
Journal of Theoretical and Applied Information Technology
 28

th
 February 2015. Vol.72 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

430

SOFTWARE REUSABILITY: A FRAMEWORK USING

SOFTWARE COMPONENTS AND REUSABLE ASSETS

1
A.RAVI,

 2
DR.K.NIRMALA

1
Research Scholar Ms university Tirunelveli.

2
Assoc. Prof., Department of Computer Science Quaid-E-Millath Government College for

Women(Autonomous) Chennai-600002

E-mail:
1
gangai_ravi@yahoo.com,

2
 nimimca@yahoo.com

ABSTRACT

As everything becomes computerized, more and more software have to be evolved. As the software grows

rapidly, many problems have to be emerged in terms of software development and maintenance. So the
Software developers have to learn more and new information in terms of their process in different areas.

This information has to be managed for long time to make it use in various software. This kind of using the

same information for multiple processes is termed as Reuse. In Software Engineering, this concept of reuse

has been implemented very much to reduce the implementation cost and for efficient maintenance.

Reusability is termed as a part or a segment of source code can be used again in order to develop new

functionalities with slight or no modification. Software Reusability is the process of developing new

software from existing software with slight modification in the existing one in order to adopt it for new one.

In our paper, we have to implement this software reusability concept with efficient methodology and

algorithm. We have to propose a methodology to develop a software component that act as a Reuse Asset

which can be used to develop various software with less cost.

Keywords: Reusability, Reuse Asset, Software Component, Software Development, Software Engineering,

Software Reusability.

1. INTRODUCTION

1.1 Software Engineering

Software Engineering is the study and

application of engineering to the design,

development and maintenance of software. The
formal definitions of Software Engineering are:

� “the application of a systematic,

disciplined, quantifiable approach to the

development, operation, and maintenance

of software”
� “an engineering discipline that is

concerned with all aspects of software

production”

� “the establishment and use of sound

engineering principles in order to

economically obtain software that is

reliable and works efficiently on real

machines”

A person who develops software is known as

Software Developer or Software Engineer. In other

words, a Software Engineer creates software using

methods that make it better quality. Better quality

software is easier to use and the code is easier to

understand, to maintain, and to add new features.

1.1.1 Phases Involved in Software Creation

Software Engineering can be a difficult work

that needs a set of software engineer to develop
software. Developing software is not at all an easy

task. It consists of number of phases such as:

• Analysis / Requirements

• Design

• Implementation

• Testing / Verification

• Maintenance

Journal of Theoretical and Applied Information Technology
 28

th
 February 2015. Vol.72 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

431

Figure 1: Different Phases in Software Development

• Analysis / Requirements say what the software

should do. It can be taken by discussing with the

client.

• Design says what the different parts of the

software are, and how they talk together.

• Implementation is to write the code for each

component of the software. Code is what tells

the computer exactly what to do at each step.

• Testing is done to see if the components meet the

requirements and that the system as a whole

meets the requirements.

• Maintenance is the part or all of this process can

repeat if bugs are found or new requirements are

needed.

All these phases perform various activities in

developing the software and so all phases have

equal importance. Of those phases, the

Maintenance phase becomes a tedious one, since it

maintain the software lifelong by managing it based

on the customer requirements.

1.2 Reusability

In Software Engineering, reusability is the

likelihood that a segment of source code can be

used again to add new functionalities with slight or

no modification. This kind of reusability is

implemented in the programming languages such as

CPP and Java, which is named as Subroutines or
Functions or Methods. A chunk of code which is

used often is organized under these modules as

layers. When that code needs to be used in the

program, it can be called upon. Such kind of

reusability is termed as Code Reusability. The

purpose of reusability implies some explicit

management of build, packaging, distribution,

installation, configuration, deployment, and

maintenance and upgrade issue. If these issues are

not considered, software may appear to be reusable

from design point of view, but will not be reused in

practice. When this reusability is not considered,

then the developing software grows larger in size

and appears to be a difficult one.

This will be considered in our research work

and we have to propose a methodology to create a

software component in order to develop much

software from the existing software using various

methodology. That is, by using our methodology,

if a software engineer develops software, it can be

maintained in an efficient way to develop new

software from it and it is known as Software

Reusability. These are all discussed in our

proposed methodology with suitable algorithm.

1.3 Software Reusability

Software Reusability is generally considered a

way to solve the software development crisis.

When we solve a problem, we try to apply the

solution to similar problems because that makes our

task simple and easy. This Software reusability can

improve software productivity. Software reuse has

become a topic of much interest in the software

community due to its potential benefits, which

include increased product quality and reduced

product cost and schedule. The most substantial

benefits derive from a product line approach, where

a common set of reusable software assets act as a

base for subsequent similar products in a given

functional domain. The upfront investments

required for software reuse are considerable, and
need to be duly considered prior to attempting a

software reuse initiative.

Software reuse is the process of implementing

or updating software systems using existing

software components. A good software reuse
process facilitates the increase of productivity,

quality, and reliability, and the decrease of costs

and implementation time. An initial investment is

required to start a software reuse process, but that

investment pays for itself in a few reuses. In short,
the development of a reuse process and repository

produces a base of knowledge that improves in

quality after every reuse, minimizing the amount of

development work required for future projects, and

ultimately reducing the risk of new projects that are

based on repository knowledge.

By considering all these things, we propose a

methodology to reuse the software in a much better

way. The algorithm in this paper, performs well to

demonstrate how the software can be reusable and

Journal of Theoretical and Applied Information Technology
 28

th
 February 2015. Vol.72 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

432

the performance evaluation also be given in the

experimental results section. Our paper will be

developed by analyzing some of the relevant papers

regarding this software reusability. These are all

discussed in the following sections.

The need of this research work is to develop an

enhanced project in order to reuse the software

which yields benefits such as reduced cost, less

time and minimum man power. This paper fills the

gap of previous research work by providing more

advantages over number of employee and the time

duration in a very exact manner. Our research work

is being developed under the consideration of each

and every phases of the software life cycle. By

enhancing these phases, we implement our

proposed algorithm to reuse the software. The aim

of the paper can be achieved by implementing two

important techniques in this paper such as: Impact

Analysis Document and RTM (Requirement

Traceability Matrix).

2. LITERATURE SURVEY

Suresh et al, in paper [1] stated that as software

systems become more and more complex, software

programmers needs to know a variety of

information and knowledge in various areas. So the

Programmers / Company must store knowledge and

manage it for reuse. Software reuse is the process

of creating software systems from existing software

rather than building them from scratch. They
described that the software reuses possibilities and

measures how much code can be modified from the

existing software? If so any problem occurs to the

productivity and the comparison of reusable types

along with their properties. Finally the reusable

software and its cost also discussed.

Shiva et al, in paper [2] discussed that it has

been more than three decades since the idea of

software reuse was proposed. Many success stories

have been told, yet it is believed that software reuse

is still in the development phase and has not

reached its full potential. How far are we with

software reuse research and practice? They

proposed the paper to answer this question

Bouchaib et al, in paper [3] described that

Testing is an efficient mean for assuring the quality

of software. Nowadays, Graphical User Interfaces

(GUIs) make up a big part of applications being

developed. Within the scope of regression testing,

some test cases from the original GUI are usable

and others are unusable. The paper presented an

algorithm that drops the unusable test cases and

creates new test cases based on the main differences

between the two GUIs, which are represented as

uncovered edges. Furthermore, the algorithm

creates a new test suite for the modified version by

combining the usable test cases and the new created

test cases.

Sarbjeet Singh et al, in paper [4] discussed that

Reusability is the likelihood a segment of source
code that can be used again to add new

functionalities with slight or no modification.

Reusable modules and classes reduce

implementation time, increase the likelihood that

prior testing and use has eliminated bugs and

localizes code modifications when a change in

implementation is required. Subroutines or

functions are the simplest form of reuse. A chunk

of code is regularly organized using modules or

namespaces into layers. Proponents claim that

objects and software components offer a more

advanced form of reusability, although it has been

tough to objectively measure and define levels or

scores of reusability. Reusability implies some

explicit management of build, packaging,

distribution, installation, configuration,

deployment, maintenance and upgrade issues. If

these issues are not considered, software may

appear to be reusable from design point of view,

but will not be reused in practice.

The paper presented an empirical study of the

software reuse activity by expert designers in the
context of object-oriented design. The study

focused on the three following aspects of reuse : (1)

the interaction between some design processes, e.g.

constructing a problem representation, searching

for and evaluating solutions, and reuse processes,

i.e. retrieving and using previous solutions, (2) the
mental processes involved in reuse, e.g. example-

based retrieval or bottom-up versus top-down

expanding of the solution, and (3) the mental

representations constructed throughout the reuse

activity, e.g. dynamic versus static representations.

Smith et al, in paper [5] stated that the

developers and the re-users of software can be

readily observed the value of the software. The

reuse of existing software helps both developers

and users. For the purpose of software preparation
software developers needs the existing software.

The real time users get advantage from reuse the

existing software. Similarly, prospective users of

software need support when assessing software for

potential reuse.

Journal of Theoretical and Applied Information Technology
 28

th
 February 2015. Vol.72 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

433

To evaluate software and related assets for

potential reuse, the software developers and

software adopters share a common need of

capabilities. As software systems become more and

more complex, software programmers needs to

know a variety of information and knowledge in

various areas. “Information is wealth”, i.e., the

knowledge gathered during the development stage

can be a valuable asset for a developer as well as
the software company. During the software

development process, the management and

maintenance of knowledge creation is necessary

thing. Then only that knowledge is integrated to

develop the innovative concept from the older one.

So the company must store and manage it for reuse

[6].

Terry et al and Kyo Kang et al, in paper [7. 8]

discussed that Software metric is a quantitative

indicator of an attribute of a software product or

process. The relationships among several metrics

are specified by metric models. Numerous reuses

related metric models have been discussed in

literature.

White Howard [9] used a methodology which

includes the use of test suite capture data from a

capture/replay testing tool. Based on the produced

data, White could characterize a test suite for a

provided Graphical User Interface using a call

graph. This later is mainly based on scores that

represent frequent paths selected in diverse test
cases which are principally the critical paths.

Therefore, these critical paths become indispensable

for selecting which unit tests to execute Kepple, in

paper [10] considered the issue of dipping the

number of regression test cases to be executed.

Their technique is to inspect the various
modifications made to numerous parts of an

application. If the modifications are within source

code that is actually being run by a specific test in a

regression test suite, then that specific test should

be re-executed. Otherwise, it may be ignored, as
that would lead to a very important conclusion

which is a safe state without new code being added.

3. PROPOSED METHODOLOGY

3.1 Proposed Method

The aim of the paper is to propose a
methodology to develop a software component in

order to implement the new emerging technology

Software Reusability. The proposed methodology

provides an efficient solution for how to reuse the

software; what the software developer can do to

make the software reusable and how the new

software can be reusable in the existing software.

Software is a computer programs and associated

documentation such as requirements, design models

and user manuals. Software products may be

developed for a particular customer or may be

developed for a general market. Software

Engineering is concerned with theories, methods
and tools for professional software development.

In other words, Software engineering is an

engineering discipline that is concerned with all

aspects of software production. Software engineers

should adopt a systematic and organized approach

to work and use appropriate tools and techniques

depending on the problem to be solved, the

development constraints and the resources

available.

3.1.1 Different Phases in Software Development

To develop software, there involves different

phases such as:

 Analysis Phase

 Requirement Phase

 Design Phase
 Build / Implementation Phase

 Testing Phase

 Deployment Phase

 Maintenance Phase

The brief description of the phases is given below:

• Analysis: Some kind of understanding of a

problem or situation. This can be obtained

by discussing with the client.

• Requirement: Based upon the analyzation,

what are all the necessary things to be
needed to make the solution for the

problem. For example, what tool to be

used to solve the problem, and so on.

• Design: Creation of a solution for the

analyzed problem based on the

requirements.

• Build / Implementation: Write code to

implement the design to meet the

requirement.

• Testing: Test the efficiency and

correctness of the developed software.

• Deployment: Release the developed

software to the client.

• Maintenance: Maintain the software by

modifying the software as per the client

requirements.

Journal of Theoretical and Applied Information Technology
 28

th
 February 2015. Vol.72 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

434

Software Reusability is an emerging

technology to develop new software from the

existing one. This will reduce our manual power,

development time and cost. In software

engineering, Code Reusability is familiarly known.

But, the reusability technology can be implemented

in any of the phases listed above.

The software can be developed by following all

these phases. The first thing that we can to do is to

analysis whether the task of the software developer

ends with the deployment of the software or still

continued to the maintenance phase. If it is

continued to maintenance phase, then the project is

said to Maintenance Project or Enhancement

Project. In this kind of projects, the programmer

has to do minor modifications as per the

requirement of the client. To do this, the

programmer has to work from Analysis Phase to

Deployment Phase.

3.1.1.1. Analysis Phase: The Analysis Phase is

categorized into two such as:

� Initial Analysis

� Post Golive Analysis

The Post Golive is otherwise called as

Deployment or Delivery.

Table 1: Comparison of Initial Analysis Vs Post Golive

Analysis

Initial Analysis Post Golive Analysis

Initial analysis is the
analysis that is to be
carried out at the initial
stage of the project.

Post Golive analysis is
carried out by analyzing
what are the modification
may be occurred after the
project delivery.

This can be obtained by
discussing with the client
about the client needs for
the project.

This can be obtained by
the analysis team member
without the knowledge of
the client.

Much Time Consumption
and more manual power

Reduced and limited Time.
Less Manual Power.

3.1.1.2 Requirement Phase: The requirement

phase also has been categorized into 2 phases like

the Analysis phase such as:

� Initial Requirement

� Post Golive Requirement

Table 2: Comparison of Initial Requirement Vs Post

Golive Requirement

Initial Requirement Post Golive Requirement

Initial requirement is to
be carried out at the
initial stage of the project.

Post Golive requirement is
carried out by analyzing
what are the requirements
may be occurred to modify
the project after the project
delivery.

This can be done from the
analysis report which was
obtained from the client.

This can be obtained by
the requirement team
member without the
knowledge of the client.

Much time consumption
and required more
manual power

Less time consumption
and with reduced manual
power.

3.1.1.3 Design Phase: The design phase can be

categorized as:

� Intial Design

� Post Golive Design

Table 3: Comparison of Initial Design Vs Post Golive

Design

Initial Design Post Golive Design

This is to be done at the
initial stage of the project
based on the analysis and
requirements report.
.

Post Golive design is done
by the design team
analyzing what are the
modification in the design
phase may be occurred
after the project delivery
and what are the tools to
be required to do that.

3.1.1.4 Build Phase:The Build phase can be

categorized as:

� Initial Build

� Post Golive Build

Table 4: Comparison of Initial Build Vs Post Golive

Build

Initial Build Post Golive Build

This is to be done at the
initial stage of the project
by writing the code for
the project to implement
the design.

Post Golive Build is done
by the Implementation team
analyzing what are the
correction may be occurred
in the coding after the
project delivery and how to
do those changes.

3.1.1.5 Testing Phase:The Testing phase can be

categorized as:

� Initial Testing

� Post Golive Testing

Table 5: Comparison of Initial Testing Vs Post Golive

Testing

Journal of Theoretical and Applied Information Technology
 28

th
 February 2015. Vol.72 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

435

Initial Testing Post Golive Testing

This is to be done at the
initial stage of the
project after completing
the build phase.
.

Post Golive Testing is
done by the testing team
analyzing what are the
new testing may be carried
out upon the project
deployment and how those
testing may be carried out
along with the cost factors.

Thus these Initial and Post Golive categories

of all the phases provides a set of documents

describing the list of activities to be occurred in the

project in all the phases at the initial stage as well

as at the post golive stage. This document is known

as Impact Analysis Document (IA Document).

3.1.2 Impact Analysis Document

The Impact Analysis Document helps the

Software Engineers to develop efficient software.

The Programmers are divided into 4 teams:

� Business Analysis Team

� Development Team

� Testing Team

� Business Intelligence Team

At first, these team members analyze the

problem and create the Impact Analysis Document

for future use. The document contains information
as Templates. The template contains all the

relevant details about the project that can be created

by these team members. A sample is given below:

Table 6: Sample IA Document

Team Task

Business
Analysis Team

� Get the requirements from the
client

� How many days to draw the
flow of outline of the project?

� How many days required to
complete the projects?

� What is the configuration
required for the project?

� What front-end will be used in
this project?

� Is there any possibility to
change the front-end of the
project?

� What database will be used to
store the data?

� Are there any new additional
fields to be included in the
database?

Development
Team

� What are the local and global
variables used to implement
the project?

� How many days required to
write the code of the project?

� What are the tables used in the
implementation part?

� Is there any need to create
Procedure for the project?

� Is there any new column to be
added in the table for the
project?

� From where the project
begins?

Testing Team

� What type of testing required
for the project?

 System Testing – Yes /
No

 Component Testing – Yes
/ No

 Regression Testing – Yes
/ No

 Integration Testing – Yes
/ No

 User Acceptance Testing
– Yes / No

Business
Intelligence
Team

� Is there any new report
generated for the project or the
existing report modify?

� Is there any global / local
changes needed?

� How many working days did
the project require?

� How many developers did the
project use?

� When did the project start?
� When did the project end?

By filling the answer for the above question,

the IA Document can be generated and converted

into Template, which will be used in future. Based

upon the request, the programmer fills the template

and reuses the software.

3.1.3 Requirement Traceability Matrix (RTM)

The Requirement Traceability Matrix (RTM)
contains the storage location about the project

which helps the programmer to identify and locate

the data that can be used in their project. This

RTM contains the details about the project along

with all the phases. The sample RTM is shown

below in Table-7.

The specification for the design, build and

testing can be maintained in a specified location

which would be linked in this RTM. The sample

specification of design, build and testing are given

below:

Journal of Theoretical and Applied Information Technology
 28

th
 February 2015. Vol.72 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

436

C:\login\deslog:
Draw 2 labels

Draw 2 textfields

Draw a Button

Label1.Text = “Username”

Label2.Text = “Password”

Textbox2.char = “*”
Button1.Text = “Login”

Figure 2: Sample Form Design

C:\login\codelog:
Declare 2 variables as string, s1,s2

Get the values from the textbox.

Click the button

C:\login\UTlog:
The testing data is shown in the Table-8.

Thus by using this RTM, the programmer can

reuse this login page to any another project. The

reuse can be done by navigate through the link

given for the project.

Software Reusability is the process of

reusing the existing thing to create the new thing.

The thing may not only be the code of the project,

but also the design document of the project. In

other words, Software Reusability denotes not only
for code reusability, but also for design document

reusability. This will be implemented in our paper,

by developing a new initial approach called IA

Document. This document contains all the

necessary information about the software. When
the new project comes, the programmer can first

analysis this IA Document to verify whether the IA

Document contains the Software that is related with

the new project. If so, then the programmer can

reuse the existing software to develop the new one.

If there is any change, the programmer can fix that

relevant column only, without modifying the whole

software. Thus it saves the time and cost to

develop the new project. Also, the manual power

can be reduced. The major advantage of this IA

Document is that the client can easily understand

about the software through this document.

The major success of the software relates with

the client satisfaction, which will deal on

completing the software by implementing all the

client requirements without any problem. (i.e), the

Software will meet the requirements 100%. To

meet this 100% requirement, we propose the new
approach called RTM (Requirement Traceability

Matrix). After completing the project, the RTM

can be prepared by the whole team. Tracing this

RTM by the whole team, the project should be

delivered with 100% performance.

Thus, our paper proposes a methodology to

develop a Reusable Asset also known as Software

Component by implementing two major

approaches such as,

� Impact Analysis Document (IA Doc) and

� Requirement Traceability Matrix

(RTM)

for software reusability. This will helps the

programmer to handle several projects easily.

Through this, the programmer can reuse the entire

software cycle since the IA Document handle the

software from Initial Phase to Build Phase whereas

the RTM handles the Deployment Phase.

3.2 Algorithm

Begin
Get the Requirements from the Client

Organize the Requirements

Analysis in Impact Analysis Document (IA

Document)

If the Requirement match with the IA Document

then

Project type = “Existing”

Check the Requirement Traceability Matrix (RTM)

Match the requirement with the RTM

If match = “success” then

If data = “present” then
Use the link and navigate

Fill the Value

Else

Skip it

End if

Else
Fill the new value and execute

End if

Else

Project type = “New”

Create new IA Document and RTM
End if

End

Journal of Theoretical and Applied Information Technology
 28

th
 February 2015. Vol.72 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

437

3.2.1 Algorithm Explanation

The first step is to get the requirements from the

client and organize it. Then analysis the IA

Document to verify if there is any document

matches with the new requirements. If so, the

project reuses the existing software by using the

RTM. With the help of RTM, the programmer fills

the value for the new project. Using the data in the

RTM, the programmer executes the new software

easily. Thus the software reusability can be

efficiently done by using the IA Document and

RTM.

4. EXPERIMENTAL DATA

The proposed methodology is very efficient for

software reusability by developing a reusable asset

using the Impact Analysis Document and

Requirement Traceability Matrix. To test the
efficiency of the methodology, various

experimental setups are constructed and the result is

analyzed. The experiment is made among the

software engineers to develop 5 projects. Of those

projects, 3 projects are of relevant types, whereas
remaining 2 are entirely different from each other.

The time period, manual work, efficiency is all

calculated for these 5 projects and then compare the

results to identify whether our proposed work of

software reusability performs well. The

comparison result is shown in Table-9.

From this comparison data, the projects 2 and 3

reuse the project 1 and so the staffs, effort and

latent defects are reduced; whereas the projects 4

and 5 are independent and so these values are

increased. Thus our proposed methodology

performs well. We also compare the performance

of our methodology as:

Table 10: Performance of our Methodology

Documentation and Ready Status Always

Balancing the Development Cost Yes

Modification & Open Standard

Reference

Often

Reuse Design & Testing Always

Updating and Improvement Often

This table shows the characteristics of the

reusable software and our methodology meet all

these characteristics and proves that our proposed

methodology is the better one.

5. CONCLUSIONS

The success of the software reusability hinges

on the disciplined implementation of the proposed

model. The effectiveness can be enhanced by

placing the reusable components in the suitable and

global repositories which offers suitable incentives

to maximize and institutionalize re-use. Reuse

processes and procedures must be incorporated into

the existing software development process.

Repositories of software assets must be created and
maintained and must be designed for reusability.

Through our work, the software quality and

reliability can be increased with less time and cost.

Thus we conclude that Software reusability is an

emerging technology, which save the production

cost, improving the innovative technology from the

existing one. This reuse research has been ongoing

since the late 1960s. Much has been accomplished,

but there is still much to do to provide better results

via the reuse are completely achieved. Though

most organizations reuse components to save the
time and cost, reuse is never risk free.

This paper performs well and it satisfies the aim

of the paper by developing a reusable asset using

Impact Analysis Document and Requirement

Traceability Matrix. Our paper is being important,

since our methodology can be applicable for all

kinds of projects. It can be carried out by evaluating

the project from analysis phase to deployment phase.

Much has been accomplished, but there is still

much to do before the vision of better system

building via reusing the software. A possible future
work will be to use these findings that we found in

our paper and continue the process to enhance the

project by modifying any of the phases from

analysis to deployment rather than using all the

phases, depending upon the purpose of the project.

REFRENCES:

[1] G.N.K. Suresh Babu and Dr.S.K. Srivatsa,
“Analysis and Measures of Software

Reusability”, International Journal of Reviews

in Computing E-ISSN: 2076-3336, 2009.

[2] Sajjan G. Shiva and Lubna Abou Shala,

“Software Reuse: Research and Practice”,

International Conference on Information

Technology 0-7695-2776-0/07, 2007.

[3] Bouchaib Falah, Rahima Nouasse, Yassine

Laghlid, “GUI Regression Test Selection

Based on Event Interaction Graph Strategy”,

IJCSET | Vol 3, Issue 3, 76-79, March 2013.

Journal of Theoretical and Applied Information Technology
 28

th
 February 2015. Vol.72 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

438

[4] Sarbjeet Singh, Sukhvinder Singh, Gurpreet

Singh, “Reusability of the Software”,

International Journal of Computer

Applications (0975-8887), Volume 7-No.14,

October 2010.

[5] Smith and Williams 2002] C. U. Smith and L.

G. Williams, “Performance Solutions: A

Practical Guide to Creating Responsive,

Scalable Software”, Boston, MA, Addison-
Wesley, 2002.

[6] Software Engineering, vol SE- 12 no. 1 1994.

Gert B (1988) Morality, Oxford University

Press.

[7] W. Frakes, and C. Terry, “Software Reuse:

Metrics and Models”, ACM Computing

Surveys, vol. 28, no 2, 1996, pp. 415-435.

[8] W. Frakes, and Kyo Kang, “Software Reuse

Research: Status and Future”, IEEE

Transactions on Software Engineering, vol. 31,

no. 7, 2005, pp 529-536.

[9] L. White. Regression testing of GUI event

interactions. In Proceedings of the International

Conference on Software Maintenance, pages

350–358, Washington, Nov.4–8 1996.

[10] KEPPLE, L. R, “The black art of GUI testing”,

Dr. Dobb’s J. Softw.Tools 19, 2 (Feb.), 40,

1994.

Journal of Theoretical and Applied Information Technology
 28

th
 February 2015. Vol.72 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

439

Table 7: Sample RTM

Table-8: Testing Report

ID Requiremen

t

Design Build Unit

Testing

System

Testing

Integration

Test

UAT

1 Validate the
Login Page

Link:c:\logi
n\deslog

Link:c:\logi
n\ codelog

Link:c:\logi
n\UTlog\col
6

Link:c:\login\
UTlog\col7

Link:c:\login\
UTlog\col8

Link:c:\
login\ UTlog\
col9

2

3

4

5

…

Project Name: <pjct_name>

Test Case Template

Test Case ID: <id>

Test Priority : <low/high/medium>

Test Title : Verify the Login Details

Unit Testing : <yes / no>

System Testing : <yes / no>

Integration Testing : <yes / no>

UAT : <yes / no>

Description : Test the login value to verify the user

Test Designed by : <name>

Test Designed date : <date>

Test Executed by : <name>

Test Execution date : <date>

Pre-Conditions: User has valid details

Post-Conditions: User is validated with the database and successfully login to the project

Step Test Steps Test Data Expected Results Status Note

1 Navigate to login
page

C:\log.html User should be
move on to login
page

Pass

2 Provide Username Admin Admin Pass

3 Provide Password Admin Admin123 Fail

4 Click ‘login’
button

Click the button Pass

Journal of Theoretical and Applied Information Technology
 28

th
 February 2015. Vol.72 No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

440

Table-9: Comparison Result

Note: Latent Defects = Defect Potential – (Removal Efficiency * Defect Potential)

Project
Reusable

Percentage
Staffs

Effort

(in

Months)

Schedule

(Hr/Day)

Defect

Potential

Removal

Efficiency

Latent

Defects

1 0.00% 7 10 12:00 953 89.00% 105

2 100% 1 4 12:00 2 99.00% 0.02

3 100% 1 2 12:00 1 99.00% 0.01

4 0.00% 5 9 12:00 897 85.00% 135

5 0.00% 9 15 12:00 978 80.00% 196

