyse semantically.

Modification can be done either at syntatic level or
semantic level. Even if there is any change once the
modification can be done it will not directly affect
the other.

Semantic analysis

 Comparing objects from both original and new
versions of a program written in C#, if an interface
undergoes any set of modifications and what all are
the internal changes that are done inside the
interface is noted.

 The Figure 1 shows the initial part of the code
and the changed one. The two methods that are
declared in the initial part is plusop() and
minusop(). These two methods are inherited from
class Arit. The initial part is used by the user. Since
the client will be using the initial part he will be
affected due to any small modification. The
changed part of an interface consists of the
following changes. plusop() and minusop()
methods are modified by passing parameters (ie)
int plusop(opx,opy) int minusop(opx,opy).

 As shown in Figure 4, in the old version there are
methods called sx1() and sx2() that are present in
interface Ias and methods sy1() and sy2() in the
interface Ias and Ibs .All the methods will just print
some string ,but they are not going to return any
value. Here the change is implemented in the initial
part due to that the operation will differ.

C) Suitable Selection

 Finally a small group of test cases that will cover
the instruction newly generated will be listed out.

4. RESULTS

 The C# code which defines an functionality is
used for doing the work. As described in the Figure
3 a code which is having an interface called Isah
which has the methods plusop() and minusop() is
considered. The outcome is evaluated and the
output is stored in the repository. My making
change that is given by the client in opplus() and
opminus() a new part of the functionality is
generated.

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

169

 The process is repeated for the code shown in
Figure 4 here the change is done due to multiple
Interface. The code has two Interface Ias and Ibs
which is having methods. Some set of strings will
be displayed by the methods present in the interface.
Improvement in the FDT(Fault Detection Ratio)
due the better performance that is given by the
entire selection framework.

 The Figure 5 describes the Test case execution
for both the original and modified program for
both Interface and Multiple Interface. Normal
selection and the ETCS is compared in Figure 6
with the execution of test. Compared to the other
process ETCS select tiny list of test so fault
produced is less and diminish in time will increase
the performance.

5. CONCLUSION

 This paper deals with ETCS approach for
considering only c#.net application. The paper does
not cover the other aspects of object oriented
concepts of different programming languages
especially such as polymorphism, Inheritance etc.

 To perform an analysis of initial and the code
where change is updated architecture is proposed.
The framework ETCS will extract the dynamic
behavior of the program and analysis is done to find
out the changes. The sample program from C# is
taken and modified. The code is checked both for
change in Interface and change in Multiple Inteface.
The corresponding test cases that affect the changes
are listed out and finally the result will be of the
selected set of test case for testing .

 In future the work can be extended by
considering different aspects of different
programming languages. In future the work can
also be extended by extending the ETCS
framework for considering different applications.

REFERENCES

[1] Pravin A and Srinivasan S (2013), “Effective
Test Case Selection And Prioritization in
Regression Testing”, Journal of Computer
Science, Vol. 9, Issue 5 pp.654-659.

[2] Pravin A and Srinivasan S (2013), “An
Empirical Study on Fault Localization and
Effective Test Case Selection By Neural
Network”, Indian Journal of Computer
Science and Engineering, Vol. 3, Issue 6, pp.
812-817.

[3] Pravin A and Srinivasan S (2012), “An
Efficient Programming Rule Extraction and
Detection of Violations in Software Source

Code Using Neural Networks”, IEE-Fourth
International Conference on Advanced
Computing , ICoAC 2012 MIT, Anna
University,Chennai, pp.1-4.

[4] Pravin A and Srinivasan S (2012), Efficient
Algorithm Selection for Detecting Suitable
Test Case Prioritization”, International
Conference on Recent Advances and Future
Trends in Information Technology, Punjabi
university, Punjab, proc. International Journal
of Computer Applications, No.7 , pp. 28-31.

[5] Apiwattanapong T, Orso A, and Harrold M J,
“JDiff: A Differencing Technique and Tool
for Object-Oriented programs”, Journal of
Automated Software Engineering, Vol. 14,
No. 1,March 2007, pp.3-36.

[6] Xiaoxia R, Barbara G R, Maximilian S and
Frank T, “Chianti: A Prototype change impact
analysis tool for Java”, Proceedings of 27th
International Conference on Software
Engineering (ICSE), St. Louis, USA, May 15-
21, 2005, pp.664-665.

[7] Sneed M H, “Selective Regression Testing of
a Host to DotNet Migration”, Proceedings of
the 22nd IEEE International Conference on
Software Maintenance (ICSM), Philadelphia,
Pennsylvania .

[8] Alessandro Orso, Taweesup Apiwattanapong,
and Mary Jean Harrold, “Leveraging Field
Data for Impact Analysis and Regression
Testing”, Proceedings of the 9th European
software engineering conference held jointly
with 11th ACM SIGSOFT international
symposium on Foundations of software
engineering, pp 128-137.

[9] Lingming Zhang, Dan Hao, Lu Zhang, Gregg
Rothermel, Hong Mei ,” Bridging the Gap
between the Total and Additional Test-Case
Prioritization Strategies ”,ICSE 2013,San
Francisco,CA,USA.

[10] Milos Gligoric, Alex Groce, Chaoqiang Zhang,
Rohan Sharma, Mohammad Amin Alipour,
and Darko Marinov,”Comparing Non-
adequate Test Suites using Coverage Criteria”,
ISSTA ’13, July 15-20, 2013, Lugano,
Switzerland.

[11] Arvinder Kaur,” A Genetic Algorithm For
Regression Test Case Prioritization Using
Code Coverage”, International Journal on
Computer Science and Engineering (IJCSE),
Vol. 3 No. 5 May 2011.

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

170

[12] Neerja Gupta, “ A Survey on Regression Test
Selection Techniques on Aspect-Oriented
Programming”, International Journal of
Computer Applications Volume 59– No.11,
December 2012

[13] Abhishek Singhal,” A Novel Approach For
Priortization Of Optimized Test Cases”
International Journal on Computer Science
and Engineering (IJCSE), Vol. 4 No. 05 May
2012.

[14] T. Prem Jacob, T. Ravi. Optimal Regression
Test Case Prioritization using genetic
algorithm. Life Sci J 2013;10(3):1021-1033]
(ISSN:1097-8135).
http://www.lifesciencesite.com. 149

[15] J. Andrews, T.Sasikala , “Efficient framework
architecture for improved tuning time and
normalized tuning time”, WSEAS
Transactions on Information Science and
Applications, Vol.10, No.7, July 2013, pp.no
230-240.

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

171

Test cases Paths Paths Paths

TC01 A1.C1:M0 A1.C4:M3 A2.C7:M20

TC02 A1.C2:M2 A1.C3.M4

TC03 A1.C8:M5 A2.C10:M24

TC04 A1.C7:M9 A1.C9:M17 A2.C8:M24

Figure 1 Functional Communication Path And Test Set

Figure 2: Block Diagram Of ETCS

Figure 2 Block Diagram Of Etcs

Selection

Process

Execute

Test

case

s

Response of

communication

between

Functionalities

Behaviour

Detail

Analysis

Extraction process

Both initial

& modified

code

Extraction

Both initial

& modified

executable

form

E
x

tr
a
c
ti

o
n

R
e
s
u

lt

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

172

interface Isah
{
void plusop();
void minusop();
}
class Arit:Isah
{
public int opa,opb,opc;
Public void plusop()
{
opa =Iint16.Parse(Console.ReadLine());
opb =Iint16.Parse(Console.ReadLine());
opc = opa + opb;
console.WriteLine(opc);
}
public void minusop ()
{
opa =Iint16.Parse(Console.ReadLine());
opb =Iint16.Parse(Console.ReadLine());
opc = opa - opb;
console.WriteLine(opc);
}
public static void Main()
{
Arit op=new Arit();
Isah reop=(Isah)op;
reop. plusop();
reop. minusop();
}
}
 (a)Original source code

interface Isah
{
int plusop(opx,opy);
int minusop(opx,opy);
}
class Arit:Isah
{
public int opa, opb, opc;
public int plusop (int opa,int opb)
{
opc = opa + opb;
console.WriteLine(opc);
return opc;
}
public int minusop(int opa,int opb)
{
opc = opa - opb;
console.WriteLine(opc);
return opc;
}
public static void Main()
{
Arit op =new Arit();
Isah reop=(Isah) op;
reop. plusop (2,3);
reop. minusop(2,3);
}
}
 (b)modified program

Figure 3:Changes In Interface

interface Ias
{

void sx1();

void sx2();
}

interface Ibs

{
void sy1();

void sy2();

}

class Texa:Ias

{

public void sx1()

{
console.WriteLine(“This is SX1”);

}

public void sx2()
{

console.WriteLine(“This is SX2”);

}

class Texb:Ibs
{

public void sy1()

{
console.WriteLine(“This is SY1”);

}

public void sy2()

{

console.WriteLine(“This is SY2”);

}

public static void Main()

{

Texa pr=new Texa();
Texb pr1=new Texb();

Ias acc=(Ias)pr;

acc.sx1();
acc.sx2();

Ibs acc1=(Ibs)pr1;

acc1.sy1();

acc1.sy2();
}

}

 (a) Original source code

interface Ias

{
string sx1();

string sx2();

}

interface Ibs

{

string sy1();

string sy2();
}

class Texa:Ias

{
public string sx1()

{

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

173

string sdep;

sdep=”cse”;

return sdep;

}
public string sx2()

{

String sdep1;

Sdep1=”ece”;

return sdep1;

}
class Texb:Ibs

{

public string sy1()

{
string sdep2;

sdep2=”mech”;

return sdep2;
}

public string sy2()

{
string sdep4;

sdep4=”prod”;

return sdep4;

}

public static void Main()

{

Texa pr=new Texa ();

Texb pr1=new Texb ();

Ias acc =(Ias)pr;

acc.sx1();
acc.sx2();

Ibs acc1=(Ibs)pr1;

acc1.sy1();

acc1.sy2();
}

}

 (b)modified program

Figure 4:Change Due To Multiple Interface

Figure 5. Test Executed for Original and Modified Program

Figure 6. Normal selection vs Selection using ETCS

