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ABSTRACT 

 
This paper presents a new ensemble classifier for class imbalance problem with the emphasis on two -class 
(binary) classification. This novel method is a combination of SMOTE (Synthetic Minority Over-sampling 
Technique), Rotation Forest, and AdaBoostM1 algorithms. SMOTE was employed for the over-sampling of 
the minority samples at 100%, 200%, 300%, 400%, and 500% of the initial sample size, with attribute 
selection being conducted in order to prevent the classification from being over-fitted. The ensemble 
classifier method was presented to solve the problem of imbalanced biological datasets classification by 
obtaining a low prediction error and raising the prediction performance. The Rotation Forest algorithm was 
used to produce an ensemble classifier with a lower prediction error, while the AdaBoostM1 algorithm was 
used to enhance the performance of the classifier. All the tests were carried out using the java-based WEKA 
(Waikato Environment for Knowledge Analysis) and Orange canvas data mining systems for training 
datasets. The performances of three types of classifiers on imbalanced biomedical datasets were assessed. 
This paper explores the efficiency of this new method in producing an accurate overall classifier and in 
lowering the error rate in the overall performance of the classifier. Tests were carried out on three actual 
imbalanced biomedical datasets, which were obtained from the KEEL dataset repository. These imbalanced 
datasets were divided into ten categories according to their imbalance ratios (IR) which ranged from 1.86 to 
41.40. The results indicated that the proposed method, which used a combination of three methods and 
various evaluation metrics in its assessments, was effective. In practical terms, the use of the SMOTE-
RotBoost for the classification of biological datasets results in a low mean absolute error rate as well as 
high accuracy and precision. The values of the Kappa Coefficient were close to 1, thus indicating that all 
the rates in every classification were the same even though the false negative rates, which were close to 0, 
showed the reliability of the measurements. The SMOTE-RotBoost has useful AUC-ROC outputs that 
characterise the wider area under the curve compared to other classifiers and is a vital method for the 
assessment of diagnostic tests. 

Keywords: SMOTE, Rotation Forest, Random Subspace, Bagging, Boosting 
 

1 INTRODUCTION  

 
The most interesting objective of using binary 

classifications for class predictions is the 
classification of imbalanced datasets. Recently, 
researchers tried to come up with a training set rule-
based algorithm to allocate new samples. Datasets 
are said to be imbalanced when the classes are 
unequally distributed. This means that there are 
fewer samples in the minority class (rare class) than 
in the majority class [1-5]. In reality, most training 
sets are imbalanced, and data mining and machine 
learning methods are focussing more and more on 

the problem of gaining information from these 
datasets. The class imbalance problem is due to the 
impact of class distribution in imbalanced datasets 
on classifiers [6-15]. When the datasets are 
imbalanced, the learning classifiers that are 
produced have poor predictive accuracy and 
performance [15-18]. Examples of popular  learning 
methods that are often employed to overcome this 
problem with various datasets are Bagging [19-24], 
Boosting [25-29], re-sampling [1], and Support 
Vector Machine (SVM) [30-35]. An important 
ingredient to have for learning methods is an 
ensemble classifier, which is a combination of 
several classifiers in order to have better 
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performance and greater accuracy than a single 
classifier [36-41]. Among the many ensembles, 
bagging, boosting, random subspace, random forest 
and rotation forest are more frequently combined to 
make use of the same learning algorithm for base 
classifier [20, 36, 42-54]. The main aims of the 
ensemble learning and classification tasks are to 
improve the accuracy and reduce the error rate of 
the classifiers [40, 55-57]. Ensemble methods, 
which are a combination of various models and 
methods, are meant to improve the accuracy of the 
classifier [40]. Various classification models are 
integrated into these ensemble methods and as such, 
this lowers the possibility of over-fitting occurring 
in the training data [54, 57, 58]. Several ensemble 
methods have been used on biological data sets [35, 
44, 59-62]. Ensemble learning methods are being 
increasingly used in bioinformatics and 
computational biology in view of their classification 
benefits [44, 63-67]. This paper presents a new 
ensemble method, which is described in the 
Methods section, for solving the binary imbalanced 
classification problem encountered in 
bioinformatics.  

2 MOTIVATION AND SCOPE 

The objective of this paper is to come up 
with a new ensemble classifier to enhance the 
prediction accuracy of the classifier and to lower 
the error rate in the performance of the classifier as 
a whole. The main motivation this study is to add to 
the list of ensemble methods and to attain better 
predictions for classifications in bioinformatics. 
 

3 METHODS  

The SMOTE-RotBoost ensemble is a 
combination of three methods: SMOTE, Rotation 
Forest algorithm and AdaBoostM1 algorithm. 

 

3.1 SMOTE 

SMOTE or the Synthetic Minority Over-
sampling Technique, which was introduced by [1], 
is the most renowned over-sampling method used 
for the balancing of imbalanced datasets. In this 
method, synthetic (artificial) minority samples are 
created. In the field of bioinformatics, SMOTE is 
used, for example, to identify the binding 
specificity of regulatory proteins [66, 68]; predict 
proteins [33, 46, 65, 67, 69]; predict Glycosylation 
sites [34]; predict miRNA genes [70-74]; as the 
LVQ-SMOTE (Learning Vector Quantization 
SMOTE) for biomedical datasets [75]; for 
histopathology annotations [76]; classification of 

high dimensional biomedical datasets [77]; 
regulatory binding sites on mRNA [78]; and for the 
identification of bioinformatics class imbalance 
ncRNA [79]. SMOTE is useful for datasets with 
low dimensions, but if it is to be used for high-
dimensional datasets, then the variable selection 
before SMOTE must be described [80] and the 
setting must be only that of the K-Nearest 
Neighbour (K-NN) classifier according to the 
Euclidean distance provided. Therefore, according 
to [77, 80], variable selection was used to solve the 
problem of over-fitting through over-sampling of 
the minority class. By using variable selection, the 
SMOTE-RotBoost method can be employed for 
high-dimensional datasets in the future. In this 
study, the SMOTE-RotBoost was tested on low-
dimensional imbalanced bioinformatics datasets.  

 

3.2 Rotation Forest 

The Rotation Forest was suggested by [81, 
82] as an ensemble method for classification. In this 
method, each classifier is constructed with 
characteristics which are obtained by rotating 
subspaces of the original dataset. At the same time, 
this rotation increases the diversity and the 
accuracy provided by a PCA (Principle Component 
Analysis), which is employed for each base 
classifier by all the training datasets. The Rotation 
Forest has more advantages in terms of 
effectiveness compared to the other ensemble 
methods, namely the Bagging, Boosting, and 
Random subspace methods. While each base 
classifier is being constructed, all information is 
held as the same information in the original dataset 
since all occurrences are taken into consideration in 
the rotated dataset. This technique is appropriate for 
datasets, such as decision trees, which are 
influenced by rotation [83, 84]. The Rotation Forest 
gains new characteristics through the use of the 
PCA. The Rotation Forest algorithm is an important 
application for the improvement of regression [85, 
86] and it is being increasingly used in the medical 
and biological science fields [87-92]. This 
ensemble method was employed so as not to 
overlook the information on the samples from the 
initial dataset during the construction of the base 
classifier. The major advantages of the Rotation 
Forest algorithm over Boosting and Bagging are the 
construction of accurate and diverse classifiers. 
This is because the Rotation Forest extracts features 
from subsets of features and then rebuilds a 
complete set of features for the ensemble classifiers 
(so as to rotate the input data for the training base 
classifier). Other reasons why the Rotation Forest is 
preferred are given by [93-95]. [93, 95] stated that 
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the Rotation Forest increased the accuracy of 
classifiers when it comes to the designing of 
computer-aided diagnosis (CADx) systems. [94] 
describes the benefits of employing ensemble 
methods (such as the Rotation Forest) in DNA 
microarray gene expression data by enhancing the 
accuracy of the base classifier when it is used in the 
Kent Ridge Biomedical Dataset repository [96].    

3.3 AdaBoostM1 

The AdaBoostM1 (Adaptive Boosting), 
which was introduced by [28, 97], is an efficient 
ensemble method of classification. The base 
classifier, be it a new or weak classifier, is 
constructed at each iteration by means of the base 
learning methods. When the original weights of all 
the samples are the same, then the samples are 
categorised by the AdaBoostM1 according to the 
following steps in order to generate the final 
classifier: 

•Each sample is assigned a weight (the distribution 
of the dataset is changed) 

•The weight is adjusted based on the accuracy of 
the prediction for each sample 

•The final classifier is obtained from a weighted 
vote of the base classifier (the performance function 
of a classifier is used as a weight for voting)  

The AdaBoostM1 was employed because 
it is less prone to the risk of over-fitting and it can 
be modified by adjusting the weak classifier 
depending on which samples were wrongly 
classified by earlier classifiers [58, 98].  

 

3.4 RotBoost and SMOTE-RotBoost 

In order to reduce the classification error 
rate, [99] proposed and integrated the Rotation 
Forest and AdaBoostM1 ensemble methods, while 
[42] pointed out that the Rotation Forest and 
Boosting algorithms performed steadily with noise-
free and imbalanced datasets. In view of these 
major advantages, the Rotation Forest and 
AdaBoostM1 methods were combined and utilized 
together with SMOTE to come up with the 
SMOTE-RotBoost. The detailed structure of the 
SMOTE-RotBoost is shown in Figure 1. 

 

4 EVALUATION METRICS  

4.1 Confusion Matrix 

There are four outputs in binary 
classifications (two classes) as follows: 

TP = True Positive rate (class members are 
classified as class members) = recall = sensitivity 

TN = True Negative rate (class non-members are 
classified as non-members) = specificity  

FP = False positive rate (class non-members are 
classified as class members) = fall out 

FN = False negative rate (class members are 
classified as class non-members) => it will indicate 
which classifier is better to be selected in a method. 
FN with a low percentage value is taken into 
consideration (refer to section on False Negative 
rate).  

In biomedical tests, sensitivity or recall is 
used for patients who have tested positive for 
diseases. Specificity is used for patients who tested 
negative for diseases.   Table 1 shows the confusion 
matrix for these outputs in the predicted class and 
the actual class. [99] proposed and integrated the 
Rotation Forest and AdaBoostM1 ensemble 
methods, while [42] pointed out that the Rotation 
Forest and Boosting algorithms performed steadily 
with noise-free and imbalanced datasets. In view of 
these major advantages, 

Table 1: Confusion Matrix for two-class classification 

Predicted class 

confusion matrix (Positive) (Negative) 

 

Actual 

class 

Positive 

class 

TP FN 

Negative 

class 

FP TN 

  
Table 2 indicates the related equations between 
outputs (Equations 1 – 4). 
 

Table 2: Equations of Confusion Matrix 
Predicted class  

A
c
tu

a
l 

c
la

ss
 

FNTP

TP

TP

+

=  (1) 

TPFN

FN

FN

+

=  (2) 

TNFP

FP

FP

+

=  (3) 

 

FPTN

TN

TN

+

=  
(4) 



Journal of Theoretical and Applied Information Technology 
 10

th
 February 2015. Vol.72 No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
43 

 

 

4.2 Accuracy, precision, recall, and f-score 

Table 3 indicates the related equations of 
accuracy, precision, recall and f-score. Equation 5 
(table 3) denotes the relationship between outputs 
and the accuracy of the classifier, while Equations 
6, 7 and 8 are used to calculate the Precision, 
Recall, and F-score, respectively. The precision, 
recall, and F-measure are important measurements 
of the performance of binary classifications with 
regard to issues pertaining to imbalanced classes 
[100-103]. Precision means the degree to which 
class members have been correctly classified as 
class members out of a total number of classified 
samples (Equation 6). Recall means the degree to 
which class members have been classified correctly 
out of the total number of class members (Equation 
7). The harmonic mean (average) of Precision and 
Recall is defined as the F-score or F-measure. The 
F-score indicates an exchange between Precision 
and Recall. The Precision will be reduced with an 
increase in TP and FP (refer to Equation 6). Hence, 
the F-score is an effective measure of the quality of 
a classifier. However, one drawback of using the F-
score as an assessment tool in machine learning is 
that it cannot withstand the TN rate [104, 105]. This 
problem can be solved by using Cohen’s Kappa 
coefficient.  

 
Table 3: Equations of Accuracy, Precision, Recall and F-

score 

TNFPFN TP

TNTP
 AccuracyClassifier

+++

+

=  (5) 

FPTP

TP

Precision

+

=  (6) 

TP

FNTP

TP

Recall =

+

=  (7) 

recallprecision

recallprecision
2valueF

+

×

×=−  (8) 

 

4.3 False negative rate 

According to [8, 10], a False Negative rate 
which is closer to 0 indicates the effectiveness of a 
machine learning classifier in comparison to other 
classifiers with values that are further from 0. 
However, it was demonstrated by [106] that the 
ROC (Receiver Operating Curve) was inadequate 
as an evaluation measurement due to the occurrence 
of bias in the class distribution when it came to a 
minority class. This limitation can be overcome by 

a False Negative rate, which considers a low 
percentage magnitude as an indication of an 
effective classifier. 

 

4.4 Area Under Curve of ROC 

Receiver Operating Characteristics (ROC) 
is useful graph for visualizing classifier 
performance and organizing it [107]. An ROC 
curve illustrates tradeoff between TP rate (benefits) 
and FP rate (costs). ROC space is two dimensional 
which TP rate is on the Y-axis and FP rate is on X-
axis. Figure 2 depicts as example of the ROC for 
Yeast 6 dataset with ratio 41.40 in 100% SMOTE. 
Calculating the Area under this graph shows Area 
Under Curve (AUC). Equation 9 indicates AUC 
based on TP and FP rates. Area Under ROC Curve 
is one of the fundamental metric tools in 
imbalanced and biological domain [107-114]. 
Researchers argued that the AUC has effective 
advantages rather than accuracy [115, 116]. 
Because based on Equation 9, AUC is in direct 
relation between TP and FP. 

 

2

FPTP1
AUC

−+

=  (9) 

 
 

4.5 Kappa Statistic  

The Kappa statistic or Cohen’s Kappa 
coefficient (CKC) was proposed by [117] as a 
statistical measure and it is used to evaluate 
measurement agreement [118-122], intera rater 
reliability [123-125], reliability of disease 
classifications [126], and measurements in medical 
research [127]. Equation 10 gives a simple 
representation of the Kappa statistic. 

 

agreement chance -1

agreement chance -agreement observed
 =κ  (10) 

 
In medical research, if metrics are in 

agreement purely by chance, there is no real 
agreement at all. Only agreement that is beyond 
that expected by chance is deemed to be a true 
agreement. The Kappa statistic is a measure of true 
agreement. For every observed and chance 
agreement, there is a proportion of any possible 
beyond chance agreement that is an achieved 
beyond chance agreement [125]. The value of the 
Kappa statistic normally ranges from 0 and 1, with 
1 being an indication of perfect agreement, with the 
raters agreeing on their classification of every case; 
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and with 0 being an indication that the agreement is 
not better than what was expected by chance. These 
values very seldom range from -1 to 1 in clinical 
and medical cases. A negative value is obtained if 
two raters are under consideration, although if there 
are more than two raters being considered, then the 
possible minimum value will be raised [128]. 

 

4.6 Mean Absolute Error (MAE) and Root 

Mean Absolute Error (RMSE)  

The MAE, which is the average of 
absolute errors, is used to measure the trade-offs 
between predictors (unknown outputs) and 
outcomes (known outputs) regardless of their 
direction. This means that the MAE is a measure of 
the difference between the predicted results and 
observed results. Although some researchers [129, 
130] are in favour of using the MAE to evaluate the 
average performance of a model, others [131-133] 
prefer to use the RMSE as a standard measure of 
model error. The RMSE is almost the same 
measure as the MAE, but it is more beneficial when 
it comes to huge errors. The RMSE has a powerful 
effect on huge errors (penalizes huge errors). Both 
the MAE and RMSE have values that range from 0 
to infinity. A value which is closer to 0 indicates a 
perfect value. The MAE and RMSE were employed 
in this study to measure the performance of various 
classifiers. These metrics are calculated using 
Equations 11 and 12, with e being the error rate and 
n the number of samples. 
 

∑
=

=
n

i
i
e

n 1

1
 MAE  (11) 

∑
=

=
n

i
i

n 1

2
e

1
 RMSE  (12) 

 

5 RESULTS AND DISCUSSION 

The SMOTE-RotBoost was introduced as 
a novel experimental ensemble method and its own 
base classifier was shown to be useful for 
imbalanced biomedical dataset classifications. 
Therefore, various classifiers were combined in a 
multiple classifier system. Evaluation metrics were 
employed to test the advantages of this method, and 
this is described in the Evaluation Metrics section.  

Three actual imbalanced biomedical 
datasets retrieved from the KEEL datasets 
repository were used to assess the performance of 

the SMOTE-RotBoost. These datasets were 
classified into ten datasets with various imbalanced 
ratios ranging from 1.86 to 41.40. While the data 
was being processed, all the missing values were 
removed. The datasets with their relevant ratios are 
shown in Table 4. The SMOTE-RotBoost was 
employed for data at 100%, 200%, 300%, 400%, 
and 500% of its initial size. Attribute selection was 
used to prevent the occurrence of bias before 
SMOTE. Both the imbalanced classes were altered 
into negative and positive classes from 0 and 1. The 
performance of the SMOTE-RotBoost was 
compared to that of three popular ensemble 
methods, namely the SMOTE-Boost [134], 
SMOTE-Bagging [135] and SMOTE-Random 
Subspace [136].  

From Figure 3 it can be seen that on the 
whole the new ensemble method, which was 
applied at 100%, 200%, 300%, 400%, and 500% of 
the initial dataset size, produced more accurate 
results than the other three ensembles in average. 
Figure 4 presents the average values of precision, 
recall, and F-scores for ten datasets. The 
magnitudes of these three metrics produced by the 
SMOTE-RotBoost method were nearer to 1. 

The overall magnitudes presented were the 
same for the different percentages of SMOTE. 
Figure 5 shows that the SMOTE-RotBoost obtained 
a lower False Negative rate in average (which is 
described in the related section) compared to the 
other ensemble methods, thus indicating that the 
classifiers, which were used in this method, were 
more efficient than the others were. 

Figure 6 shows that similar results were 
obtained for the average of AUC (Area Under 
Curve) and Kappa statistic. The average value of 
the AUC using the SMOTE-RotBoost ensemble 
method was higher than that of the others, thus 
indicating that the randomly selected positive 
samples probably ranked higher than the negative 
samples. The same results were obtained for the 
AUC using different percentages of SMOTE. 
Figure 6 also indicates the significant agreement of 
the rates, which were classified in every case. The 
Kappa statistic in the figure is translated as an 
applicable measure of reliability 

 Figures 3 to 6 show that there was an 
acceptable conformity between the overall accuracy 
and the AUC for ranking the classification 
performance of the SMOTE-RotBoost. Significant 
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results were obtained for all the datasets in the 
100% SMOTE compared with the results of the 
other percentages of the applied SMOTE. 

. From the results in Figure 7, it can be 
seen that compared to the other ensemble methods, 
the SMOTE-Rot Boost method produced the lowest 
MAE and RMSE. Figure 7 also shows that the 
RMSE was either larger or equal to the MAE for all 
the ensemble methods, and that for the SMOTE-
RotBoost method the RMSE was equal to the MAE 
(close to 0), thus indicating that all the error rates 
possessed the same magnitude. The great difference 
between the MAE and the RMSE for the SMOTE-
Boost method indicated that there was a greater 
variance of individual errors in the samples (there 
was a variation in the errors). 

 

6 LIMITATION 

The proposed ensemble method has 
limitations because it employs the AdaBoostM1 
ensemble, which is susceptible to outliers and noisy 
datasets. 

7 CONCLUSIONS 

Compared to the other ensemble methods, 
namely the SMOTE-Boost, SMOTE-Bagging and 
SMOTE-Random Subspace, the SMOTE-RotBoost 
gives better performance and more benefits when it 
comes to the classification of imbalanced 
biomedical data. From the results given in Figures 1 
to 6 it can be seen that the difference between the 
datasets which had imbalanced ratios with the 
performances of the SMOTE-RotBoost was 
insignificant. This method performed well with 
imbalanced biomedical datasets having the same 
ratios. The performance of this new method was 
measured with regard to eight metrics: Precision, 
Recall, F-score, FN rate, AUC, CKC, MAE, and 
RMSE. In practical terms, when the SMOTE-
RotBoost was used for the classification of 
biological datasets, a low mean absolute error rate, 
and high accuracy and precision were reported. The 
Kappa Coefficient (CKC) values, which were close 
to 1, showed that all the rates in the classification of 
every case were in perfect agreement despite the 
False Negative rates which, being close to 0, 
denoted that the measurements were reliable. 
Unlike the other classifiers, the SMOTE-RotBoost 
enhanced the AUC-ROC outputs, which were 
represented by the larger area under the curve, and 

provided a significant approach for the assessment 
of diagnostic tests. The magnitudes of the MAE and 
RMSE were closer to 0 in the SMOTE-RotBoost 
method compared to the three other ensemble 
methods. 

8 AVAILABILITY OF SUPPORTING 

DATA 

The datasets supporting the results of this 
paper are available in the KEEL repository, 
http://sci2s.ugr.es/keel/imbalanced. 

9 LIST OF ABBREVIATION USED 

SMOTE: Synthetic Minority Over-
sampling Technique; AdaBoostM1: Adapted 
Boosting Algorithm; Bagging: Bootstrap 
aggregating; PCA: Principle Component Analysis; 
ROC: Receiver Operating Characteristic; K-NN: K 
– Nearest Neighbor classifier; AUC: Area Under 
ROC Curve; FN: False Negative rate; CKC: 
Cohen’s Kappa Coefficient; MAE: Mean Absolute 
Error; RMSE: Root Mean Square Error; KEEL: 
Knowledge Extraction based on Evolutionary 
Learning; WEKA: Waikato Environment for 
Knowledge Analysis. 
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Figure 1: Framework of SMOTE-RotBoost. Ensemble method which consists of SMOTE, Rotation Forest and 

AdaBoostM1 classifier 

 

 

 

 

 
Figure 2: ROC for Yeast 6 dataset with ratio 41.40 in 100% SMOTE 
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Table 4: 4 Results for different ensemble methods. The best result for each dataset is marked in bold 

D
a

ta
s
e
t
s
 

I
R

 

S
M

O
T

E
 %

 

Methods 
Accuracy 

% 
Precision Recall F-Score FN rate AUC CKC MAE RMSE 

B
r
e
a

s
t
 C

a
n

c
e
r
 

1
.8

6
 

1
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 96.4208 0.9640 0.9640 0.9640 0.0400 0.9950 0.9283 0.0456 0.1602 

SMOTE-Bagging 98.3731 0.9840 0.9835 0.9835 0.0060 0.9980 0.9674 0.0433 0.1243 

SMOTE-RS 97.7223 0.9775 0.9765 0.9775 0.0130 0.9970 0.9544 0.0548 0.1362 

2
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 97.2438 0.9695 0.9725 0.9710 0.0280 0.9950 0.9418 0.0423 0.1483 

SMOTE-Bagging 98.0189 0.9805 0.9775 0.9790 0.0110 0.9999 0.9579 0.0373 0.1135 

SMOTE-RS 98.6219 0.9875 0.9835 0.9855 0.0040 0.9950 0.9707 0.0441 0.1198 

3
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 97.9286 0.9750 0.9770 0.9760 0.0170 0.9970 0.9523 0.0286 0.1247 

SMOTE-Bagging 98.2143 0.9810 0.9775 0.9795 0.0090 0.9999 0.9586 0.0271 0.0995 

SMOTE-RS 98.6429 0.9885 0.9800 0.9840 0.0020 0.9980 0.9684 0.0330 0.1016 

4
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 97.1934 0.9600 0.9700 0.9650 0.0260 0.9970 0.9297 0.0308 0.1342 

SMOTE-Bagging 99.0238 0.9915 0.9830 0.9875 0.0020 0.9999 0.9751 0.0228 0.0892 

SMOTE-RS 99.1458 0.9935 0.9850 0.9890 0.0010 0.9999 0.9782 0.0300 0.0899 

5
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 97.9766 0.9700 0.9745 0.9745 0.0150 0.9970 0.9442 0.0230 0.1200 

SMOTE-Bagging 98.9350 0.9875 0.9830 0.9850 0.0050 0.9999 0.9704 0.0219 0.0845 

SMOTE-RS 99.0948 0.9910 0.9840 0.9875 0.0030 0.9980 0.9748 0.0276 0.0917 

E
c
o

li
1

 

3
.3

6
 

1
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 99.6633 0.9965 0.9970 0.9970 0.0000 0.9999 0.9933 0.0071 0.0508 

SMOTE-Bagging 98.9899 0.9895 0.9905 0.9900 0.0000 0.9900 0.9798 0.0179 0.0999 

SMOTE-RS 98.9899 0.9895 0.9905 0.9900 0.0000 0.9970 0.9798 0.2009 0.2282 

2
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 99.4652 0.9930 0.9955 0.9950 0.0000 0.9999 0.9887 0.0118 0.0651 

SMOTE-Bagging 98.6631 0.9845 0.9880 0.9860 0.0070 0.9999 0.9718 0.0299 0.0961 

SMOTE-RS 98.6631 0.9830 0.9830 0.9860 0.0000 0.9970 0.9719 0.1806 0.2184 

3
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 99.5565 0.9930 0.9970 0.9950 0.0000 0.9999 0.9898 0.0102 0.0633 

SMOTE-Bagging 98.6696 0.9800 0.9905 0.9845 0.0000 0.9970 0.9696 0.0284 0.1093 

SMOTE-RS 98.6696 0.9800 0.9905 0.9845 0.0000 0.9980 0.9696 0.1693 0.2081 

4
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 99.6212 0.9930 0.9975 0.9950 0.0000 0.9999 0.9905 0.0080 0.0509 

SMOTE-Bagging 98.4848 0.9735 0.9895 0.9815 0.0000 0.9999 0.9623 0.0251 0.0943 

SMOTE-RS 99.0530 0.9830 0.9935 0.9880 0.0000 0.9999 0.9763 0.1033 0.1554 

5
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 98.6777 0.9755 0.9890 0.9820 0.0070 0.9999 0.9639 0.0124 0.0818 

SMOTE-Bagging 99.0083 0.9840 0.9885 0.9860 0.0140 0.9999 0.9727 0.0166 0.0833 

SMOTE-RS 98.5124 0.9745 0.9855 0.9795 0.0140 0.9999 0.9593 0.1297 0.1835 

E
c
o

li
2

 

5
.4

6
 

1
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 90.4639 0.8710 0.8985 0.8830 0.1150 0.9450 0.7662 0.1431 0.2734 

SMOTE-Bagging 93.0412 0.9105 0.9090 0.9115 0.1250 0.9680 0.8232 0.1119 0.2171 

SMOTE-RS 92.0103 0.9010 0.8940 0.8985 0.1630 0.9740 0.7945 0.1477 0.2389 

2
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 90.0000 0.8890 0.8950 0.8920 0.1220 0.9510 0.7834 0.1479 0.2831 

SMOTE-Bagging 93.8636 0.9335 0.9320 0.9315 0.0900 0.9860 0.8657 0.1159 0.2155 

SMOTE-RS 93.1818 0.9245 0.9270 0.9255 0.0900 0.9750 0.8515 0.1580 0.2471 

3
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 90.4472 0.9020 0.9030 0.9025 0.1060 0.9470 0.8046 0.1427 0.2803 

SMOTE-Bagging 92.6829 0.9250 0.9250 0.9250 0.0870 0.9860 0.8501 0.1144 0.2209 

SMOTE-RS 91.6667 0.9135 0.9165 0.9150 0.0820 0.9700 0.8300 0.1582 0.2535 

4
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 90.4412 0.9040 0.9045 0.9045 0.0850 0.9620 0.8087 0.1416 0.2737 

SMOTE-Bagging 93.0147 0.9305 0.9295 0.9300 0.0810 0.9880 0.8599 0.1111 0.2138 

SMOTE-RS 93.3824 0.9335 0.9340 0.9335 0.9335 0.9810 0.8674 0.1428 0.2296 

5
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 90.2685 0.9025 0.9020 0.9025 0.0830 0.9610 0.8048 0.1427 0.2705 

SMOTE-Bagging 94.9664 0.9510 0.9490 0.9495 0.0320 0.9890 0.8989 0.1065 0.2029 

SMOTE-RS 94.1275 0.9415 0.9410 0.9410 0.0510 0.9860 0.8822 0.1283 0.2125 
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Y
e
a

st
3
 

8
.1

0
 

1
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 94.9605 0.9220 0.9190 0.9205 0.1320 0.9720 0.8407 0.0953 0.2053 

SMOTE-Bagging 96.7820 0.9445 0.9560 0.9500 0.0640 0.9940 0.8999 0.0593 0.1577 

SMOTE-RS 88.2210 0.9360 0.7025 0.7540 0.5950 0.9790 0.5219 0.2116 0.2834 

2
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 94.6409 0.9255 0.9425 0.9335 0.0670 0.9730 0.8668 0.0959 0.2146 

SMOTE-Bagging 97.0166 0.9580 0.9675 0.9625 0.0390 0.9950 0.9251 0.0577 0.1539 

SMOTE-RS 97.1271 0.9645 0.9630 0.9635 0.0550 0.9930 0.9271 0.1383 0.2007 

3
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 94.3234 0.9335 0.9390 0.9360 0.0740 0.9690 0.8725 0.1145 0.2321 

SMOTE-Bagging 96.4521 0.9560 0.9645 0.9600 0.0350 0.9950 0.9206 0.0632 0.1602 

SMOTE-RS 95.7425 0.9670 0.9375 0.9505 0.1210 0.9970 0.9009 0.1681 0.2180 

4
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 94.4288 0.9370 0.9495 0.9420 0.0280 0.9780 0.8839 0.0989 0.2215 

SMOTE-Bagging 96.9569 0.9655 0.9705 0.9680 0.0260 0.9970 0.9359 0.0554 0.1484 

SMOTE-RS 96.4888 0.9710 0.9550 0.9620 0.0860 0.9980 0.9244 0.1550 0.2032 

5
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 94.4759 0.9415 0.9475 0.9440 0.0320 0.9780 0.8880 0.0985 0.2244 

SMOTE-Bagging 96.9552 0.9675 0.9715 0.9690 0.0170 0.9970 0.9380 0.0559 0.1493 

SMOTE-RS 94.9978 0.9595 0.9410 0.9480 0.1160 0.8961 0.1638 0.1638 0.2226 

E
co

li
 0

_
2
_

3
_
4

 v
s 

5
 

9
.1

0
 

1
0
0

 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 90.5930 0.7900 0.7385 0.7605 0.4830 0.9120 0.5219 0.1378 0.2637 

SMOTE-Bagging 94.0695 0.9420 0.7725 0.8310 0.4500 0.9770 0.6644 0.1146 0.2057 

SMOTE-RS 91.4110 0.9555 0.6500 0.7075 0.7000 0.9370 0.4292 0.1587 0.2572 

2
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 96.6942 0.9605 0.9505 0.9550 0.0830 0.9950 0.9104 0.0433 0.1577 

SMOTE-Bagging 96.6942 0.9605 0.9505 0.9550 0.0830 0.9960 0.9104 0.0683 0.1529 

SMOTE-RS 96.2810 0.9695 0.9310 0.9480 0.1330 0.9940 0.8962 0.1203 0.1938 

3
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 98.8550 0.9920 0.9815 0.9865 0.0380 0.9999 0.9727 0.0226 0.0965 

SMOTE-Bagging 95.8015 0.9470 0.9560 0.9515 0.0500 0.9960 0.9021 0.0728 0.1595 

SMOTE-RS 95.8015 0.9670 0.9350 0.9490 0.1250 0.9970 0.8978 0.0942 0.1587 

4
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 98.9362 0.9870 0.9895 0.9885 0.0100 0.9999 0.9768 0.0251 0.1046 

SMOTE-Bagging 97.8723 0.9750 0.9790 0.9765 0.0200 0.9999 0.9537 0.0571 0.1255 

SMOTE-RS 95.0355 0.9610 0.9325 0.9445 0.1300 0.9970 0.8885 0.1120 0.1719 

5
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 97.0199 0.9670 0.9710 0.9690 0.0250 0.9970 0.9380 0.0437 0.1502 

SMOTE-Bagging 96.3576 0.9625 0.9615 0.9620 0.0500 0.9980 0.9238 0.0618 0.1474 

SMOTE-RS 91.7219 0.9305 0.9005 0.9110 0.1830 0.9950 0.8224 0.1291 0.2032 

E
co

li
0

_
1

 v
s 

5
 

1
1
 

1
0
0

 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 98.4615 0.9800 0.9600 0.9700 0.0750 0.9999 0.9397 0.0186 0.0873 

SMOTE-Bagging 96.9231 0.9585 0.9205 0.9385 0.1500 0.9980 0.8768 0.0489 0.1252 

SMOTE-RS 98.8462 0.9935 0.9935 0.9770 0.0750 0.9999 0.9543 0.0685 0.1302 

2
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 98.5714 0.9690 0.9910 0.9795 0.0000 0.9999 0.9586 0.0188 0.0808 

SMOTE-Bagging 98.9286 0.9760 0.9930 0.9845 0.0000 0.9999 0.9688 0.0543 0.1121 

SMOTE-RS 99.2857 0.9840 0.9955 0.9895 0.0000 0.9999 0.9790 0.0465 0.0987 

3
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 98.6667 0.9790 0.9870 0.9830 0.0130 0.9999 0.9662 0.0209 0.0914 

SMOTE-Bagging 99.0000 0.9820 0..9930 0.9875 0.0000 0.9999 0.9747 0.0435 0.1063 

SMOTE-RS 99.3333 0.9915 0.9915 0.9915 0.0130 0.9999 0.9830 0.0484 0.1017 

4
0
0

 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 97.8125 0.9845 0.9650 0.9740 0.0700 0.9999 0.9481 0.0274 0.1091 

SMOTE-Bagging 99.0625 0.9905 0.9875 0.9890 0.0200 0.9999 0.9781 0.0521 0.1119 

SMOTE-RS 98.4375 0.9860 0.9775 0.9820 0.0400 0.9999 0.9633 0.0745 0.1292 

5
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 99.1176 0.9890 0.9915 0.9905 0.0080 0.9999 0.9807 0.0161 0.0796 

SMOTE-Bagging 99.4118 0.9920 0.9955 0.9935 0.0000 0.9999 0.9872 0.0525 0.1088 

SMOTE-RS 98.2353 0.9790 0.9825 0.9805 0.0170 0.9999 0.9615 0.0545 0.1089 

Y
e
a

st
 1

 v
s 

7
 

1
4

.3
0
 

1
0

0
 

SMOTE-RotBoost 99.7955 0.9990 0.9915 0.9955 0.0170 0.9999 0.9904 0.0021 0.0320 

SMOTE-Boost 90.5930 0.7900 0.7385 0.7605 0.4830 0.9120 0.5219 0.1378 0.2637 

SMOTE-Bagging 94.0695 0.9420 0.7725 0.8310 0.4500 0.9770 0.6644 0.1146 0.2057 

SMOTE-RS 91.4110 0.9555 0.6500 0.7075 0.7000 0.9370 0.4292 0.1587 0.2572 

2
0
0
 SMOTE-RotBoost 99.8073 0.9945 0.9940 0.9965 0.0000 0.9999 0.9933 0.0021 0.0310 

SMOTE-Boost 87.8613 0.8165 0.7160 0.7500 0.5330 0.9020 0.5048 0.1653 0.2954 
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SMOTE-Bagging 92.2929 0.9090 0.8085 0.8475 0.3670 0.9680 0.6965 0.1381 0.2323 

SMOTE-RS 89.0173 0.9275 0.6880 0.7410 0.6220 0.9590 0.4950 0.1945 0.2741 

3
0

0
 

SMOTE-RotBoost 99.8179 0.9990 0.9960 0.9975 0.0080 0.9999 0.9947 0.0088 0.0352 

SMOTE-Boost 88.5246 0.8375 0.8185 0.8270 0.3000 0.9170 0.6547 0.2026 0.3003 

SMOTE-Bagging 93.9891 0.9300 0.8895 0.9075 0.2000 0.9860 0.8157 0.1319 0.2160 

SMOTE-RS 93.0783 0.9540 0.8450 0.8855 0.3080 0.9760 0.7728 0.1858 0.2535 

4
0
0
 

SMOTE-RotBoost 99.8273 0.9990 0.9965 0.9980 0.0070 0.9999 0.9955 0.0021 0.0295 

SMOTE-Boost 84.6287 0.8210 0.7555 0.7785 0.4330 0.9110 0.5605 0.2100 0.3228 

SMOTE-Bagging 92.9188 0.9150 0.8980 0.9060 0.1670 0.9800 0.8119 0.1400 0.2328 

SMOTE-RS 92.7461 0.9280 0.8795 0.9000 0.2200 0.9810 0.8007 0.1890 0.2524 

5
0
0
 

SMOTE-RotBoost 99.8358 0.9970 0.9990 0.9980 0.0000 0.9999 0.9961 0.0069 0.0320 

SMOTE-Boost 82.4302 0.7890 0.8155 0.7990 0.2060 0.8880 0.5994 0.2574 0.3412 

SMOTE-Bagging 94.0887 0.9280 0.9310 0.9295 0.0940 0.9860 0.8585 0.1414 0.2224 

SMOTE-RS 94.2529 0.9550 0.9075 0.9275 0.1780 0.9910 0.8552 0.1686 0.2266 

Y
e
a

st
 4

 

2
8

.1
0
 

1
0
0

 

SMOTE-RotBoost 99.4788 0.9970 0.9610 0.9780 0.0780 0.9999 0.9564 0.0063 0.0525 

SMOTE-Boost 93.3550 0.7320 0.7275 0.7295 0.5100 0.9380 0.4595 0.0797 0.2135 

SMOTE-Bagging 96.2215 0.9355 0.7385 0.8040 0.5200 0.9780 0.6103 0.0677 0.1705 

SMOTE-RS 94.5277 0.9725 0.5880 0.6360 0.8240 0.9420 0.2858 0.0929 0.2028 

2
0
0
 

SMOTE-RotBoost 99.4956 0.9970 0.9740 0.9850 0.0520 0.9999 0.9704 0.0074 0.0520 

SMOTE-Boost 91.5511 0.7575 0.7610 0.7590 0.4310 0.9330 0.5181 0.1036 0.2494 

SMOTE-Bagging 96.2169 0.5285 0.8475 0.8810 0.2940 0.9840 0.7622 0.0740 0.1755 

SMOTE-RS 93.6318 0.9670 0.6700 0.7365 0.6600 0.9700 0.4820 0.1082 0.2060 

3
0
0
 

SMOTE-RotBoost 99.5113 0.9930 0.9850 0.9885 0.0290 0.9999 0.9774 0.0066 0.0509 

SMOTE-Boost 90.6536 0.7885 0.7680 0.7780 0.4170 0.9390 0.5557 0.1147 0.2675 

SMOTE-Bagging 95.2963 0.9050 0.8725 0.8875 0.2350 0.9840 0.7754 0.0852 0.1876 

SMOTE-RS 95.2963 0.9460 0.8305 0.8765 0.3330 0.9780 0.7539 0.1113 0.2008 

4
0
0
 

SMOTE-RotBoost 99.5261 0.9925 0.9890 0.9905 0.0200 0.9999 0.9815 0.0070 0.0502 

SMOTE-Boost 89.6919 0.8075 0.7685 0.7855 0.4160 0.9290 0.5719 0.1289 0.2818 

SMOTE-Bagging 95.1422 0.9035 0.9020 0.9055 0.1530 0.9880 0.8118 0.0857 0.1855 

SMOTE-RS 94.1351 0.9675 0.8060 0.8630 0.3880 0.9830 0.7279 0.1172 0.2084 

5
0
0
 

SMOTE-RotBoost 99.5400 0.9935 0.9910 0.9920 0.0160 0.9999 0.9841 0.0086 0.0506 

SMOTE-Boost 88.8442 0.8230 0.7650 0.7895 0.4250 0.9360 0.5797 0.1394 0.2880 

SMOTE-Bagging 95.1696 0.9210 0.9100 0.9155 0.1540 0.9880 0.8313 0.0899 0.1901 

SMOTE-RS 96.0897 0.9690 0.8955 0.9270 0.2060 0.9890 0.8543 0.1020 0.1854 

E
co

li
 0

_
1
_

3
_

7
 v

s 
2

_
6
 

3
9

.1
4
 

1
0

0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0041 0.0184 

SMOTE-Boost 98.2639 0.8805 0.9570 0.9150 0.0710 0.9970 0.8296 0.0187 0.0976 

SMOTE-Bagging 97.5694 0.8770 0.8515 0.8640 0.2860 0.9560 0.7280 0.0368 0.1338 

SMOTE-RS 98.9583 0.9945 0.8930 0.9375 0.2140 0.9950 0.8746 0.0352 0.1109 

2
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0029 0.0126 

SMOTE-Boost 98.3051 0.9145 0,9685 0.9400 0.0480 0.9980 0.8798 0.0190 0.0987 

SMOTE-Bagging 97.2881 0.9120 0.8755 0.8925 0.2380 0.9250 0.7855 0.0457 0.1456 

SMOTE-RS 97.9661 0.9230 0.9230 0.9230 0.1430 0.9960 0.8462 0.0410 0.1143 

3
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0003 0.0009 

SMOTE-Boost 98.0132 0.9300 0.9570 0.9430 0.0710 0.9960 0.8856 0.0247 0.1105 

SMOTE-Bagging 97.6821 0.9370 0.9230 0.9300 0.1430 0.9780 0.8600 0.0399 0.1376 

SMOTE-RS 98.6755 0.9930 0.9285 0.9580 0.1430 0.9960 0.9159 0.0434 0.1150 

4
0
0

 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0015 0.0097 

SMOTE-Boost 98.0583 0.9425 0.9640 0.9530 0.0570 0.9960 0.9057 0.0242 0.1096 

SMOTE-Bagging 98.0583 0.9750 0.9265 0.9490 0.1430 0.9940 0.8983 0.0354 0.1267 

SMOTE-RS 97.7346 0.9485 0.9375 0.9430 0.1140 0.9940 0.8858 0.0500 0.1360 

5
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0025 0.0105 

SMOTE-Boost 98.1013 0.9510 0.9685 0.9595 0.0480 0.9970 0.9193 0.0243 0.1090 

SMOTE-Bagging 97.7848 0.9560 0.9470 0.9515 0.0950 0.9500 0.9029 0.0420 0.1442 

SMOTE-RS 97.7848 0.9560 0.9470 0.9515 0.0950 0.9970 0.9029 0.0511 0.1255 

Y
e
a

st
 6

 

4
1

.4
0
 

1
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 95.8525 0.7895 0.6315 0.6775 0.7290 0.9600 0.3581 0.0546 0.1664 

SMOTE-Bagging 97.7617 0.8970 0.8315 0.8610 0.3290 0.9760 0.7228 0.0374 0.1313 

SMOTE-RS 95.7867 0.9790 0.5430 0.4980 0.9140 0.9380 0.1517 0.0610 0.1589 

2
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 95.8172 0.8305 0.8450 0.8380 0.8380 0.9680 0.6752 0.0620 0.1756 

SMOTE-Bagging 97.0399 0.8960 0.8605 0.8320 0.2670 0.9840 0.7542 0.0474 0.1458 

SMOTE-RS 97.3616 0.9595 0.8225 0.8770 0.3520 0.9820 0.7549 0.0661 0.1545 

3
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 94.9025 0.8285 0.8880 0.8550 0.1860 0.9680 0.7099 0.0689 0.1845 

SMOTE-Bagging 97.0422 0.9130 0.9000 0.9065 0.1860 0.9850 0.8129 0.0495 0.1443 

SMOTE-RS 97.0422 0.9505 0.8575 0.8975 0.2790 0.9800 0.7955 0.0709 0.1618 
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4
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 95.1355 0.8720 0.8775 0.8745 0.2170 0.9730 0.7489 0.0720 0.1960 

SMOTE-Bagging 96.6749 0.9240 0.8985 0.9105 0.1890 0.9910 0.8217 0.0502 0.1454 

SMOTE-RS 97.2291 0.9475 0.9040 0.9245 0.1830 0.9800 0.8487 0.0751 0.1667 

5
0
0
 

SMOTE-RotBoost 99.9999 0.9999 0.9999 0.9999 0.0000 0.9999 0.9999 0.0000 0.0000 

SMOTE-Boost 94.7559 0.8855 0.8740 0.8795 0.2240 0.9690 0.7594 0.0775 0.2026 

SMOTE-Bagging 96.6847 0.9330 0.9140 0.9235 0.1570 0.9920 0.8466 0.0551 0.1522 

SMOTE-RS 97.3478 0.9700 0.9075 0.9360 0.1810 0.9930 0.8717 0.0807 0.1580 

 

 

 
Figure 3: average of overall accuracy from SMOTE 100% to 500% 

 

 

 
Figure 4: average of precision, recall and f-score from SMOTE 100% to 500% 
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Figure 5: average of false negative rate 

 

 
Figure 6: average values of area under curve and kappa statistic 

 

 
Figure 7: average values of mean absolute error and root mean square error 
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