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Abstract :  

Flow shop problem is a NP-hard combinatorial optimization problem. Its application appears in logistic, 
industrial and other fields. It aims to find the minimal total time execution called makespan. This research 
paper propose a novel adaptation never used before to solve this problem, by using computational 
intelligence based on cats behavior, called Cat Swarm Optimization, which is based on two sub modes, the 
seeking mode when the cat is at rest, and the tracing mode when the cat is at hunt. These two modes are 
combined by the mixture ratio. The operations, operators will be defined and adapted to solve this problem. 
To prove the performance of this adaptation, some real instances of OR-Library are used.  The obtained 
results are compared with the best-known solution found by others methods. 
Keyword : Flow shop, scheduling, makespan, computational intelligent, cat swarm optimization. 

 

1.  INTRODUCTION  

 
The Flow shop scheduling [1] is one of 

the known problems in operational research. 
Given the whole applications fields, and the 
complexity of the problem, it has been a very 
active and prolific research area. To resolve this 
problem we should find the minimal make span 
by executing n jobs in m machine.  

Many optimization algorithms based on 
computational intelligence had been proposed to 
solve the flow shop-scheduling problem, such as 
simulated annealing [2-3], tabu search [3-5], 
harmony search [6-7], genetic algorithm [8-9], 
Ant Colony optimization [10-11], bee colony 
optimization [12], particle swarm optimization 
[13-15], and others. 

The present research paper aims to 
apply cat swarm algorithm never used before to 
solve FSSP. The research paper is organized as 
follows: in section II, a presentation and 
formulation of flow shop scheduling problem. In 
section III, a description of cat swarm 
optimization algorithm. In section VI, Cat swarm 
optimization applied to FSSP, and the results 
obtained by using some instance of OR-Library 
[21]. Finally, the conclusion and discussion. 

 
2. FLOW SHOP SCHEDULING 

PROBLEM 

 
2.1 PRESENTATION 

The flow shop-scheduling problem (FSSP) is 
a combinatorial optimization problem in class 

NP-HARD [16], simulated first in 1954 by 
Johnson [17]. FSSP is a set of n unrelated jobs 
that should be processed in the same order as m 
machines. The problem is to find the schedule of 
jobs that have the best minimal total time of 
execution of all the process called make span, by 
respecting some constraints, which are: 
− All jobs are independent, and available for 
processing at time zero. 
− The machines are continuously available from 
time zero onwards 
− Each machine can process one operation at a 
time. 
− Each job can be manufactured at a specific 
moment on a single machine 
− If a machine is not available, all the following 
jobs are assigned to a waiting queue. 
− The processing of a given job in a machine 
cannot be interrupted once started. 

A comprehensive list of these constraints, are 
grouped on categories, can be found in [1]. 

Setup times are sequence independent and are 
included in the processing. 

2.2 FORMULATION OF PROBLEM: 

The FSSP is composed of n job J = {J1, J2 

… Jn}, and m machine M = {M1, M2 … Mm}, 
each job is composed of m distinct operations O 
= {O1, O2 … Om}. The operation in each job 
should respect the sequence of machine. Every 
operation is represented by a pair ���

 and ���  

(k∈ [1, (n*m)]), where ���
 represents the 

machine on which the process ok will be 



Journal of Theoretical and Applied Information Technology 
 20

th
 February 2015. Vol.72 No.2 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
240 

 

executed, and ���  represents the processing time 
of operation ok. 

In order to apply CSO to the FSSP, it should 
be encoded with a generic solution to the 
problem. For n-jobs and m-machines, the 
solution is presented by a sequence of n jobs. 
The matrix INFO in fig.1 has m*n columns and 
four lines, this matrix is developed to represent 
information about each operation: 

Oi: The number of operations in 
schedule (�	 ∈ �1	, 	
 ∗ ��
). ��� : The job belonging to the operation 
oi ���

: The machine name where the 
operation oi is processed. ���: The processing time of operation oi. 
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Fig. 1: Information matrix 

 
For example, let’s consider the 

following: 4*3 FSSP, where n=3, m=3, J= 

{J1,J2,J3} , M={M1,M2,M3}, and for every Ji in J, 
Ji={(mik, tik)} for �	 ∈ 	 �1,3
	,  

 J1 = {(1, 6), (2, 1), (3, 4)} 

J2 = {(1, 3, (2, 6) ), (3, 2)} 

J3 = {(1, 1), (2, 2), (3, 1)} 

J4 = {(1, 2), (2, 1), (3, 5)} 

 
The representation of matrix of 

information will be as following: 
 

�1 2 3 4 5 6 7 8 9 10 11 121 1 1 2 2 2 3 3 3 4 4 41 2 3 1 2 3 1 2 3 1 2 36 1 4 3 6 2 1 2 1 2 1 5 � 

Fig. 2: The information matrix of schedule to be  used 

 
A random solution is follow: 

 

3 4 2 1 

Fig. 3: An example of solution 

representation 

 
 The make span of solution in Fig.3 
according to the rules of FSSP, is 18, it’s 
indicated by GANT chart in fig.4, where Mi 	1 � � � 3� represents the machines, and each 
color represents the jobs. 

  
 

  

M1 3 4 2 1  

  

M2  3 4   2 1  

  

M3    3 4    2 1  

  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time  

Fig.4: GANT chart 

 

3. CAT SWARM OPTIMIZATION 
 

Cat swarm optimization (CSO) algorithm was 
first introduced by Chu and Tsai [18] in 2006, 
and improved in 2011 by M.Orouskhani and Al. 
[19]. It was applied in combinatorial problem in 
2014 [20] .The CSO adapted the natural behavior 
of cats composed by two modes: the seeking 
mode when the cat is resting and the tracing 
mode when the cat is hunting. These two modes 
are combined by mixture ratio (MR). The name, 
position, velocity and flag characterize each cat.  

4. APPLY DISCRET CSO TO FSSP: 

In this section, the definition of operators is 
operations used in CSO algorithm. Let us n jobs 
J= {J1, J2… Jn}, m machines M = {M1, M2…, 
Mm}, and S = {s1, s2, …,sn } a schedule 

presenting solution where for i between 0 and n, 
si is a job in J, and Card(S)= n. 

 
Table1:  Cat’s Parameters 

position Is the solution/schedule presented by a 

vector of jobs S. 

velocity Sets of couples permutation (Ji ,Jj ), Let’s v 

a velocity, v=(ik,jk)[k:0�|v|]. |v| present the 

number of couples in v. 

Flag To know in each mode what are the cat is. 

 
2.3 DEFINITION OF OPERATION: 

To use CSO to discrete problem, some rules are 
recommended to be respected: 

• Addition between two velocities v1, v2 is a new 
velocity v which contains permutation couples of 
v1 and v2.  
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• Addition between position x and velocity v is a 
new position x’, obtained by applying all 
permutation couples of v to x. 

• Opposite of a velocity v=(ik,jk)[k:0�|v|] is 
¬v=(ik,jk)[k : |v| �0] ,and, (v) + (¬v) = ø . 

• Subtraction between two position x1 and x2, is a 
velocity v. this operation is the opposite of 
addition: 
 

x1- x2 = v � x2 + v = x1. 
• Multiplication of a real r and a velocity v= 

(ik,jk)[k :0 �|v|], is a new velocity. The possible 
cases according to the real r, are: 

� If (r=0) then  r*v= ø 
� If 	r	∈	
0,1
� then r * v = (ik,jk)[k : 0 � (c*|v|)] 
� If (r>1) then take the decimal part of r, after do 

the same two previous step. 
� If (r<0) then r * v= (-r)*( ¬v), with (-r)>0. And 

do the previous steps. 

The CSO algorithm is composed of seeking 
mode, and tracing mode combined by a mixture 
ratio. The processing of these two modes in CSO 
algorithm is as shown below: 

1. Seeking mode: 
It shows that the cat i is at rest, to observe the best 

place to move to. The parameters used in this 
mode are: 

SMP: Seeking memory pool. 
CDC: seeking range of the selected dimension. 
SRD: counts of dimension to change  
SPC: self-position consideration. 

In a behavior of cats, SMP is the number of 
observations to consider before deciding the best 
position where to move. SPC gives to a cat the 
freedom whether to move or not. If the cat finds 
its current position as the best, then it will not 
change it, and stay on the same position. SRD 
and CDC are both necessary factors in updating 
the solution. 

Seeking mode is as follows: 
Step 1: put j copies of the present position of the cat 

k, with j = SMP. If the value of SPC is true or j = 
SMP-1, and retains the cat as one of the 
candidates. 

Step 2: Generate a random value of SRD 
Step 3: If the fitness (FS) are not equal, calculate the 

probability of each candidate by equation (a), the 
default probability value of each candidate is 1. 

Step 4: Perform mutation and replace the current 
position. 

�� �
	|���	�		�����|

	������	�����

  (a) 

 
2. Tracing mode: 

 

This is the cat-hunting mode, where the cat 
traces its path, according to its own velocity to 
chase a prey or any moving object. The 
description of the process of each cat in this 
mode is as follows: 

Step 1: update the velocities of each cat k according 
to equation (b). 

v’ k = w*v k + r * c * (x best − x k) (b) 

Where: 
v’ k : The new velocity value 

w : Inertia weight 
x best: is the best position in swarm. 
v k : the old velocity value (current value). 
c: a constant. 
r: a random value in the range [0, 1]. 
 
Step 2: check if the velocities are of the highest 

order. 
Step 3: update the position of k cat according to 

equation (c). 
x’ k = x k + v k  (c) 
Where: 
x’ k: the new position values of the cat k 
x k: the current position of cat k 
v k: the velocity of cat k 

 
2.4 THE COMPLETE CSO ALGORITHM: 

The full mode is composed of the SM and 
TM combined by a mixture ratio (MR), the flag 
is used to determinate the mode of each cat in 
swarm. The description of the process is: 

 
Begin: 

(1) Generate N cats 
(2) Initialize flag, velocity, and position 

every cat. 
(3) Initialize gbest with the lowest fitness cat 

in swarm. 
(4) for each cat in swarm 
        If the flag of the selected cat is TM 
   Apply selected cat into TM process 
        Else 
           Apply selected cat into TM process 
        EndIf 
       Update gbest 
      End for 
(5) Re-pick number of cats and set them into 

TM according to MR, and set other cats in SM. 
If the condition is to terminate yes then 

complete the program 
Else repeat (4) and (5). 
End. 
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5. EXPERIMENTS AND 

COMPUTATIONNAL RESULTS 

To prove the performance of discrete 
CSO to solve FSSP in this paper, this algorithm 
is applied to solve thirty-one chosen instances of 
FSSP in OR-LIBRARY [21]. The method is 
coded by C++ programming language, which 
runs on an Ultrabook characteristic’s 2.1 GHz 
2.59Ghz Intel Core i7 PC with 8G of RAM. Each 
instance runs for one hour in maximum. Table 2 
shows the values of parameters used [20]: 

Table 2:  Used Parameters Values  

SMP 5 
CDC 0.8 
MR 0.3 
C 2.05 

R  [0,1] 
W 0.729 

 
 
Table 3 shows the instances name,  the 

job number n and the machine number m, best 
known solution (BKS) found by others algorithm 
[22-23], and the best solution obtained by 
applying CSO (best) to the selected instance in 
10 times . The columns T in table 3, show 
average time execution in seconds to find the 
BEST, the percentage error (Err %) value is 
obtained by 

 ���  		!"#�	 $ BKSBKS 	( 100
Table 3: Table Of Results 

 
Instanc

e 

n * m BK

S 

BES

T 

Err

% 

T 

(s) 

Carlier 

Car1 11×5 7038 7038 0.00 01 

Car2 13×4 7166 7166 0.00 01 

Car3 12×5 7312 7312 0.00 01 

Car4 14×4 8003 8003 0.00 01 

Car5 10×6 7720 7720 0.00 01 

Car6 8×9 8505 8505 0.00 01 

Car7 7×7 6590 6590 0.00 01 

Car8 8×8 8366 8366 0.00 01 

Heller 

Hel1 100×1

0 

516 516 0.00 27 

Hel2 20×10 136 135 -0.74 06 

Reeves 

ReC01 20×5 1247 1247 0.00 02 

ReC03 20×5 1109 1109 0.00 03 

ReC05 20×5 1242 1245 0.24 01 

ReC07 20×10 1566 1566 0.00 03 

ReC09 20×10 1537 1537 0.00 02 

ReC11 20×10 1431 1431 0.00 01 

ReC13 20×15 1930 1930 0.00 178 

ReC15 20×15 1950 1950 0.00 101 

ReC17 20×15 1902 1902 0.00 116 

ReC19 30×10 2093 2099 0.29 18 

ReC21 30×10 2017 2020 0.15 486 

ReC23 30×10 2011 2020 0.45 22 

ReC25 30×15 2513 2525 0.48 377 

ReC27 30×15 2373 2396 0.97 61 

ReC29 30×15 2287 2305 0.79 332 

ReC31 50×10 3045 3058 0.43 900 

ReC33 50×10 3114 3114 0.00 163 

ReC35 50×10 3277 3277 0.00 07 

ReC37 75×20 4951 5096 2.93 158

3 

ReC39 75×20 5087 5161 1.45 568 

ReC41 75×20 4960 5087 2.56 207

1 

 
The table of result demonstrate that  

CSO can solve numerous instance in OR-library, 
and it also shows another best solution to 
instance “Hel2”, minus one than the best known 
solution [23]. The error percent of the other 
executed instances is between 0.00 and 2.93.  

 
6. CONCLUSION: 

This research paper presents a new 
adaptation of CSO algorithm to solve the Flow 
Shop scheduling problem. The obtained results 
to some benchmark problem instances (of 
Carlier, Heller and Reeves) prove the 
performance of CSO algorithm to solve the 
problem up to 50 jobs, without any error. For up 
to 50 jobs, it approaches solution with a 
negligible percentage error. This proves the 
ability of the CSO algorithm to solve the FSSP. 
The future work is to extend the application of 
CSO algorithm for others kinds of scheduling 
problems, and multi-objective scheduling 
problem. 
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