
Journal of Theoretical and Applied Information Technology
 20

th
 February 2015. Vol.72 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

239

CAT SWARM OPTIMIZATION TO SOLVE FLOW SHOP

SCHEDULING PROBLEM

1
 ABDELHAMID BOUZIDI,

2
 MOHAMMED ESSAID RIFFI

lab. LAROSERI, Depart. of Computer Science. Chouaib Doukkali University, EL JADIDA, MOROCCO
E-Mail : 1 mr.abdelhamid.bouzidi@gmail.com , 2 said@riffi.fr

Abstract :

Flow shop problem is a NP-hard combinatorial optimization problem. Its application appears in logistic,
industrial and other fields. It aims to find the minimal total time execution called makespan. This research
paper propose a novel adaptation never used before to solve this problem, by using computational
intelligence based on cats behavior, called Cat Swarm Optimization, which is based on two sub modes, the
seeking mode when the cat is at rest, and the tracing mode when the cat is at hunt. These two modes are
combined by the mixture ratio. The operations, operators will be defined and adapted to solve this problem.
To prove the performance of this adaptation, some real instances of OR-Library are used. The obtained
results are compared with the best-known solution found by others methods.
Keyword : Flow shop, scheduling, makespan, computational intelligent, cat swarm optimization.

1. INTRODUCTION

The Flow shop scheduling [1] is one of

the known problems in operational research.
Given the whole applications fields, and the
complexity of the problem, it has been a very
active and prolific research area. To resolve this
problem we should find the minimal make span
by executing n jobs in m machine.

Many optimization algorithms based on
computational intelligence had been proposed to
solve the flow shop-scheduling problem, such as
simulated annealing [2-3], tabu search [3-5],
harmony search [6-7], genetic algorithm [8-9],
Ant Colony optimization [10-11], bee colony
optimization [12], particle swarm optimization
[13-15], and others.

The present research paper aims to
apply cat swarm algorithm never used before to
solve FSSP. The research paper is organized as
follows: in section II, a presentation and
formulation of flow shop scheduling problem. In
section III, a description of cat swarm
optimization algorithm. In section VI, Cat swarm
optimization applied to FSSP, and the results
obtained by using some instance of OR-Library
[21]. Finally, the conclusion and discussion.

2. FLOW SHOP SCHEDULING

PROBLEM

2.1 PRESENTATION

The flow shop-scheduling problem (FSSP) is
a combinatorial optimization problem in class

NP-HARD [16], simulated first in 1954 by
Johnson [17]. FSSP is a set of n unrelated jobs
that should be processed in the same order as m
machines. The problem is to find the schedule of
jobs that have the best minimal total time of
execution of all the process called make span, by
respecting some constraints, which are:
− All jobs are independent, and available for
processing at time zero.
− The machines are continuously available from
time zero onwards
− Each machine can process one operation at a
time.
− Each job can be manufactured at a specific
moment on a single machine
− If a machine is not available, all the following
jobs are assigned to a waiting queue.
− The processing of a given job in a machine
cannot be interrupted once started.

A comprehensive list of these constraints, are
grouped on categories, can be found in [1].

Setup times are sequence independent and are
included in the processing.

2.2 FORMULATION OF PROBLEM:

The FSSP is composed of n job J = {J1, J2

… Jn}, and m machine M = {M1, M2 … Mm},
each job is composed of m distinct operations O
= {O1, O2 … Om}. The operation in each job
should respect the sequence of machine. Every
operation is represented by a pair ���

 and ���

(k∈ [1, (n*m)]), where ���
 represents the

machine on which the process ok will be

Journal of Theoretical and Applied Information Technology
 20

th
 February 2015. Vol.72 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

240

executed, and ��� represents the processing time
of operation ok.

In order to apply CSO to the FSSP, it should
be encoded with a generic solution to the
problem. For n-jobs and m-machines, the
solution is presented by a sequence of n jobs.
The matrix INFO in fig.1 has m*n columns and
four lines, this matrix is developed to represent
information about each operation:

Oi: The number of operations in
schedule (�	 ∈ �1	, 	
 ∗ ��). ��� : The job belonging to the operation
oi ���

: The machine name where the
operation oi is processed. ���: The processing time of operation oi.

� �� �� �� �� �� �� �� �� �	�
� �
� �
� �
� �
� �
� �
� �
� �
	�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
	�
� �
� �
� �
� �
� �
� �
� �
� �
	 �

Fig. 1: Information matrix

For example, let’s consider the

following: 4*3 FSSP, where n=3, m=3, J=

{J1,J2,J3} , M={M1,M2,M3}, and for every Ji in J,
Ji={(mik, tik)} for �	 ∈ 	 �1,3	,

 J1 = {(1, 6), (2, 1), (3, 4)}

J2 = {(1, 3, (2, 6)), (3, 2)}

J3 = {(1, 1), (2, 2), (3, 1)}

J4 = {(1, 2), (2, 1), (3, 5)}

The representation of matrix of

information will be as following:

�1 2 3 4 5 6 7 8 9 10 11 121 1 1 2 2 2 3 3 3 4 4 41 2 3 1 2 3 1 2 3 1 2 36 1 4 3 6 2 1 2 1 2 1 5 �

Fig. 2: The information matrix of schedule to be used

A random solution is follow:

3 4 2 1

Fig. 3: An example of solution

representation

 The make span of solution in Fig.3
according to the rules of FSSP, is 18, it’s
indicated by GANT chart in fig.4, where Mi 	1 � � � 3� represents the machines, and each
color represents the jobs.

M1 3 4 2 1

M2 3 4 2 1

M3 3 4 2 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time

Fig.4: GANT chart

3. CAT SWARM OPTIMIZATION

Cat swarm optimization (CSO) algorithm was
first introduced by Chu and Tsai [18] in 2006,
and improved in 2011 by M.Orouskhani and Al.
[19]. It was applied in combinatorial problem in
2014 [20] .The CSO adapted the natural behavior
of cats composed by two modes: the seeking
mode when the cat is resting and the tracing
mode when the cat is hunting. These two modes
are combined by mixture ratio (MR). The name,
position, velocity and flag characterize each cat.

4. APPLY DISCRET CSO TO FSSP:

In this section, the definition of operators is
operations used in CSO algorithm. Let us n jobs
J= {J1, J2… Jn}, m machines M = {M1, M2…,
Mm}, and S = {s1, s2, …,sn } a schedule

presenting solution where for i between 0 and n,
si is a job in J, and Card(S)= n.

Table1: Cat’s Parameters

position Is the solution/schedule presented by a

vector of jobs S.

velocity Sets of couples permutation (Ji ,Jj), Let’s v

a velocity, v=(ik,jk)[k:0�|v|]. |v| present the

number of couples in v.

Flag To know in each mode what are the cat is.

2.3 DEFINITION OF OPERATION:

To use CSO to discrete problem, some rules are
recommended to be respected:

• Addition between two velocities v1, v2 is a new
velocity v which contains permutation couples of
v1 and v2.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2015. Vol.72 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

241

• Addition between position x and velocity v is a
new position x’, obtained by applying all
permutation couples of v to x.

• Opposite of a velocity v=(ik,jk)[k:0�|v|] is
¬v=(ik,jk)[k : |v| �0] ,and, (v) + (¬v) = ø .

• Subtraction between two position x1 and x2, is a
velocity v. this operation is the opposite of
addition:

x1- x2 = v � x2 + v = x1.
• Multiplication of a real r and a velocity v=

(ik,jk)[k :0 �|v|], is a new velocity. The possible
cases according to the real r, are:

� If (r=0) then r*v= ø
� If 	r	∈	0,1� then r * v = (ik,jk)[k : 0 � (c*|v|)]
� If (r>1) then take the decimal part of r, after do

the same two previous step.
� If (r<0) then r * v= (-r)*(¬v), with (-r)>0. And

do the previous steps.

The CSO algorithm is composed of seeking
mode, and tracing mode combined by a mixture
ratio. The processing of these two modes in CSO
algorithm is as shown below:

1. Seeking mode:
It shows that the cat i is at rest, to observe the best

place to move to. The parameters used in this
mode are:

SMP: Seeking memory pool.
CDC: seeking range of the selected dimension.
SRD: counts of dimension to change
SPC: self-position consideration.

In a behavior of cats, SMP is the number of
observations to consider before deciding the best
position where to move. SPC gives to a cat the
freedom whether to move or not. If the cat finds
its current position as the best, then it will not
change it, and stay on the same position. SRD
and CDC are both necessary factors in updating
the solution.

Seeking mode is as follows:
Step 1: put j copies of the present position of the cat

k, with j = SMP. If the value of SPC is true or j =
SMP-1, and retains the cat as one of the
candidates.

Step 2: Generate a random value of SRD
Step 3: If the fitness (FS) are not equal, calculate the

probability of each candidate by equation (a), the
default probability value of each candidate is 1.

Step 4: Perform mutation and replace the current
position.

�� �
	|���	�		�����|

	������	�����

 (a)

2. Tracing mode:

This is the cat-hunting mode, where the cat
traces its path, according to its own velocity to
chase a prey or any moving object. The
description of the process of each cat in this
mode is as follows:

Step 1: update the velocities of each cat k according
to equation (b).

v’ k = w*v k + r * c * (x best − x k) (b)

Where:
v’ k : The new velocity value

w : Inertia weight
x best: is the best position in swarm.
v k : the old velocity value (current value).
c: a constant.
r: a random value in the range [0, 1].

Step 2: check if the velocities are of the highest

order.
Step 3: update the position of k cat according to

equation (c).
x’ k = x k + v k (c)
Where:
x’ k: the new position values of the cat k
x k: the current position of cat k
v k: the velocity of cat k

2.4 THE COMPLETE CSO ALGORITHM:

The full mode is composed of the SM and
TM combined by a mixture ratio (MR), the flag
is used to determinate the mode of each cat in
swarm. The description of the process is:

Begin:

(1) Generate N cats
(2) Initialize flag, velocity, and position

every cat.
(3) Initialize gbest with the lowest fitness cat

in swarm.
(4) for each cat in swarm
 If the flag of the selected cat is TM
 Apply selected cat into TM process
 Else
 Apply selected cat into TM process
 EndIf
 Update gbest
 End for
(5) Re-pick number of cats and set them into

TM according to MR, and set other cats in SM.
If the condition is to terminate yes then

complete the program
Else repeat (4) and (5).
End.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2015. Vol.72 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

242

5. EXPERIMENTS AND

COMPUTATIONNAL RESULTS

To prove the performance of discrete
CSO to solve FSSP in this paper, this algorithm
is applied to solve thirty-one chosen instances of
FSSP in OR-LIBRARY [21]. The method is
coded by C++ programming language, which
runs on an Ultrabook characteristic’s 2.1 GHz
2.59Ghz Intel Core i7 PC with 8G of RAM. Each
instance runs for one hour in maximum. Table 2
shows the values of parameters used [20]:

Table 2: Used Parameters Values

SMP 5
CDC 0.8
MR 0.3
C 2.05

R [0,1]
W 0.729

Table 3 shows the instances name, the

job number n and the machine number m, best
known solution (BKS) found by others algorithm
[22-23], and the best solution obtained by
applying CSO (best) to the selected instance in
10 times . The columns T in table 3, show
average time execution in seconds to find the
BEST, the percentage error (Err %) value is
obtained by

 ��� 		!"#�	 $ BKSBKS 	(100
Table 3: Table Of Results

Instanc

e

n * m BK

S

BES

T

Err

%

T

(s)

Carlier

Car1 11×5 7038 7038 0.00 01

Car2 13×4 7166 7166 0.00 01

Car3 12×5 7312 7312 0.00 01

Car4 14×4 8003 8003 0.00 01

Car5 10×6 7720 7720 0.00 01

Car6 8×9 8505 8505 0.00 01

Car7 7×7 6590 6590 0.00 01

Car8 8×8 8366 8366 0.00 01

Heller

Hel1 100×1

0

516 516 0.00 27

Hel2 20×10 136 135 -0.74 06

Reeves

ReC01 20×5 1247 1247 0.00 02

ReC03 20×5 1109 1109 0.00 03

ReC05 20×5 1242 1245 0.24 01

ReC07 20×10 1566 1566 0.00 03

ReC09 20×10 1537 1537 0.00 02

ReC11 20×10 1431 1431 0.00 01

ReC13 20×15 1930 1930 0.00 178

ReC15 20×15 1950 1950 0.00 101

ReC17 20×15 1902 1902 0.00 116

ReC19 30×10 2093 2099 0.29 18

ReC21 30×10 2017 2020 0.15 486

ReC23 30×10 2011 2020 0.45 22

ReC25 30×15 2513 2525 0.48 377

ReC27 30×15 2373 2396 0.97 61

ReC29 30×15 2287 2305 0.79 332

ReC31 50×10 3045 3058 0.43 900

ReC33 50×10 3114 3114 0.00 163

ReC35 50×10 3277 3277 0.00 07

ReC37 75×20 4951 5096 2.93 158

3

ReC39 75×20 5087 5161 1.45 568

ReC41 75×20 4960 5087 2.56 207

1

The table of result demonstrate that

CSO can solve numerous instance in OR-library,
and it also shows another best solution to
instance “Hel2”, minus one than the best known
solution [23]. The error percent of the other
executed instances is between 0.00 and 2.93.

6. CONCLUSION:

This research paper presents a new
adaptation of CSO algorithm to solve the Flow
Shop scheduling problem. The obtained results
to some benchmark problem instances (of
Carlier, Heller and Reeves) prove the
performance of CSO algorithm to solve the
problem up to 50 jobs, without any error. For up
to 50 jobs, it approaches solution with a
negligible percentage error. This proves the
ability of the CSO algorithm to solve the FSSP.
The future work is to extend the application of
CSO algorithm for others kinds of scheduling
problems, and multi-objective scheduling
problem.

REFERENCES

[1] Gupta JND, Stafford Jr. EF., Flowshop

scheduling research after five decades,
European Journal of Operational Research,
169, pp. 699–711, 2006

[2] Osman, I. H., & Potts, C. N. (1989).
Simulated annealing for permutation flow-
shop scheduling. Omega, 17(6), 551-557.

[3] Ishibuchi, H., Misaki, S., & Tanaka, H.
(1995). Modified simulated annealing
algorithms for the flow shop sequencing

Journal of Theoretical and Applied Information Technology
 20

th
 February 2015. Vol.72 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

243

problem. European Journal of Operational

Research, 81(2), 388-398.

[4] Grabowski, J., & Wodecki, M. (2004). A
very fast tabu search algorithm for the
permutation flow shop problem with
makespan criterion. Computers &

Operations Research, 31(11), 1891-1909.

[5] Ben-Daya, M., & Al-Fawzan, M. (1998). A
tabu search approach for the flow shop
scheduling problem. European Journal of

Operational Research, 109(1), 88-95.

[6] Gao, K. Z., Pan, Q. K., & Li, J. Q. (2011).
Discrete harmony search algorithm for the
no-wait flow shop scheduling problem with
total flow time criterion. The International

Journal of Advanced Manufacturing

Technology, 56(5-8), 683-692.

[7] Pan, Q. K., Suganthan, P. N., Liang, J. J., &
Tasgetiren, M. F. (2011). A local-best
harmony search algorithm with dynamic
sub-harmony memories for lot-streaming
flow shop scheduling problem. Expert

Systems with Applications,38(4), 3252-3259.

[8] Murata, T., Ishibuchi, H., & Tanaka, H.
(1996). Genetic algorithms for flowshop
scheduling problems. Computers &

Industrial Engineering, 30(4), 1061-1071.

[9] Reeves, C. R. (1995). A genetic algorithm
for flowshop sequencing. Computers &

operations research, 22(1), 5-13.

[10] Stützle, T. (1998, September). An ant
approach to the flow shop problem.
InProceedings of the 6th European

Congress on Intelligent Techniques & Soft

Computing (EUFIT’98) (Vol. 3, pp. 1560-
1564).

[11] Rajendran, C., & Ziegler, H. (2004). Ant-
colony algorithms for permutation flowshop
scheduling to minimize makespan/total
flowtime of jobs. European Journal of

Operational Research, 155(2), 426-438.

[12] Tasgetiren, M. F., Pan, Q. K., Suganthan, P.
N., & Chen, A. H. (2011). A discrete
artificial bee colony algorithm for the total
flowtime minimization in permutation flow
shops. Information Sciences, 181(16), 3459-
3475.

[13] Jarboui, B., Ibrahim, S., Siarry, P., & Rebai,
A. (2008). A combinatorial particle swarm
optimisation for solving permutation
flowshop problems. Computers & Industrial

Engineering, 54(3), 526-538.

[14] Tasgetiren, M. F., Liang, Y. C., Sevkli, M.,
& Gencyilmaz, G. (2007). A particle swarm
optimization algorithm for makespan and
total flowtime minimization in the
permutation flowshop sequencing
problem. European Journal of Operational

Research, 177(3), 1930-1947.

[15] Tasgetiren, M. F., Sevkli, M., Liang, Y. C.,
& Gencyilmaz, G. (2004). Particle swarm
optimization algorithm for permutation
flowshop sequencing problem. InAnt Colony

Optimization and Swarm Intelligence (pp.
382-389). Springer Berlin Heidelberg.

[16] Sotskov, Yu N., and N. V. Shakhlevich.
"NP-hardness of shop-scheduling problems
with three jobs." Discrete Applied
Mathematics 59.3 (1995): 237-266.

[17] Johnson, S. M. (1954):Optimal two- and
three-stage production schedules with
setup times included,‖ Naval Research
Logistics Quarterly, vol. 8, pp. 1-61,

[18] Chu, S. C., Tsai, P. W., & Pan, J. S. (2006).
Cat swarm optimization. In PRICAI 2006:
Trends in Artificial Intelligence (pp. 854-
858). Springer Berlin Heidelberg.

[19] Orouskhani, M., Mansouri, M., &
Teshnehlab, M. (2011). Average-inertia
weighted cat swarm optimization.
In Advances in Swarm Intelligence (pp. 321-
328). Springer Berlin Heidelberg.

[20] Mohammed ESSAID RIFFI and
Abdelhamid BOUZIDI (2014),"Discrete
Cat Swarm Optimization for Solving the
Quadratic Assignment Problem",
International Journal of Soft Computing and
Software Engineering [JSCSE], Vol. 4, No.
6, pp. 85-92.

[21] Beasley, J. E. (1990). OR-Library:
distributing test problems by electronic mail.
Journal of the operational research society,
1069-1072.

[22] Qian, B., Wang, L., Hu, R., Wang, W. L.,
Huang, D. X., & Wang, X. (2008). A hybrid
differential evolution method for
permutation flow-shop scheduling. The

International Journal of Advanced

Manufacturing Technology, 38(7-8), 757-
777.

[23] Mircea ANCĂU (2012). ON SOLVING
FLOWSHOP SCHEDULING PROBLEMS,
PROCEEDINGS OF THE ROMANIAN

ACADEMY, Series A, Volume 13, Number
1/2012, pp. 71–79

