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ABSTRACT 

Hotelling T
2 control chart is one of the most important chart used to statistical quality control in the 

manufacture processes. However, this chart is sensitive to the non normal data and therefore, must be 
modified to improve its behavior with this kind of data.  In this paper, we propose two new alternatives 
charts based on change the usual mean and covariance estimator by robust location and scale matrix. Thus, 
we use the winsorized mean and winsorized covariance matrix, respectively. Concretely, the robust scale 
estimators with highest breakdown points namely MADn and Sn are used to suit the criterion in the modified 
one step M-estimator (MOM).  The control limits for these robust charts are calculated based on simulated 
data and the assessment of these new alternatives charts is based on the false alarm and the probability of 
detection out of control observation with non normal data. The results show in general that the performance 

of the alternatives robust Hotelling’s 	�� charts are better than the performance of the traditional 

Hotelling’s	��chart.  

Keywords: Non Normal Data (NND); Winsorized MOM (WM); Robust Estimators (RE); Hotelling’s	�� 
Control Chart (HCC). 

1.  INTRODUCTION 

 
One of the most popular tools in monitoring 

quality is the control chart that it used to monitor 
the production processes. The quality of a product 
is possible to control using one or more than one 
quality characteristic, in the first case, we are 
speaking about the univarite control charts where 

the Shewhart control chart (�� -chart) is a highly 
enhanced tool for monitoring production process 
(Nedumaran and Pignatiello [19].  However, it is 
more usual to control the quality using several 
correlated characteristics, for example, the quality 
of a certain type of pen may be determined by 
radius, length, color hardness and weight (Haddad 
et al., [13]). The multivariate Shewhart control 

chart is the Hotelling’s �� control chart. That is 

based on the Hotelling's ��  statistic. This statistic 
can be calculated for ��  at time � , where 	� �
1, … , 
. as:  

   �����
 � ��� � μ
������� � μ
            (1)                                          

The T
2 statistic follows a Chi-square distribution 

with p degrees of freedom when the parameters 
μ

 

and Σ  are known.  When the parameters are 
unknown the T

2 statistic distribution is a F-
Snedecor with p and n-p degrees of freedom. In this 
case, the T

2 statistic is calculated using estimation 

of 
μ

 and Σ by the sample mean vector x  and the 

sample covariance matrix S , respectively. So, the 
equation (1) become as follows: 

     ��̅��
� ���
 � ��� � ��
������� � ��
          (2)                

However, the application of this statistic is optimal 
only when the data come from normal distribution.  
If normality assumption is violated by the presence 
of multiple outliers or non normal data, the result 
from this statistic is not absolutely. In some case, 
the violated normality data is due to the 
manufacturing of the complicated products using 
the enhancement of technology. Moreover, this 
assumption is more difficult to hold as the number 
of the quality characteristics increases. Up to date, 
several studies on the enhancement of the 
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Hotelling's �� chart have been carried out on this 
kind of data, which can be classified in two groups; 
the papers that consider the non normality as a 
consequences of the presence of multiple outliers 
and the others one that consider directly data come 
from non normal distributions. 
In this paper we propose two new robust Hotelling's 

�� control charts for individuals observations using 
a high breakdown robust location estimator, known 
as a modified one-step M-estimator (MOM), and 
the winsorized covariance matrix in the case of non 
normal data. These estimators are suitable when the 
practitioners deal with the asymmetry data and 
must improve the performance of the classical 
control chart with non normal data and reduce the 
increase in the variance estimation as consequences 
of used individual observations.  

The new charts proved in general outperform than 
the performance of traditional chart, in term of false 
alarms and probability of detection of out of control 
non normal data. The investigated of the powerful 
of the performance of these charts by using 

simulation and real non normal data set. 

This paper consists from seven sections arranged as 
follows: Section 2 concentrates on the previous 
studies. Section 3 interests on the construction of 
the new two alternative statistics using the robust 
location and scale estimators. Section 4 gives the 
method of the calculating of the control limits and 
gives an explanation about the all steps of the 
simulation design. Section 5 gives the results and 
the discussion. Section 6 takes a case study of real  
non normal data and finally, Section 7 shows the 
main conclusions and future research lines.  

2. LITERATURE REVIEW 

 
In the former case, the statisticians are 

interested in the studying of the sensitivity of 
Hotelling's T

2 statistic against the outliers data 
where these outliers in some occasion motivate the 
non normal behavior of the data. Between these we 
can emphasize the papers of Alloway and 
Raghavachari ([6]; [7]) and Alfaro and Ortega [2] 
that used trimmed mean and trimmed covariance 
matrix in place of the usual location and scale 
measures, respectively. Surtihadi [24] constructed a 
robust bivariate control chart by using the robust 
location and scale estimators, the median and the 
bivariate sign tests of Blumen and Hodges, 
respectively. Other approaches in dealing with the 
outliers observations use the data depth approach, 
such as MVE and MCD (Vargas, [27]; Alfaro and 
Ortega, [3]: Chenouri et al., [11]; Midi et al., [17]; 

Pan and Chen, [20]). In addition, Haddad et al. [13] 
used the robust location and scale estimators 
winsorized mean and winsorized covariance matrix 
that are suitable when the practitioners deal with 
asymmetry data. 
In the second group, taking into account the 
multivariate point of view we can emphasize the 
papers of Abu-Shawiesh and Abdullah [1] that used 
the location and scale estimators Hodges-Lehmann 
and Shamos-Bickel-Lehman as a replacement of 
the usual mean and covariance matrix estimators in 
the traditional Hotelling T2 statistics, respectively. 
Sun and Tsung [23] used support vector methods in 
a kernel-based multivariate control chart when the 
quality characteristics depart from normality data. 
Chou et al. [12] studied the individual observations 
when data come from the non normal distribution 
and proposed a method to determine their control 
limits. Thissen et al. [26] proposed new method to 
deal with this type of data, a combination of 
mixture modeling and multivariate statistical 
process control. Recently, Alfaro and Ortega [4] 
developed an alternative chart for t-Student data 
based on the MCD and MVE estimators and Alfaro 
and Ortega [5] proposed a trimmed T2 control chart 
(T2

R) through the adaptation of the elements of this 
chart to the case of t-Student distribution. 

Moreover, the Hotelling’s ��  chart can be 
developed for individual observations or subgroups 
data (Cheng et al., [10]). Sometimes, data come in 
the form of individual observations especially when 
the production rate is too slow to ease collect 
subgroup size greater than one, in this case the 
usual parameter estimates is based on pooling all 
the observations in all subgroups for estimating the 
mean vector and covariance matrix.  However, 
pooling all of the data to estimate the covariance 
matrix will cause the variance estimates to inflate if 
the special-cause of variation are present as 
illustrated by Vargas [27] and Sullivan and 
Woodall [22]. One of the approaches to alleviate 
the inflation of the covariance matrix is by using 
high breakdown robust estimators for the process 
parameters as discussed in Alfaro and Ortega ([2]; 
[3]); Chenouri et al. [11], Midi et al. [17] and 
Haddad et al. [13]. 
According to above studies, we notice that seldom 
statisticians used the robust location and scale 
estimator based on the criteria of the modified one 
step M-estimator. Moreover, this study showed 
strong performance for the new two robust charts 
especially in the term of false alarms. 

3. ALTERNATIVE HOTELLING T
2
 

STATISTICS USING ROBUST 

LOCATION AND SCALE ESTIMATORS 
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Wilcox and Keselman [28], introduced the 
modified one step M-estimator (MOM) as a 
univariate location measure with highest 
breakdown point.  Unlike, the usual trimmed mean, 
which trimmed the data symmetrically based on 
predetermined percentage, the trimming in MOM, 
is done asymmetrically.  If the data is skewed, more 
trimming is needed on the skewed tail while if the 
data is symmetric with heavy tails, trimming will be 
done symmetrically on both tails. Mathematically, 
we can refer to Haddad et al. [13] where discussed 
the winsorized MOM (wMOM) in details. This 
study used this estimator to get better performance 

of the Hotelling’s �� chart under observations 
distributed as normal.  

The construction of the alternatives robust 

Hotelling’s �� charts dependent on replacing the 
usual arithematic mean and covariance matrix by 

robust estimators, in this case the wMOM,  ��	
��
 
and the inverse of winsorized covariance matrix 

	������
�� , respectively as follows:  

                   

���̅����
� ���
 � ��� � �������
�������

�� ��� �
�������
                             (3) 

 

����  is the default scale estimator for the 
trimming criterion in MOM. Using different 
trimming criterion on MOM, Syed et al. [25] 
revealed that highly robust scale estimators such as 

��  could improve the Type I error rates of a test 
statistic.  Motivated by the finding, this study 

replaced ����with the scale estimators ��  in the 
trimming criteria. Rousseeuw and Croux [21] 

defined the estimator 
n

S  for the sample 
n
x,...,x

1
 as 

follows  

 �� � � ∗ ������������ � ����,				 

		�, � � 1, … , 
, � � �                         (4) 

where c = 1.1926 is a correction factor in 
making Sn unbiased. Sn has 50% maximum 
breakdown, bounded influence function, 58% 
efficient at normal distribution.  More details 
about Sn can be found on Rousseeuw and Croux 
[21]. Thus, other alternative robust Hotelling’s 

��chart is constructed replaced the default scale 

estimator MADn by the robust scale estimator Sn 
as follows: 

                    

���̅���
� ���
 � ��� � �������
�����

�� ��� �
�������
       

                                        (5)     
  4. CONTROL LIMITS AND SIMULATION 

DESIGN 

Since the distribution of the alternative 
Hotelling's T

2 statistics are unknown and the 
distribution of the data considered in this paper is 
non normal, the upper control limit (UCL) for each 
of the proposed alternative control chart is 
calculated by simulation with an overall false alarm 
probability of α (Vargas, [27]; Jensen et al., [16]; 
Alfaro and Ortega, [3] and [4]; Chenouri et al., 
[11]; Haddad et al., [13]). In this paper, the phase I 
involved simulation of 5000 data sets with α = 0.05 
from non normal distribution, namely g-h 
distribution where g controls the skewwness and h 
controls the kurtosis. Concretely, we have 
considered values or g = 0 and 0.5; and h=0 and 
0.25. Next, in phase II, we generated an additional 
observation for each data set from the case used in 
this moment and calculated the traditional and 
robust Hotelling’s T

2 statistics for these 
observations using the corresponding estimators 
from phase I. The UCL is the 95th percentile of the 
5000 values of the traditional and alternative 

Hotelling’s �� statistics for the generated 
observation. 

 

Using these control limits, the control charts 
performance were investigated and compared for 
their false alarm rate and probability of detection 
under various conditions which are capable of 
higlighting the strength and weakness of the charts. 
Samples sizes m=25, 50 and 100 observations with 
p=2, 5 and 10 quality characteristics (variables) 
were used. In order to analyse the performance of 
the traditional and the proposal control charts we 
have developed a simulation procedure in phase I 
and II. In phase I, the in-control parameters, which 
are used together with the control limits to develop 
the control chart, are estimated. The process is as 
follows: 
1. Generate a standard normal variables, Zij, from 
the standard normal distribution with mean cero 
and standar deviation one of sizes m=25, 50 and 
100 with dimension p=2, 5 and 10. 

2. Convert the standard normal variables to random 
variables via equation (Hoaglin, [14]; Badrinath , 
and Chatterjee, [8] and [9] and Mills, [18]): 

                                                                                                           









=

≠
−

=

0g,)2/hZexp(Z

0g,)2/hZexp(
g

1)gZexp(

X
2

ijij

2

ij

ij

ij
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                    (6) 

                                                                          (6) 

where the parameters g and h control the amount of 
skewness and kurtosis, respectively. We consider 
the following combination of parameters that they 

allow use different shapes of distributions: 

    1.  g = 0  and h = 0  (normal) 

    2.  g=0.5 and h=0    (skewed with normal tail) 

    3.  g=0 and  h=0.25 (symmetry with heavy tail) 

   4.  g=0.5 and h=0.25  (skewed with heavy tail) 

3. Compute the traditional and the winsorized 
modified one step M-estimator (wMOM) for the 
observations of p characteristics variables and the 
usual and winsorized covariance matrices S 
estimators for each pair of p characteristics 
variables in each data set that we can use as 

estimation of the in control parameters. 

In phase II, the false alarms and the probability of 
detection outliers based on the estimations in phase 
I are determined as follows: 
1. Randomly generate a new observation from the 

in control and out of control g – h distribution 
where we only change the mean (0 in control and 
3 or 5 in the out of control case) and calculate the 
traditional and robust Hotelling’s T2 statistics for 
each new observation using location and scale 
estimators obtained in phase I. 

2. Compare the values of these statistics with the 
control limits obtained in the simulation process 
describe previously. 

3. The estimated proportions of statistic values in 
steps 1 that are greater than the control limits in 
1000 replications represent the false alarms rates 
and the percentages of detection outliers, 
respectively. 

 

5. RESULTS AND DISCUSSION 

The results of the investigation are demonstrated in 
Table 1-4. These tables arranged based on different 
cases of the values of g and h rates with nominal 
false alarm α = 0.05. The first column displays the 
number of sample sizes, followed by three 
procedures investigated in this study. The 

procedures denoted by 	��̅��
� , ���̅����

�  and ���̅���
�  

represent the control charts for the traditional 

Hotelling’s �� chart and the two alternatives 

Hotelling’s ��charts with the high breakdown scale 

estimators	����  and �� , respectively. The values 
correspond to each of the procedure are the false 
alarm rate (in bracket) and the other value 
represents the probability of detection non normal 
data. In term of false alarm, the performances of 
robust charts considered strong if the false alarm 
value are in between the interval of 0.5α and 1.5α 
of the nominal false alarm α (Bradley, 1978).  

For ideal condition when g = 0 and h = 0 as shown 
in Table 1, all charts control on false alarms 
regardless of the number quality characteristics, p 
and the sample sizes, m. This case represents the 
normal data where there is no problem in the 
controlling between the traditional and the robust 
charts. In this case the performance of the charts in 
term of the probability of detection and false alarm 
rate is good. 

For the mild case when g= 0.5 and h = 0 as 
displayed in Table 2, the false alarm rates for the 

alternative Hotelling’s ��charts are better than the 
false alarm rates of the traditional Hotelling’s 

��charts. The rates are under control regardless of 
the number of characteristics of variables, p unlike 
the traditional chart, which deteriorates its control 
of false alarm when the number of characteristics of 
variables, p increases. Even the probabilities of 
detection non normal data for all the robust 

��charts are larger than the probability of detection 

non normal of the traditional �� charts. Moreover, 
the comparison between the ideal case as shown in 
Table 1and this case is important where the reader 
can note the performance of the robust charts in this 
case is stronger than the performance of the robust 
charts in ideal condition. Thus, in case of g = 0.5 an 

h=0, the performance of the robust �� charts in 
terms of false alarm rates and probability of 
detection are considerably better than the traditional 

�� charts.  

As shown in Table 3, when the values of g= 0 and h 
= 0.25, the robust charts still outperform the 
traditional chart in terms of false alarm in most of 
the conditions. However, the controlling on false 
alarms decline as the values of p increases 
regardless of the increasing of sample sizes. In 
additional, there is stronger performance for the 
alternative charts in terms of detection of non 
normal data comparing to the performance of the 
traditional charts. In addition to the stronger 
performance than the case of ideal condition. 
Moreover, we must emphasize that the heavy tail 
have more effects in the control charts performance 
that skewed. In this sense, the results with heavy 
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tail are worse than with skewed (Table 2) in all of 
the control charts used. 

In Table 4, the results for the extreme case when 
g=0.5 and h=0.25 (skewed and heavy tail) reveal 
that the alternatives charts outperform the 
traditional charts in term of false alarm. However, 
the rates of false alarms are in control when the 
sample size small while the rates of false alarms 
deteriorate as the sample sizes increase. The 
performance of the traditional and proposal control 
charts is worse in the case of lower changes in the 
means, that is when the mean is 3, because with this 
kind of distribution is more difficult to detect this 
out of control observations. Moreover, the 
performance is worse when there are few 
observations because in this case is more difficult 
for the charts to difference between in or out of 
control observations. However, in both cases the 
traditional chart generates very low probability of 
detection, while the robust charts could achieve 
stronger performance to detect the out of control 
observation.  

As a result, in term of false alarms, it is noted that 
all charts work well when the sample sizes are 
small and deteriorate in its performance as the 
sample sizes increase. In addition, it is also noted in 
term of probability of detection all values are small 
and increase as the extreme non normal data 
increase.  

6. REAL CASE STUDY. 

To investigate the performances for the 

two new robust Hotelling’s ��charts and compare 

them with the traditional Hotelling’s �2charts, we 
considered data about gilgaied soil available in the 
R package “MMST” as a real case to check the new 
robust charts. The data were used by Izenman 
(2008) and consist of data collected by the study of 
Horton, et al. [15] about nine variables for a sample 
of 48 soils. The nine variables are: Nitrogen 
percentage (X1); Bulk density (X1); Phosphorus in 
ppm (X1); Calcium (X1); magnesium (X1); 
potassium (X1); sodium (X1) and conductivity of 
the saturation extract (X1). First of all, we have 
verified that the data distribution is non normal. For 
this, we have used the Shapiro-Wilk Multivariate 
Normality Test available in the R package 
“mvnormtest” and the Mardia's and Royston's 
Multivariate Normality Tests available in the 
package “MVN” that verify that the data 
distribution is non normal. Therefore, we have used 
this data set to make comparison among the three 
charts the traditional and the two proposed 

Hotelling’s �2  charts considering that the first 32 
observations constitute the phase I data and the 
other 16 the phase II data. Table (5) contains the 
observations of the nine variables of phase I and 
Table (6) represents phase II of the nine variables 
for the production process with the values of the 
traditional and the two proposed Hotelling’s 

�2statistics. 

In order to determine the control limits that we 
must use in this real case, we have analysed the 
data performance in terms of skew and kurtosis. For 
this proposal, we have use the function “mardia” 
available in the package psych of R in order to 
determine the Mardia`s test for multivariate skew 
and kurtosis. The results obtained for this test with 
the data used in phase I verify that data has skewed 
with heavy tail and therefore we used the control 
limits for this case that they are 96.330; 245.263 

and 192.876, for ��̅��
� ; 	���̅����

� 	!
�	���̅���
� , 

respectively. Using these control limits, the results 
in table (6) show as the traditional control chart 
detect a signal in the observation number 9 but, 
however, using the robust alternatives proposal in 
this paper this observation is on control. Therefore, 
the use of robust alternatives in this situation with 
non normal data allows avoid the detection of one 
false alarm which is analyzed and in this case it is 
not necessary.  
Moreover, if we do not analyze the data behavior 
and we use the control limits in normal case, which 
values are 28.789; 34.350 and 30.247, respectively, 
the three control charts consider this observation 
and the observation number 2 as observations out 
of control. Therefore, if the data behavior it is not 
considered the application of traditional and robust 
control charts make that the charts show a lot of 
false alarms. Thus, in the application of the robust 
control charts proposal in this paper it is very 
important firstly analyse the data performance in 
order to select the correct control limits and after 
applied these robust alternatives in order to avoid 
false alarm that it has cost for the industry. 

7. CONCLUSION 

This paper proposed two robust Hotelling's 

��  control charts using winsorized MOM and 
winsorized covariance matrix as the location mean 
vector and scale covariance matrix, respectively. 

The default trimming criterion in MOM i.e. ���� 
was replaced with other highest breakdown points 

scale estimators, namely 	�� . The performance of 
the two robust charts was compared with the 
performance of traditional chart in terms of false 
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alarm and probability of detection of out of control 
non normal data. Investigations on the performance 
cover the cases of g=0 with h=0, g=0.5 with h=0, 
g=0 with h=0.25 and g=0.5 with h=0.25. 

Simulation results show that the two robust �� 
charts are in control of false alarm rates under most 
of the study conditions, but tend to lose control 

when the sample sizes increase. These robust �� 
charts are also able to generate probability of 
detection out of control non normal data better than 

the traditional �� chart, while they show decline 
when the number of the characteristics variables 
increase. Between the two robust charts, the chart 

���̅����
�  has stronger performance in term of false 

alarm and probability of detection outliers data.   

8. FURTHER RESEARCHES 

This study can be applied on many other types of 
simulation non normal data such as grouped data 
and data that are generated by using bootstrap 
method. This non normal data can be used by 
another robust location and scale estimators.  
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APPENDIX 

Table 1: (FALSE ALARM) AND THE PROBABILITY OF DETECTIONNON NORMAL DATA FOR THE 
TRADITIONALAND TWO ROBUSTCHARTS WHEN   G=0, H=0. 

 

P 

2         3          

m 

25 

 

50 
 

100 

 

 

  �
�̅��

�  

(0.054)  

0.933 
(0.056) 

0.965 

(0.047) 

0.979     

�
��̅���	

�  

(0.047) 

0.931 
(0.058) 

0.955 

(0.045) 

0.957 

�
��̅�
�

�  

(0.05) 

0.93 

(0.056) 

0.962 

(0.046) 

0.958 

 

           5 25   (0.054) 

1 

(0.047) 

1 

(0.05) 

1 
 50   (0.056) 

1 

(0.058) 

1 

(0.056) 

1 

 
 

 

5          3 

             
 

100 
 

 

25 

 
50 

 

100 
 

  (0.047) 
1 

 

(0.049) 

0.997 
(0.055) 

1 

(0.05) 
1 

(0.045) 
1 

 

(0.047) 

0.997 
(0.052) 

1 

(0.044) 
1 

(0.046) 
1 

 

(0.049) 

0.997 
(0.058) 

1 

(0.049) 
1 

       

          5 25   (0.049) 

1 

(0.047) 

1 

(0.049) 

1 

 

 50   (0.055) 

1 

(0.052) 

1 

(0.058) 

1 

 
 100 

 

 
 

  (0.05) 

1 

 
 

(0.044) 

1 

(0.049) 

1 

 
 

10       3         25 

 

50 
 

100 

 
 

  (0.047) 

1 

(0.057) 
1 

(0.051) 

1 

(0.041) 

1 

(0.055) 
1 

(0.049) 

1 

(0.049) 

1 

(0.058) 
1 

(0.049) 

1 

            5 25   (0.047) 

1 

(0.041) 

1 

(0.049) 

1 

 50   (0.047) 

1 

(0.055) 

1 

(0.058) 

1 

 100   (0.051) 

1 

(0.049) 

1 

(0.049) 

1 
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Table 2: (FALSE ALARM) AND THE PROBABILITY OF DETECTIONNON NORMAL DATA FOR THE 

TRADITIONALAND TWO ROBUSTCHARTS WHEN   g=0.5, h=0. 

p          µ m   �
�̅��

�  �
��̅���	

�  �
��̅���

�  

2           3       25 

 

50 

  
100 

  (0.063) 

0.678 

(0.063) 

0.763 
(0.056) 

0.763 

(0.061) 

0.717 

(0.058) 

0.807 
(0.045) 

0.785 

(0.060) 

0.720 

(0.057) 

0.787 
(0.057) 

0.780 

 
            5 25   (0.060) 

0.998 

(0.057) 

0.997 

(0.06) 

0.997 

 50   (0.063) 

1 

(0.057) 

1 

(0.057) 

1 

 100   (0.056) 

1 

(0.048) 

1 

(0.057) 

1 

5          3             25 

 

50 

 
100 

 

 

  (0.050) 

0.876 

(0.055) 

0.938 
(0.047) 

0.940 

(0.045) 

0.871 

(0.054) 

0.962 
(0.046) 

0.965 

(0.043) 

0.892 

(0.048) 

0.956 
0.048 

0.963 

           5 25   (0.050) 

1 

(0.046) 

1 

(0.043) 

0.999 

 50   (0.055) 

1 

(0.050) 

1 

(0.048) 

1 
 100   (0.047) 

1 

(0.043) 

1 

(0.048) 

1 

10        3         25 
 

50 

 

100 
 

  (0.052) 
0.944 

(0.065) 

0.999 

(0.062) 
1 

(0.054) 
0.965 

(0.052) 

1 

(0.05700) 
1 

(0.05) 
0.964 

(0.058) 

0.999 

(0.056) 
1 

             5 25   (0.052) 

1 

(0.0545) 

1 

(0.050) 

1 

 50   (0.065) 

1 

(0.057) 

1 

(0.058) 

1 

 100   (0.062) 
1 

(0.050) 
1 

(0.056) 
1 
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Table 3: (FALSE ALARM) AND THE PROBABILITY OF DETECTIONNON NORMAL DATA FOR THE 

TRADITIONALAND TWO ROBUSTCHARTS WHEN   g=0, h = 0.25. 

 
p          µ m   �

�̅��

�  �
��̅���	

�  �
��̅���

�  

2           3 25 

 

50 

 
100 

 

 

  (0.053) 

0.427 

(0.057) 

0.456 
(0.050) 

0.405 

(0.051) 

0.390 

(0.051) 

0.447 
(0.046) 

0.450 

(0.052) 

0.410 

(0.055) 

0.474 
(0.043) 

0.434 

              5 25   (0.053) 

0.899 

(0.047) 

0.915 

(0.052) 

0.928 

 50   (0.057) 
0.941 

(0.051) 
0.964 

(0.055) 
0.967 

 100   (0.050) 

0.944 

(0.047) 

0.969 

(0.043) 

0.960 

       
5         3         25 

 

50 

 

100 

 

 

  (0.044) 

0.476 

(0.044) 

0.613 

(0.043) 

0.552 

(0.039) 

0.528 

(0.044) 

0.646 

(0.038) 

0.560 

(0.039) 

0.534 

(0.044) 

0.647 

(0.041) 

0.544 

          5 25   (0.044) 

0.972 

(0.043) 

0.9815 

(0.039) 

0.982 

 50   (0.044) 
0.995 

(0.044) 
0.999 

(0.044) 
0.999 

 100   (0.043) 

0.999 

(0.036) 

0.999 

(0.041) 

0.999 
       

10        3         25 

 

50 
 

100 

 

 

  (0.051) 

0.611 

(0.059) 
0.775 

(0.054) 

0.816 

(0.043) 

0.626 

(0.054) 
0.786 

(0.049) 

0.850 

(0.052) 

0.655 

(0.055) 
0.787 

(0.048) 

0.828 

 25   (0.051) 

0.994 

(0.045) 

0.997 

(0.057) 

0.999 
 50   (0.059) 

1 

(0.05) 

1 

(0.055) 

1 

 100   (0.054) 

1 

(0.049) 

0.765 

(0.048) 

1 
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Table 4: (FALSE ALARM) AND THE PROBABILITY OF DETECTIONNON NORMAL DATA FOR THE 

TRADITIONALAND TWO ROBUSTCHARTS WHEN   g=0.5, h=0.25. 
 

P         µ m   ��̅��
�  ���̅���	

�  ���̅��
�

�  

2          3 25 

 
50 

 

100 
 

 

  (0.064) 

0.274 
(0.054) 

0.251 

(0.056) 
0.209 

(0.054) 

0.276 
(0.057) 

0,267 

(0.055) 
0.213 

(0.061) 

0.272 
(0.052) 

0.248 

(0.058) 
0.209 

             5 25   (0.071) 

0.786 

(0.054) 

0.753 

(0.061) 

0.765 

 50   (0.060) 

0.753 

(0.057) 

0.855 

(0.052) 

0.837 

 100   (0.062) 
0.772 

(0.055) 
0.828 

(0.058) 
0.830 

       

5           3       25 
 

50 

 

100 
 

 

  (0.044) 
0.231 

(0.054) 

0.221 

(0.044) 
0.170 

(0.045) 
0.253 

(0.048) 

0.268 

(0.042) 
0.179 

(0.043) 
0.223 

(0.049) 

0.281 

(0.044) 
0.179 

            5 25   (0.064) 
0.871 

(0.045) 
0.806 

(0.043) 
0.791 

 50   (0.054) 

0.825 

(0.048) 

0.920 

(0.049) 

0.933 

 100   (0.044) 

0.775 

(0.041) 

0.869 

(0.044) 

0.877 

      

 

 

10          3      25 

 

50 
 

100 

 
 

  (0.046) 

0.216 

(0.065) 
0.268 

(0.060) 

0.220 

(0.049) 

0.211 

(0.062) 
0.321 

(0.049) 

0.239 

(0.056) 

0.233 

(0.067) 
0.320 

(0.051) 

0.230 
 

              5 25   (0.046) 

0.748 

(0.049) 

0.765 

(0.056) 

0.810 

 50   (0.065) 
0.914 

(0.062) 
0.974 

(0.067) 
0.973 

 100   (0.060) 

0.908 

(0.049) 

0.968 

(0.051) 

0.969 
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Table 5: THE NINE VARIABLES DATA SET FOR PHASE I. 

Product No �� �� �
 �� �� �� �� �� �� 

1 5.4 0.188 0.92 215 16.35 7.65 0.72 1.14 1.09 

2 5.65 0.165 1.04 208 12.25 5.15 0.71 0.94 1.35 

3 5.14 0.26 0.95 300 13.02 5.68 0.68 0.6 1.41 

4 5.14 0.169 1.1 248 11.92 7.88 1.09 1.01 1.64 

5 5.14 0.164 1.12 174 14.17 8.12 0.7 2.17 1.85 

6 5.1 0.094 1.22 129 8.55 6.92 0.81 2.67 3.18 
7 4.7 0.1 1.52 117 8.74 8.16 0.39 3.32 4.16 

8 4.46 0.112 1.47 170 9.49 9.16 0.7 3.76 5.14 

9 4.37 0.112 1.07 121 8.85 10.35 0.74 5.74 5.73 
10 4.39 0.058 1.54 115 4.73 6.91 0.77 5.85 6.45 

11 4.17 0.078 1.26 112 6.29 7.95 0.26 5.3 8.37 

12 3.89 0.07 1.42 117 6.61 9.76 0.41 8.3 9.21 

13 3.88 0.077 1.25 127 6.41 10.96 0.56 9.67 10.64 
14 4.07 0.046 1.54 91 3.82 6.61 0.5 7.67 10.07 

15 3.88 0.055 1.53 91 4.98 8 0.23 8.78 11.26 

16 3.74 0.053 1.4 79 5.86 10.14 0.41 11.04 12.15 

17 5.11 0.247 0.94 261 13.25 7.55 0.61 1.86 2.61 

18 5.46 0.208 0.96 300 12.3 7.5 0.68 2 1.98 

19 5.61 0.145 1.1 242 9.66 6.67 0.63 1.01 0.76 

20 5.85 0.186 1.2 229 13.78 7.12 0.62 3.09 2.85 

21 4.57 0.102 1.37 156 8.58 9.92 0.63 3.67 3.24 

22 5.11 0.097 1.3 139 8.58 8.69 0.42 4.7 4.63 

23 4.78 0.122 1.3 214 8.22 7.75 0.32 3.07 3.67 
24 6.67 0.083 1.42 132 12.68 9.56 0.55 8.3 8.1 

25 3.96 0.059 1.53 98 4.8 10 0.36 6.52 7.72 

26 4 0.05 1.5 115 5.05 8.91 0.28 7.91 9.78 
27 4.12 0.086 1.55 148 6.16 7.58 0.16 6.39 9.07 

28 4.99 0.048 1.46 97 7.49 9.38 0.4 9.7 9.13 

29 3.8 0.049 1.48 108 3.82 8.8 0.24 9.28 11.57 

30 3.96 0.036 1.28 103 4.78 7.29 0.24 9.67 11.42 
31 3.93 0.048 1.42 109 4.93 7.47 0.14 9.65 13.32 

32 4.02 0.039 1.51 100 5.66        8.84 0.37          10.54      11.57 

 

Table 6: THE NINE VARIABLES DATA SET WITH THE VALUES OF 	�� STATISTIC USING THE TRADITIONAL 

ESTIMATORS AND THE TWO WINSORIZED MOM FOR PHASE II. 

Product 

No 
�� �� �
 �� �� �� �� �� �� ��̅��

�  ���̅���	

�  ���̅�
�

�  

1 5.24 0.194 1 445 12.27 6.27 0.72 1.02 0.75 115.136 206.733 133.2977 

2 5.2                                     0.256 0.78 380 11.39 7.55 0.78 1.63 2.2 31.409 93.814 48.3427 

3 5.3 0.136 1 259 9.96 8.08 0.45 1.97 2.27 22.463 34.667 24.667 
4 5.67 0.127 1.13 248 9.12 7.04 0.55 1.43 0.67 18.736 28.613 20.626 

5 4.46      0.087      1.24        276 7.24         9.4            0.43 4.17 5.08 55.82 81.45 55.53 

6 4.91      0.092     1.47         158 7.37      10.57           0.59         5.07      6.37 17.7269 27.243 17.64 
7 4.79                      0.047 1.46 121 6.99 9.91 0.3 5.15 6.82 15.878 22.787 15.659 

8 5.36 0.095 1.26 195 8.59 8.66 0.48 4.17 3.65 10.786 15.727 11.179 

9 3.94 0.054 1.6 148 4.85 9.62 0.18 7.2 10.14 14.941 16.059 14.27 

10 3.52 0.051 1.53 115 6.34 9.78 0.34 8.52 9.74 11.887 12.714 10.582 
11 4.35 0.032 1.55 82 5.99 9.73 0.22 7.02 8.6 7.001 11.2688 7.61 

12 4.64 0.065 1.46 152 4.43 10.54 0.22 7.61 9.09 20.65 28.1325 21.072 

13 3.82 0.038 1.4 105 4.65 9.85 0.18 10.15 12.26 5.7288 5.9859 5.656 

14 4.24 0.035 1.47 100 4.56 8.95 0.33 10.51 11.29 4.72 4.8879 4.8 

15 4.22 0.03 1.56 97 5.29 8.37 0.14 8.27 9.51 6.42 7.9679 5.986 

16 4.41 0.058 1.58 130 4.58 9.46 0.14 9.28 12.69 19.511 29.913 19.722 

             

 


