
Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

80

 SOFTWARE QUALITY MEASUREMENT AND

IMPROVEMENT USING REFACTORING AND

SQUARE METRIC METHODS

1
FEBY ARTWODINI MUQTADIROH,

2
HANIM MARIA ASTUTI,

3
ARTHA PATRA PRADANA

Department of Information System, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia

E-mail: 1feby@is.its.ac.id, 2hanim@its-sby.edu, 3artha69@gmail.com

ABSTRACT

Software requirement is one of critical factors in a successful software development. Based on some
existing researches, a good or poor design of software relies heavily on the quality of software requirements
as a definition of software requirements is certainly an early stage in software development. In an IT
project, such as a development of School of Social Network (SSN), some problems concerning software
quality requirements may occur any time. The changes occurring in the software requirements and the
mismatch among the needs, designs, and final result of the project, can lead to poor quality of the software
produced. To minimize the problems, it is necessary to measure the quality of software requirements based
on SQuaRE Metrics using Refactoring. First, it is to determine the characteristics of software quality
requirements. The determination of quality characteristics of SSN is based on an expert experience and
eventually sets 4 attributes of software quality requirements that are considered very important, namely:
Correctness, Completeness, Consistency and Non-Ambiguity. Second, it is to give a weight on each quality
characteristic to obtain the IRQ value. Third, the process of refactoring is conducted to improve the use-
case scenarios. And the last step is to re-measure the quality of re-factored software requirement. The early
measurements showed that the quality requirements of the SSN reached 39%. Through refactoring process,
the improvement of software requirements caused an increase of 6 use cases. And after repair by using
refactoring, it increased the quality of the requirements of SSN by 62%. Refactoring is definitely helpful
for enhancing the understanding on software requirements without changing the software business process.

Keywords: Software Requirements, Use Case Scenario, Software Quality, SQuaRE Metrics, Refactoring

1. INTRODUCTION

In an IT project, an engineering requirement

would certainly never miss from software
development processes. This is due to the fact that
software requirement is a foundation in developing
software. Software development process is often
referred to as a System Development Life Cycle
(SDLC). In SDLC, software requirements will be in
a phase of System Analysis/Requirement
Definition, pertaining to be the most important
phase in a software development [1].

But in reality, the software requirements are often
ignored, consequently the quality of software
designed is not favorable as expected. Such
incidents often occur in a software development
process. Ideally, good software is also subject to a
good software quality requirement.

To determine software quality requirements, it
calls for a quality measurement to be performed.

However, a measurement on software quality
requirements is often ignored, leading to poor
quality of the software requirements and worse
output generated anyway.

The main factor affecting the quality of an
information system application is identification of
requirements covering all aspects of the
functionality of an information system that will be
designed. The more detailed and comprehensive
information in the process of identifying the
requirements of the information system, the more
capability to cover all functional aspects of an
application will be, such as aspects of usability, re-
usability, maintainability and other aspects in order
to meet the user needs [2].

Researchers found that there is still a developing
information system producing applications that are
not qualified at all. One of the factors leading to
poor quality of applications is the rapidly changing
user’s needs. But in the paper [3] it was found that

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

81

there was a less interesting issue that greatly affects
the quality of a software development which is in a
process of identifying needs (Requirements). A
poor quality at the stage of identifying the software
requirements will cause a failure to know the
aspects of functionality and user’s needs. Concrete
examples are the identification of requirements on a
large scale resulting a lack of clarity on aspects of
the functionality in the information system
applications that have an impact on lazy
requirements, the same activity in a single process
(duplicate), and so on. These problems are often
encountered in identifying the requirements in the
process of information systems development [4].

To minimize the problems above, an
improvement of the quality of information systems
development is required, especially in the aspect of
identifying the requirements of an information
system. The methods used in improving the quality
of software comprise Refactoring, Requirements
Management Plan, and Quality Modelling.
However, the most suitable method and focus on
the functionality of the system is the Refactoring.
The other two methods are focused on all aspects of
software developments. Theoretically refactoring
according to [5] is a technique to restructure the
programming code without changing its
functionality. This definition is then adapted with
and applied to the stage of requirement
identification of an information system
development.

In this research, the restructuring of the
information on the identification of user’s needs
adopts refactoring techniques, while the
measurement of software requirement complies
with the Square metrics standard. This technique
will be applied to document of SSN (School Social
Network) software requirements as a case study.
Accordingly, it is expected that the quality of SSN
requirements will increase and be capable of
covering all aspects of information system
functionality and user’s needs that will yield a
qualified information system.

2. LITERATURE REVIEW

2.1. Software Evaluation

According to the [6], software quality
requirements may be input for a software product
quality evaluation. Software evaluation is a package
of evaluation technology for measuring software
quality characteristics, sub-characteristics or
attributes. The package includes evaluation methods
and techniques, inputs to be evaluated, data to be

measured and collected and supporting procedures
and tools. Software product evaluation is a technical
operation that consists of producing an assessment
of one or more characteristics of a software product
according to a specified procedure [6].

For this reason, this study will discuss the
evaluation of the software with the aspect of the
functionality through the measurement of software
requirement quality.

To evaluate and measure the quality of software
requirements, this study utilizes SQuaRE matrix
which is a standardized evaluation model of ISO /
IEC 14598. The more details are described in
Section 2.6.

2.2 Software Quality

In a Software Quality according to [2], it is said
that qualified software must be in accordance with
the requirements specified. In detail [2], it is said
that a software quality refers to the suitability of the
software that is designed based on requirement
specifications.

There are several factors that affect a poor quality
of the software. Researchers in [2] classified the
causes of the poor quality of the software,
including:

1) Faulty definition of requirements

Errors of this type are due to the lack of user
understanding for what is actually a necessity. The
types of errors that occur are usually as follows:

• Erroneous definition of requirements. This is
an error in defining the needs of user;

• Absence of vital requirements. In this sense,
the important needs that are not identified in
the software;

• Incomplete definition of requirements. This
relates to the identification of the needs on
software that does not include the
functionality aspects in the user’s needs;

• Inclusion of unnecessary requirements, which
means the needs that are not needed;

2) Client-developer communication failures

Failure to identify the needs of the software is
usually caused by poor communication between the
client and the developer. One example of poor
communication between the developer and the
client is less response of a developer to the
changing needs of software that is delivered by the

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

82

client, which results in the quality of the software
that will be developed later.

3) Deliberate deviations from software
requirements

In some cases, developers usually do not follow the
terms agreed before that cause errors in software
development. Developers sometimes use a module
in the previous project to be applied to software
development projects being executed. Without any
further communication, this will affect the quality
of the software to be developed.

4) Logical design errors

Errors in the software could occur during design
phase. The design is prepared by those who are lack
of competence in a software designing. An error
usually occurs in the process of defining the
workflow of system to be created.

5) Coding errors

These errors occur in writing line of code when a
programmer does not understand the design of the
software. At last, there is an incompatibility
between the code and the design that will affect the
quality of software.

6) Non-compliance with documentation and
coding instructions

A software developer generally has his own
standards and procedures in developing software.
But in a software development project, this will
only be a bad thing for the long term at the time of
repairing due to a mismatch between the
documentation and coding between the developers
and the project team.

7) Documentation error

Errors in the software documentation will make the
development process more difficult, including
software maintenance process conducted by a team
of software maintenance. Less integration between
software requirements document and design
document will influence in the next software
development.

Another impact caused by the fault software
documentation (user guide documentation) is to
confuse the end user to operate the software. The
general errors are:

• Some mistakes in describing the instructions
to use the software;

• Provision of a guidance that is not on the
application.

In this study, researchers focused on the
"Faulty definition of requirements" problems,
where the identification of software requirements is
the main and very important aspect to determine the
quality and the failure of a software.

2.3 Requirement Analysis

The main purpose of software requirements
analysis is to obtain and to identify the software
needs and the conditions to be satisfied during the
software development. According to [7], software
requirements analysis is one of the factors
determining the success of software development
projects.

Conceptually, there are three main activities in
software requirement analysis including:

1) Eliciting Requirements

Identify the software needs taken from several
sources, including project documentation (Project
Charter), business process documentation, and
stakeholder interviews. These activities are
commonly referred as Requirement Gathering.

2) Analysing Requirements

Determine whether the requirements have been
already clear, complete, consistent, and
unambiguous.

3) Recording Requirements

Document the requirements that have been obtained
in the previous analysis activities. The document
contains use case, user stories, and specification
process.

2.4 Use Cases

According to [7], the use of case describes the
interaction between the actors and the system is
interconnected. The use case is a part of use case
diagram. Use case diagrams are very important in
explaining what is done by a system then specifying
the work through Flow of Events. The flow of
Events describes a use case in a clear definition and
describes how the use case starts and ends. The
flow of events is commonly known as the use-case
scenarios. According to [8], it is said that the
scenario is one way of representing the
requirements. As the scenario describes a system
from a user perspective, it focuses on user-system
interaction.

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

83

2.5 Refactoring

According to [5], refactoring is a technique for
restructuring the code without changing the
functionality of the programming. The aim of
refactoring is to improve understanding of
programming code and reduce the complexity that
impacts on improvement to the maintainability of
the programming. Developers usually called the
term of “code smell” or “bad smell” during perform
the refactoring. An example is a programming
method which quite a lot duplicated with another
method.

There are two benefits derived from the
refactoring methods, namely:

1) Maintainability. Refactoring would make the
code easier to understand especially when make
improvements to the bugs found in the software.

2) Extensibility. Refactoring will make easier to
expand on the capabilities of the software.

Yet, refactoring method is not only used to
improve the program code, but also can be used to
improve the definition of software requirements in
the early stages of analysis, which is the scenario.
The scenarios, according to [8], describe sequential
interaction to define the specification of
requirements that are part of a series of software
requirement quality measurement. In the paper [3],
it elaborated what should be considered before
determining the use case scenarios that can be
repaired using refactoring. These things are as
follows:

1) Large Requirements. This is a condition in
which a use case to try to accommodate multiple
functions or objectives or a use case to have
excessive alternative flows;

2) Complex Conditional Structure. This is a
condition in which a use case to have complex
structure or the software needs requires some
other software needs to be a unity of good
software needs. Other arising conditions are
when there is nested conditionals;

3) Lazy Requirement. This is a condition in
which the function or a role of a software
requirement to have vague impact on the
system. In addition to that, this state also
indicates a condition in which a software
requirement does not accommodate all of the
activity intended or incomplete requirements;

4) Naming Problems. This is a condition in which
a naming the software requirement does not

refer to a concept that has been determined, or a
condition where the same name is the used for
different concepts (Ambiguous);

5) Duplicate Activities. This is a condition in
which the same software needs to have
duplicates in different places in the software
requirements document. An example is where a
main flow or alternative flow is repeated on a
software requirement.

2.6 SQuaRE Matrix [9]

SQuaRE or Software Product Quality
Requirement and Evaluation is a strategy that
includes criteria for the specification of quality
requirement and the evaluation to measure the
quality of software requirement.

SQuaRE Matrix is a generic model of an
evaluation process, supported by the quality
measurements from ISO/IEC 14598. The model is
presented in Figure 1 that specifies four major sets
of activities for an evaluation:

1) Establishment Evaluation Requirements

2) Specification of Evaluation

3) Design of Evaluation

4) Execution of Evaluation.

Figure 1. Evaluation Process of ISO/IEC 14598

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

84

3. RESEARCH METHOD

Figure 2. Research Methodology

Methods in research is needed to guide the
completion of the research process in order to run
as directed and systematic. Here is an overview of
research methods used refer to the SQuaRE Matrix
[9]:

3.1 Establishment Evaluation Requirements

This stage is the initial stage of measuring the
quality of software requirements. The data have
been obtained from a meeting with the SSN
application developers then will be analyzed by the
experts. Analysis by expert conducted to determine
the quality of the use case scenarios of SSN
application based on 4 criteria of quality
(completeness, correctness, consistency, non-
ambiguity) are described in the paper [8] and
whether those use case scenarios to have refactoring
oppurtunites. To determine the quality of the use
case scenario, some verification questions need to
be prepared for the expert which refers to the four
criteria of the software requirements quality.

3.2 Specification of Evaluation

After obtaining the use case scenario even if
contained any less qualified, then the next step is
determining the weight of each criterion and
determine the rating level of each use case scenario.
The results of this process is assigned that the value
of 1 means the use case scenario is qualified, while
the value of 0 means the use case scenarios do not
satisfy the quality. Furthermore, the weight of each

quality criterion given by expert is based on the
urgency is as follows:

- Correctness must achieve 90%

- Completeness must achieve 75%

- Consistency must achieve 75%

- Non-Ambiguity must achieve 70%

The result of weighting and rating level is going
to be used for the measurement of the quality of use
case scenario in SSN application.

3.3 Design of evaluation

The aim of this stage is to create an evaluation
plan document that contains a process of the quality
measurement for use case scenario in SSN
application.

3.4 Execution of evaluation

This stage is the last stage of quality
measurement process of the use case scenario in
SSN application. Measurements were created using
weights and rating level put into the formula for
calculating the quality. The results of these
calculations will later determine whether a use case
scenario qualified or not.

3.5 Refactoring

The result of quality measurement in use case
scenario will be the input for this stage. The results
are processed using refactoring. There are 5 ways to
make improvements using refactoring, include:

� Extract Requirements

This process is conducted when there is
information about large-scale software
requirements which can be divided into 2 or more
new software requirements (in the same context).
According to the paper [3] The need of software
contains a lot of important information and
difficult to understand, so then it will be not easy
to find the required information quickly.

� Rename Requirements

Giving the name of the software requirements
adjusted to the context of the needs of the
software. Giving a good name will facilitate
communication and understanding of the system
and the use of abstraction in general vocabulary
that will facilitate the development team [3].

� Move Activity

This process focuses on improving the modularity
and balancing the activity in defining software

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

85

requirements. This process could be happened.
This process can also occur during the
requirements extraction process (Extract
Requirement) by moving activities to the
desirable needs. [3] said that the increased
modularity in software requirements will lead to a
better understanding of the system in the long
term.

� Inline Requirement

The goal of this process is to reduce the
complexity of software requirements by
combining several existing requirements. If a
software requirement is not important enough to
be used, then the developer can perform inline -
merging to the other software requirements. Each
software artefact requires time and resources to
understand and maintain the software [3].

� Extract Alternative Flows

This process is performed when the information
flow on the software requirements do some
scenarios at the same time resulting in the
accumulation of information that affects the
understanding of requirement responsibilities and
information flow are minimal and difficult.
Alternative scenario is the right way to manage
the complex information flow to the certain
structured conditions [3].

3.6 Verification of Use Case Scenario to the

SSN Application

After repairing the use case scenarios using
refactoring, the next step is to verify to the expert.
A verification process is similar to the process at
the beginning before refactoring. The aim of the
verification process is to determine how the quality
of the use case scenario of SSN application when
assessed from four quality criteria, namely:
completeness, correctness, consistency, and non-
ambiguity.

4. RESULT AND DISCUSSION

4.1 Use Case Scenario Selection based on

Literature Review

The selection of a use case scenario is focused on
the use case that has the opportunity to be re-
factored. Based on observations and analysis fitting
to the description in paper [3], the use case
scenarios are selected to be repaired by refactoring
as presented in Table 1:

Table 1: Comparison of Accuracy, coverage, and covacc

between CBS and modified CBS algorithm with

FEAT and FSGP algorithm

Literature

Review
Use Case are Problematic

Improving the

Quality of
Requirements

with Refactoring

[3], [8]

UC-05 View Profile

UC-06 View feeds of Profile

UC-12 Friendship Confirmation
UC-26 Attendance

Confirmation

UC-35 View the Study Report

4.2 Use Case Selection based on Expert

Judgment

Furthermore, to better ensure a use case scenario
which should be improved, the next step is to use an
expert judgment method. This method is conducted
by contacting several experts who have experience
to analyze the use case scenario of SSN application.
Selected 3 experienced expert to analyze use case
scenarios to do refactoring opportunities.

Table 2: Use Case Selection Using Expert Judgment

Expert 1 Expert 2 Expert 3

UC-04 Send
Comment

UC-05 View
Profile

UC-06 View

feeds of profile

UC-12

Friendship

Confirmation

UC-26
Attendance

Confirmation

UC-27

Comment to the

Event

UC-35 View the

Study Report

UC-36

Send a Liaison

Book

UC-04 Send
Comment

UC-06 View

feeds of profile

UC-12

Friendship

Confirmation

UC-26
Attendance

Confirmation

UC-27

Comment to the

Event

UC-35 View the

Study Report

UC-36

Send a Liaison

Book

UC-04 Send
Comment

UC-06 View

feeds of

profile

UC-12

Friendship

Confirmation

UC-26

Attendance

Confirmation

UC-27

Comment to

the Event

UC-35 View

the Study

Report

UC-36

Send a

Liaison Book

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

86

4.3 Quality Measurement of Use Case Scenario

Measuring the quality of use case scenario will
generate 2 conditions; the quality prior to
refactoring and the quality after refactoring. The
measurement processes consist of interviews,
calculations and inferences. Table 3 represents the
results of the interview processes as follows:

Table 3: Recap of the value of the Software Requirement

Quality to the Use Case Scenario for each

Quality Characteristic

Use Case Scenario Quality

Characteristic

Value

UC-04 Send Comment

Correctness 1

Unambiguity 1

Completeness 1

Consistency 0

UC-06 View feeds of

profile

Correctness 0

Unambiguity 0

Completeness 0

Consistency 1

UC-12 Friendship

Confirmation

Correctness 0

Unambiguity 0

Completeness 1

Consistency 0

UC-26 Attendance

Confirmation

Correctness 0

Unambiguity 0

Completeness 1

Consistency 1

UC-27 Comment to the

Event

Correctness 1

Unambiguity 1

Completeness 1

Consistency 0

UC-35 View the Study

Report

Correctness 0

Unambiguity 0

Completeness 0

Consistency 1

UC-36 Send a Liaison

Book

Correctness 1

Unambiguity 0

Completeness 1

Consistency 1

The value [10] generated by the expert is based
on questionnaire. An expert judged 7 Use Cases in
accordance with four quality criteria. Each quality
criterion has a value of 1 and 0. The value of 1
means the use case scenario is appropriate with the
quality criteria, while the value of 0 means the use
case scenarios do not meet the quality criteria.

Measurement of the 4 characteristic qualities will
produce Individual Requirements Quality (IRQ)
[10]. The IRQ presented the quality of each
characteristic as the average of the overall value of
the quality characteristic that has been obtained
from the questionnaire.

1) IRQ to measure the Correctness:
∑ ���������		�

���

�

2) IRQ to measure the Completeness:

∑ ��
�������		�

���

�

3) IRQ to measure the Consistency:
∑ ���	
	������

���

�

4) IRQ to measure the Unambiguity:

∑ ���
�
��
���

���

�

Table 4: The Result of the Software Requirement Quality

Quality

Characteristic

Total of

Value 1

Total of

Value 0

IRQ

Correctness 3 4 0,43

Completeness 5 2 0,71

Consistency 4 3 0,57

Unambiguity 2 5 0,29

Total 2,00

Table 4 represents the results of IRQ. The next

calculation is continued by multiplying each value
of the quality characteristic with the weight given
by the expert as shown in Table 5.

Table 5: The Result of Individual Requirement Quality

Equipped with Weights

No Quality

Characteristic

IRQ Weight IRQ *

Weight

1. Correctness 0,43 0,95 0,4085

2. Completeness 0,71 0,75 0,5325

3. Consistency 0.57 0,75 0,4275

4. Unambiguity 0,29 0,70 0,203

 Total 1,5715

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

87

Figure 3 shows the comparison between the
perfect amount of quality characteristics with
measurement results:

Figure 3. Graph Representation of SSN Requirement

Measurement

After getting the value of the result of
multiplying with the weight on each quality
characteristics, the next step is identifying the
average of each quality characteristic. In this way
obtained the results of Requirement Quality as
follows:

Requirement Quality =
∑���∗���	
�

	

 =

�,����

	�

Requirement Quality = 0.392875

The result of Quality Requirements is 0.392875,
which means that the quality of the SSN application
requirements only reached 39%.

4.4 Refactoring Process

Refactoring process is based on the analysis and
measurement of the use case scenario on the SSN
application. The following is an example of the
results of the analysis of the use case scenario on
the SSN application that is problematic then
adjusted for corrective action according to
refactoring method. Table 6 presents the use case of
Send Comment to be refactored.

Table 6: Refactoring the Use case “Send Comment”

UC-04 Send Comment

Problems The use of the word customer in in a

use case narative inconsistent

Opportunities Naming Problem

Refactoring Rename Requirement

Solution Change the word of customer
according to the similarity in the

other use case scenarios

Motivation Paper [3] explains that the use of a
good name would make a better

understanding and an easier way

communication for the development

team.

Mechanism 1) Select the requirement to be

corrected

2) Change a part of the

requirements that need to be

changed

3) Customize the content of the

requirements that have been

changed

Result Changing the word of customer

becomes user according to the
existing content on the UC-04 Send

comments

Another example is also presented in Table 7

which presents the use case of View feeds of profile
to be refactored.

Table 7: Refactoring the Use case “View feeds of

profile”

UC-06 View feeds of profile

Problems This use case should not be used as

the main use case. It is rather more

appropriate as an alternative flow of

a main use case

Opportunities Lazy Requirement

Refactoring Inline Requirement

Solution Move the requirement description

of UC-06 into a use case scenario of

UC-05 View Profile

Motivation Paper [3] explains if a use case

existence is not suitable to be used

as the main use case, then

developers may combine (merge)
the use case to another use case.

Mechanism 1) Copy all activities, including

the prerequisite condition
described in the existence use

case to the use case to be

merged
2) Update all content or other use

cases affected by this process

3) Remove the information

referring to the use case
scenario that is to be merged

Result The activity of UC-06 is becoming

the alternative flow to the UC-05

View Profile. On the profile page,

user able to see the activities that

have been done by him/herself or
friends such as the activity of

seeing status, seeing wall posts, etc.

Table 8 contains a summary of the problems in
the use case scenarios of SSN and the description of
the refactoring process:

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

88

Table 8: Problems of SSN Requirement and the Result

After Refactoring

Use Case

Identification

Before

Refactored

Problems

Use Case

Identification

After

Refactored

UC-04 Send

Comment

Naming problem

to the actor

UC-04 Send

Comment

UC-06 View

feeds of

profile

Included in the

use case
alternative

UC-05 View

Profile

UC-12

Friendship

Confirmation

Use case is too

general and
should be

subdivided into

several use cases

UC-13

Accept
Friendship

Confirmation

UC-14 Reject

Friendship

Confirmation

UC-26

Attendance

Confirmation

Use case is too

general and

should be

subdivided into

several use cases

UC-27

Presence

Confirmation

UC-28

Absence
Confirmation

UC-27

Comment to

the Event

Naming problem

to the actor

UC-30

Comment to
the Event

UC-35 View

the Study

Report

Use case is too
general and

should be

subdivided into
several use cases

UC-36 View
the Study

Report

UC-37 View

the grades of

kindergarten

UC-38 View

the Report of

Personal

Development

UC-39 View
the grades of

Cambridge

UC-40 View
the grades of

Subjects

UC-36 Send a

Liaison Book

Naming problem

to the actor

UC-41 Send a

Liaison Book

Here are 6 new use case after refactoring process:

� UC-14: Reject Friendship Confirmation

� UC-29 Absence Confirmation

� UC-37 View the Grades of Kindergarten

� UC-38 View the Report of Personal

Development

� UC-39 View the Grades of Cambridge

� UC-40 View the Grades of Subjects

4.5 Quality Re-Measurement of Use Case

Scenario

The next step is to re-measure the quality of the
use case scenarios that have been refactored based
on four criteria of quality of Correctness,
Completeness, Consistency and Non-ambiguity.
The measurement is conducted through
questionnaires to experts. The experts judged 7 Use
Case based on 4 quality criteria. Each quality
criterion has a value of 1 and 0. The value of 1
means the use case scenario is appropriate with the
quality criteria, while the value of 0 means the use
case scenarios do not meet the quality criteria.

Table 9 represents the results of the expert
questionnaire on the quality characteristics of the
use case after being refactored.

Table 9: The Result of the Software Requirement Quality

After Refactoring

Quality

Characteristic

Total of

Value 1

Total of

Value 0

IRQ

Correctness 6 1 0,86

Completeness 7 0 1

Consistency 5 2 0,71

Unambiguity 4 3 0,57

 Total 3,14

In the process of measuring the quality
characteristics obtained the Individual
Requirements Quality (IRQ). IRQ presented the
quality of each characteristics by calculating the
average of the overall value of the quality
characteristic has been obtained from the
questionnaire.

Having obtained the results of IRQ, the next
calculation is continued by multiplying each value
of the quality characteristic with the weight given
by the expert as shown in Table 10:

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

89

Table 10: The Result of Individual Requirement Quality

Equipped with Weights After Refactoring

No. Quality

Characteristic

IRQ Weight IRQ *

Weight

1. Correctness 0,86 0,95 0,817

2. Completeness 1 0,75 0,75

3. Consistency 0,71 0,75 0,5325

4. Unambiguity 0,57 0,70 0,399

 Jumlah 2.4985

After getting the value of the result of
multiplying with the weight on each quality
characteristics, the next step is looking for the
average of each quality characteristic. In this way
obtained the results of Requirement Quality as
follows:

Requirement Quality =	
∑ ���∗���	
�

		

 =	
�.����

�
 � 0.624625

Based on the results of the software requirements
assessment in the use case scenario of SSN
application that has been corrected using
refactoring, the result of the Quality Requirements
measurement showed an increase up to 62%.

Figure 4 shows the comparison between the
software requirement quality of the use case
scenarios before repaired with the software
requirement quality of the use case scenario after
refactoring.

Figure 4. Graph Representation of SSN Requirement

Mesurement Before and After Refactoring

5. CONCLUSION

5.1 Conclusion

The conclusion that is derived from this study is
as follows:

1. Based on the measurement of the initial

conditions of use case scenarios of SSN

application it generates a quality of software

requirement by 39%, showing that the quality of

the SSN application before repaired is still low.

2. Based on the refinement using refactoring, the

quality of the use case scenario of SSN

application increases up to 62%.

3. By using refactoring, the use case scenario of

SSN application grows to six use cases: Reject

Friendship Confirmation, Absence

Confirmation, View the grades of kindergarten,

View the Report of Personal Development,

View the grades of Cambridge, View the grades

of Subjects.

5.2 Suggestion

The suggestions expected to be developed in the
future are:

1. Refactoring process is completed when a

programming has been tested using a test case

to ensure that the programming code has been

re-factored does not change the behavior of the

overall system.

2. Since the refactoring is based on the document

that cannot be tested (test case document),

further research is needed to ensure that the

refactoring will not change the behavior of the

overall system considering the goal of

refactoring is to facilitate a use case to be well

understood.

Journal of Theoretical and Applied Information Technology
 10

th
 March 2015. Vol.73 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

90

REFERENCES

[1] I. Sommerville, Software Engineering, 9th

edition. Boston, Massachusetts: Addison-

Wesley, 2010, pp. 27–74.

[2] D. Gallin, Software Quality Assurance from

Theory to Implementation. Edinburgh Gate :

Pearson Education, 2004.

[3] J. Ramos, Ricardo; Piveta, Eduardo K; Castro,

Jaelson; Moreira, Ana; Guerreiro, Pedro;

Pimenta, Marcelo S; Price, R. Tom; Araujo,

“Improving the Quality of Requirements with

Refactoring,” in Simposio Brasileiro de

Qualidade de Software, 2009.

[4] D. Firesmith, “Common Requirements

Problems, Their Negative Consequences, and

the Industry Best Practices to Help Solve

Them,” J. OBJECT Technol., Vol 6, No. 1,

pp. 17–33, 2007.

[5] J. Kerievsky, Refactoring to Patterns.

Addison-Wesley Signature, 2004.

[6] ISO/IEC and I. S. 25030, “Software

engineering — Software product Quality

Requirements and Evaluation (SQuaRE) —

Quality requirements,” BS ISO/IEC

25030:2007. 2007.

[7] I. Jacobson, “Use Cases and Aspects -

Working Seamlessly Together,” J. OBJECT

Technol. Vol. 2, No. 4, pp. 7–28, 2003.

[8] M. Glinz, “Improving the Quality of

Requirements with Scenarios,” in Proceedings

of the Second World Congress for Software

Quality (2WCSQ), 2000, pp. 55–60.

[9] A. Suryn, Witold; Abran, “ISO/IEC SQuaRE.

The second generation of standards for

software product quality,” in IASTED, 2003,

pp. 1–11.

[10] A. M. Essado, Marcelo; Ambrosio, “A

Requirement Evaluation Metric Applied on

the ITASAT-1: A Small Technological

Satellite,” 2012.

