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ABSTRACT 

 
An attractive research in recent years is solving class imbalance problem in imbalanced dataset. The class is 
imbalanced when the number of one class (majority) is more than another one (minority). The classification 
of this imbalanced class causes imbalanced distribution and poor predictive classification accuracy. This 
paper introduces a new ensemble –based method for imbalanced data set classification using Synthetic 
Minority Over-sampling Technique (SMOTE) and Rotation Forest algorithm to address class imbalance 
problem. Rotation Forest applied as ensemble classifier combines with well-known re-sampling method 
(SMOTE). It constructs classifiers with obtaining features by rotating subspaces of the original dataset. The 
advantages of Rotation Forest rather than other ensemble methods (Boosting, Bagging, Random Subspace) 
is that same information held as original data sets and  no information lost in data sets which used to 
construct classifiers. Experimental results reveal the effectiveness of SMOTE and Rotation Forest 
performance at data level in overall accuracy, Cohen’s kappa Coefficient, False Negative rate, AUC, and 
RMSE compared to other related classification ensemble methods (SMOTE-Boost, SMOTE-Bagging, 
SMOTE-random subspace) on twenty KEEL repository imbalanced datasets (binary dataset not multi-class) 
which selected randomly from different ratios by implementing Java-based WEKA and STATISTICA 
software. SMOTE implemented for training data by values of N=100, 200, 300, and 400. Kappa-Error 
diagram is plotted to analysis the behavior of ensemble methods. The experimental results clarify the 
validness of proposed ensemble classifier. 

Keywords: SMOTE, Rotation Forest, Random Subspace, Bagging, Boosting 

 
1 INTRODUCTION  

 
In binary classification, researchers have 

typically ignored the dataset balancing and instead 
assumed that the training sets are balanced. Some 
surveys [1, 2] have indicated that balancing the 
class distribution of datasets provides better 
classification performance than using imbalanced 
datasets (IDs). However, some researchers [3, 4] 
have argued that the imbalanced dataset problem 
(IDP) has only a slight effect on classification 
performance. The IDP occurs when training and test 
datasets include both negative and positive 
instances. For example, if the dataset contains 100 
positive instances and 10,000 negative instances, 
then the use of classification algorithms will exhibit 
underperformance and over-fitting problems due to 
the IDs. This problem is also called the class 
imbalance problem (CIP) because there are 
significantly unequal quantities of positive and 

negative examples in the dataset being classified [5, 
6]. The rare instances (minority) contain more 
significant information or concepts than the more 
common instances (majority). To overcome this 
problem, [5] generated a new dataset called the 
SMOTED dataset. They generated dataset samples 
by determining the differences between samples 
(feature vector) and their related nearest neighbors, 
multiplied these dissimilarities by a random number 
between 0 and 1, and created a new feature vector 
by adding these numbers. At this time, the synthetic 
examples are generated, and the minority class is 
over-sampled by introducing synthetic samples 
alongside the line sections between two specific 
features. These new samples are joined by any or all 
of the k-nearest neighbors (k minority class nearest 
neighbors). 

A significant aspect of our experiments in 
relation to SMOTE is the opportunity for 
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combining over-sampling methods with other 
classifiers as ensemble method. As mentioned by 
[5], SMOTE has upward compatibility with 
classifiers. This advantage allows authors and 
researchers to utilize this technique for over-
sampling and then combining with other classifiers. 
This work proposes a new ensemble method based 
on SMOTE and Rotation Forest. Rotation Forest is 
a strong ensemble-based classifier [7] and is 
described in the methodology section. 

1.1 Similar works and related methods 

Previous studies have aimed to improve the 
accuracy of classifiers in a similar manner, and we 
have compared these studies with our own work. 
The first such ensemble method is SMOTE-
Boosting. [8] combined SMOTE with standard 
boosting and analyzed the degree to which 
SMOTE-Boosting can improve the classification 
accuracy with boosting to avoid misclassification. 
Standard boosting creates equal weights for all 
misclassified samples [9] but not hold original 
information about data. SMOTE-Boosting enhances 
the sampling weights in the minority class. The 
achievements of SMOTE-Boosting are high 
classifier recall and precision.  

Another ensemble classifier is a machine learning 
classifier called BAGGING (Bootstrap 
AGGregatING) [10]. SMOTE-Bagging [11] is the 
ensemble classifier that generate samples by 
bootstrapping (automatic) samples in the original 
dataset and forcing each sample to create an 
essential member [12, 13]. [13] compared SMOTE-
Boosting and SMOTE-Bagging and noted that 
ensemble methods, such as boosting and bagging, 
are useful for improving the accuracy of classifiers 
by combining pre-processing techniques. [14] 
proposed an ensemble classifier called SMOTE-
Random subspace. This method creates a randomly 
selected feature subset instead of modifying the 
training samples (Adaboost) using the training data. 

To prove and clarify the validness of proposed 
new method in compare with exist ensemble 
methods, we applied our methods on twenty binary 
datasets of KEEL repository datasets [15, 16] and 
compare performance at data level in precision, 
recall, Cohen’s kappa Coefficient ,False Negative 
rate ,AUC , and RMSE. 

1.2 Motivation and Justification 

Regarding the motivation and justification of this 
work, we asked five significant questions: 

a) What is the main definition of the class 
imbalance problem in machine learning? 

b) Why is class imbalance a significant 
problem in machine learning? 

c) How we can improve the binary 
classification accuracy of a classifier? 

d) Why the ensemble methods have efficient 
performance for tackle class imbalanced problem? 

e) Why Rotation Forest algorithm can be 
better base classifier in ensemble method? 

The main definition of the class imbalance 
problem in machine learning is the problem in one 
classification type (binary classification) when the 
total number of members in one class is 
substantially different from the number of members 
in the other class [4, 5, 17, 18]. This problem is 
particularly severe at various practical boundaries, 
including anomaly detection [19], fraud detection 
[20], oil spilling detection [21, 22], and medical 
diagnosis [23, 24]. 

In machine learning approaches, the class 
imbalance problem is divided into two groups: the 
data level and algorithmic level [4, 25]. The data 
level includes over-sampling, under-sampling, and 
hybrid sampling, and the algorithmic level includes 
cost adjustment, the decision threshold, and 
probabilistic estimation [23, 26]. We focus on the 
data level because the motivation of our work is to 
improve the accuracy of classifiers at the data level. 
The accuracy improvement depends on the 
classifier. Based on ensemble learning, in this work, 
we combined the SOME and Rotation Forest, as 
ensemble techniques have flexibility with learning 
algorithms [13] to improve overall accuracy. 

[27, 28] categorized reasons of ensemble 
constructing into three fundamental reasons are 
Statistical, Computational and Representational. 
Ensemble methods can reduce the bias and variance 
of learning algorithm and have efficient 
performance in tackling class imbalanced problem 
[13, 27-34]. Between well-known ensemble 
methods (Rotation forest, Bagging, Boosting, and 
Random subspace) we chose rotation forest as base 
classifier in our ensemble methods based on below 
advantages [7, 35-39] 

•Build accurate and diverse classifier  

•Fix and hold information about training data 
through constructing classifier ( no data lost-the key 
benefit)  

•Principle Component Analysis (PCA) is utilized to 
extract the model and transform the data (PCA 
increase building accurate and diverse classifier 
through feature extraction) 
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•Model of base classifier: decision tree ( the main 
idea for calling “forest”) 

The main limitation of the introduced method is a 
noisy setting. SMOTE-RO-FO was considered on 
noise-free datasets as SMOTE-Boost; despite 
SMOTE-Bagging and SMOTE-RS being robust to 
address noisy datasets.. 

2 METHODOLOGY 

We proposed a SMOTE-Rotation Forest 
method, called SMOTE-RO-FO, for ID 
classification. This approach is an ensemble method 
with one over-sampling algorithm (SMOTE) [40] 
and one ensemble-learning algorithm (Rotation 
Forest). Rotation Forest is a classifier based on 
feature extraction which transforms the dataset with 
preserving all information about original data [7]. 
Principal Component Analysis (PCA) through the 
performance transforms the data by: 

•Subset of the samples (instances) 

•Subset of the classes (two classes) 

•Subset of the features 

The proposed methodology for addressing 
class imbalanced problem divided into three steps: 

Step 1: Let give X: the objects in the training 
dataset  

X = [X1, X2… Xn] T: Data point with n features: 

( nN × ) matrix as equation 1 
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Y = [Y1, Y2, … , YN]T : class labels with C 

imbalanced classes: 1)N( × matrix 

Cm: Number of minority classes where   

L: Number of classifiers in the ensemble  

F: the feature set 

Step 2: prepare rotation matrix 

For i = 1, 2… L (construct the training set for 
classifier Di by creating N synthetic examples from 
minority class Cm using the SMOTE algorithm) 

For j = 1, 2… k (split F into k subsets where each 

kn =M  has features) 

 jiX ,

: Dataset X for the features in jiF ,

 (
1,1

X : 

dataset X for the features in
1,1

F ) – Figure 1 shows 

the feature sets 

 
Figure 1: Feature Sets Splitting 

 

Step 3: eliminate random subset of classes from  

jiF ,

  

Select a bootstrap sample from jiX ,

to obtain new 

samples jiX
,

′  

Run PCA on jiX ,

′   using only M features 

Arrange the principle components for all j to obtain 
rotation matrix 

Rearrange the rows of  
iR

 (as equation 2) to match 

the order of features in F and obtain  
a

i
R  

Build classifier 
i

D  using 
a

i
XR  as a training set 
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( 2 )  

 In step 1 we insert training data as 

( n×N  ) matrix and set the classes of this training 

data as  1)( ×N  matrix with Cm minority class. In 

step 2, we create rotation matrix which is necessary 
for rotation forest algorithm. Before preparing 
rotation matrix, the synthetic datasets which is 
constructed by SMOTE, inserted and then split into 
f feature sets (figure 1). For eliminating random 
subset of classes through splitting, at the next step 
we select bootstrap samples which are created by 
split data and obtain new bootstrapped samples. 
After this, Principle Component analysis is run to 
transform data and increase constructing accurate 
classifier by arranging and rearranging PCA. Now 
we built ensemble classifier. 

[35] adapted rotation forest algorithm for 
solving regression problem. In this work, we 
ignored the regression problem and focus on class 
imbalanced problem.   

3 EVALUATION MEASUREMENTS  

3.1  Confusion Matrix 

The confusion matrix is a straightforward 
technique for evaluating classifier performance in 
the binary classification (Table 1). It records the 
resulting correctly and incorrectly recognized 
examples of each class. The first column provides 
the class labels (Negative, Positive) of samples, and 
the first row of the table provides the class label 
predictions (true rate, false rate). 

 
Table 1: Confusion Matrix  

Predicted class 

confusion matrix (Positive) (Negative) 

 

Actual 

class 

Positive 
class 

TP FN 

Negative 

class 

FP TN 

 

The confusion matrix reports the validity 
of the classification models. The quality and 
validity measures of the classification are built on 
the confusion matrix.  

Table 1 presents the four important 
categories. The first category is True Negative 
(TN), i.e., negative examples that are classified 
correctly as negative. The second category is True 
Positive (TP), i.e., positive examples that are 
classified correctly as positive. The third category 
is False Negative (FN), i.e., positive examples that 
are classified incorrectly as negative. The fourth 
category is False Positive (FP), i.e., negative 
examples that are classified incorrectly as positive 
[23, 26, 27]. These rates are given by Equations 
(3)-(6). 

TN = True Negative rate (Percentages of 
negative belongings that classified correctly and 
belonging to negative class) = specificity  

TP = True Positive rate (Percentages of 
positive belongings that classified correctly and 
belonging to positive class) = recall = sensitivity 

FN = False negative rate (Percentages of 
positive belongings that misclassified and 
belonging to negative class) => it will show which 
classifier is better to choose (FN with low 
percentage value is considered).  

FP = False positive rate (Percentages of 
negative belongings that misclassified and 
belonging to positive class) = fall out 

 

FPTN

TN

rate
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(4) 

TPFN

FN

rate
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+
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( 5 )  
TNFP

FP

rate
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+

=

 

(6) 

 

3.2 Classifier Accuracy Evaluation 

The accuracy evaluation is a prepared 
metric for ID that is suitable for majority class 
prediction but not for minority class prediction. 
Thus, more practical evaluation metrics, such as 
precision, recall, F-value, and area under the curve 
(AUC), are required. The accuracy of the classifier 
is determined by Equation (7). 

 

TNFPFN TP

TNTP

 

+++

+

=AccuracyClassifier  ( 7 )  

 Precision, Recall, F-value defined as 
equations (8)-(10) 
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The F-value (F-score) defined by Equation 

(10) is a metric for comparing the precision and recall. 

The tradeoff of recall and precision is a significant 

factor in the F-value measurement. Precision is in 

conflict with recall, and the precision decreases when 

both TP and FP increase (see equation (8)). In this 

case, F-value is used to define the goodness of the 

classifier or learning algorithm (Precision, recall and 

F-score did not indicate in this paper). 

3.3 Kappa Statistic 

Kappa statistic or Cohen’s Kappa 
coefficient (CKC) which introduced by [41] is a 
statistical metrics to assess measuring agreement 
[42-45], intera-rater reliability [46-48]. In a simple 
way, the equation of Kappa statistic indicates by 
Equation (12). 

agreement chance -1

agreement chance -agreement observed
 =κ  ( 1 2)  

If metric agrees by chance purely, there is 
not really agreement at all despite, only agreement 
by expected by chance consider as a true 
agreement. Kappa is a metric of true agreement. 
There is a proportion for every observed and chance 
agreement which proportion of any possible beyond 
chance agreement as an achieved beyond chance 
agreement [48].  

The magnitude range of kappa is diverse 
usually between 0 and 1. The value 1 indicates 
perfect agreement and represents the raters agreeing 
in own classification of every case. The value 0 
indicates agreement not better than which expected 
by chance. In clinical and medical context rarely 
these ranges are from -1 to 1. The negative range 
means if two raters are considered, although with 
more than two raters it will be consider as possible 
as minimum higher value [49]. We used CKC 
diagram (Figures 2-3) to analysis of our classifier 
ensembles [50]. 

3.4 Mean Absolute Error (MAE) and Root 

Mean Square Error (RMSE) 

MAE measures the tradeoffs between 
predictors (unknown outputs) and outcomes 
(known outputs) as the average value of the errors. 
MAE ignored their direction. In other words, MAE 
is a metric which measures differences between 
predicted results and observed results. Despite 
some researchers [51, 52] argued the advantages of 
MAE in assessing average model performance but 
other authors [53-55] used RMSE as standard 
metric in model error. 

RMSE measures as MAE but has 
advantages in large error. RMSE has strong affect 
in large errors (penalize large errors). Both of these 
metrics have range between 0 to infinity. Result 
value which is closer to 0 is perfect values. We 
utilized both of MAE and RMSE as metric tools for 
performance of classifiers to represent the variety 
between them. Equations 12, 13 are interpreted 
these metrics. Which e shows error rate and n 
indicates number of samples. 
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4 EXPERIMENTS AND RESULTS  

The performance of SMOTE-RO FO is 
examined and compared with the three well-known 
ensemble methods illustrated by table 5. The 
experimental results for the twenty IDs illustrated 
in figures 4-7 for the average accuracy of 
classifiers, average AUC for the receiver operating 
characteristic (ROC) [56, 57] average CKC, and 
average of RMSE.  

AUCs for the applied methods indicate the 
SMOTE-RO-RO has the highest accuracy among 
the classifiers considered. The AUC is a 
measurement tool for determining the power of a 
test [58, 59]. The AUC has a statistical meaning for 
the Wilcoxon test of ranks [60]. The CKC and 
AUC are the main evaluation method in this work, 
defined by Equations (12) and (14) because in this 
work we focus to improve accuracy with low error 
rate. The area under the ROC indicates which 
model performs better on average. In other words, a 
larger AUC is desired.  
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4.1 Datasets 

All twenty datasets are downloaded from 
KEEL repository dataset [15, 16] and have not any 
missing value. Imbalanced Ratio (IR) of these 
datasets is between 1.82 and 8.79. 

 

4.2 Methods and Options 

Tables 2 - 4 show all parameters about 
setting, methods and options are applied in WEKA 
[61-64].  

 
 

Table 2: parameters specification for SMOTE 

Parameters 

Class value: 0 (Auto – detected the non-empty minority class) 

Nearest neighbours: 5 (The number of nearest neighbour to use) 

Percentage: 100, 200, 300, 400, and 500 (The percentage of 

SMOTE instances to create) 

Random seed: 1 (Seed used for random sampling) 

 
Table 3: Parameters specification for C4.5 

Parameters 

Prune: true (Pruning is performed) 

Confidence factor: 0.25 (The confidence factor used for pruning 

– small values incur more pruning) 

MinNumObj: 2 ( Minimum number of instanced per leaf) 

UseLaplace: false 

 
Table 4: Parameters specification for Rotation Forest, 

AdabosstM1, Bagging and Random Subspace 

Rotation Forest 

Number of features in subset: 3 (Rest is by default in WEKA) 

Number of iteration: 10 

AdaboostM1 

Number of iteration: 10 (Rest is by default in WEKA) 

Bagging 

Bag size percentage: 100 

Number of iteration: 10 (Rest is by default in WEKA) 

Random Subspace 

Sub Space size: 0.5 

Number of iteration: 10 (Rest is by default in WEKA) 

 

4.3 Kappa-Error Diagram 

Figures 2-3 show the kappa error in 
compare with RMSE for four ensemble methods, 
which applied for twenty imbalanced datasets. In 
Kappa-error, the small value of kappa shows the 
more divers. The results indicate that SMOTE-RO 
FO is not more diverse as other ensembles but is 
most accurate classifier. Figure 2 illustrate the best 

domain for ensemble classifiers with most accurate 
value and less error value. SMOTE –RO FO is 
similar to SMOTE Bagging but more accurate. 
Figure 3 shows 3D view of figure 2 and clearly 
indicates SMOTE-RO FO output is in the best 
domain with highly accurate values. 

 

 
Figure 2: Scatterplot of RMSE and CKC 

 

 

 
Figure 3: 3D scatterplot of Methods, RMSE and CKC 

 

4.4 Results 

Figure 4 shows average of overall 
accuracy of ensemble methods performance in N= 
100%, 200%, 300%, and 400% of sample size. 
SMOTE-RO FO has more accurate values in 
compare with other ensemble methods. Totally, the 
acceptable and efficient accuracies for SMOTE-RO 
FO obtained in N= 200%, 300, and 400%. Figures 
5-6 plotted AUC and CKC output for twenty 
datasets. We compared these metrics together for 
introduced ensemble method to show performance 
is better on average with large AUC and closer 
CKC magnitude to 1. Figure 6 shows the average 
values for CKC which this value of CKC for 
SMOTE-RO FO is closer to 1. Figure 7 also 
indicate that result values of RMSE is closer to 0 
(perfect output) for SMOTE RO-FO performance. 
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These average magnitudes present low error and 
high agreement of SMOTE-RO FO performance 
and outputs. We showed four evaluation metrics by 
average values: Accuracy, AUC, CKC, and RMSE. 
The evaluation results indicated that our introduced 
method significantly outperformed the other 
ensemble methods. Also experimental results 
confirmed the effectiveness of our approaches and 
achieved higher accuracy for both minority and 
majority classes than other techniques.   
 

 
Figure 4: Average of overall accuracy 

 

 
Figure 5: Average of AUC 

 

 
Figure 6: Average of CKC 

 
 

 
Figure 7: Average of RMSE 

 

5 THE LIMITATION OF USING 

ACCURACY AND ERROR RATE 

METRICS 

[3] noted that the ROC metric tools 
consider different classification errors to be equally 
significant. However, these metrics are suspect 
when the class distribution is strongly biased 
toward the majority class. For this reason, we test 
false negative rate measurement to prove the 
evaluation results. We compare average of FNrate 
for our method and other ensemble methods. In this 
case, if the value of FNrate is closer to 0, it is better 
to choose the machine learning algorithm as the 
classifier [17, 65]. Equation (15) based on results in 
figure 8 indicates average of FNrate for SMOTE-
RO FO is less than FNrate for other methods in 
average. On the other hand, equation (15) and 
figure 8 indicate that type II error of SMOTE-RO 
FO is less than other methods.  

 
Figure 8: Average of False Negative Rate for ensemble 

methods 

   Methods)(Other  
rate

FN < FO)-RO- SMOTE (rateFN  ( 1 5 )  
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6 ABBREVIATIONS AND ACRONYMS 

SMOTE: Synthetic Minority Over-
sampling Technique; AdaBoost : Adapted Boosting 
Algorithm; Bagging: Bootstrap aggregating; PCA: 
Principle Component Analysis; ROC: Receiver 
Operating Characteristic; K-NN: K – Nearest 
Neighbor classifier; AUC: Area Under ROC Curve; 
FN: False Negative rate; CKC: Cohen’s Kappa 
Coefficient; RMSE: Root Mean Square Error; 
KEEL: Knowledge Extraction based on 
Evolutionary Learning; WEKA: Waikato 
Environment for Knowledge Analysis. 

7 FUTURE WORK 

Potential future directions of this work 
include (i) extending the introduced method to 
compare with other over-sampling, under-sampling 
techniques, support vector machine, and neural 
network, (ii) evaluating with more evaluation 
metrics (Precision, Recall, F-Score) in imbalance 
domain, (iii) implementing SMOTE RO FO to 
imbalance datasets with IR more than 8.79, and 
500% of its original size. 

8 SUMMARY OF RESULTS 

Table 5 shows the summary of different 
ensemble methods which performed in CIP for 
twenty imbalance datasets. H indicates High, L 
indicates low, VH indicates very high, and VL 
indicates very low. 

Table 5: summary of results 

Study Accuracy AUC CKC RMSE 
FN 

rate 

SMOTE-Boost 

(Chawla, 

Nitesh V 

,2003) 

L L H H H 

SMOTE-

Bagging(Wang, 

Shuo, 2009) 

H H L L L 

SMOTE-RS 

(Huang, Hsiao-

Yun, 2012) 

H H L L L 

SMOTE-RO 

FO (Proposed 

method) 

VH VH VL VL VL 

. 

9 CONCLUSIONS 

In this work we analyzed the behavior of 
four ensemble methods to address class imbalance 
problem in data level for binary class. Our results 
show that the novel ensemble method in practice 
for twenty imbalanced datasets, obtained effective 
and accurate results. On the other hand, our 
introduce ensemble method (SMOTE-RO FO) 
established as ensemble method to obtain high 
accurate classifier. The SMOTE-RO FO method 
successfully used the benefits from SMOTE and 
Rotation Forest algorithm in class imbalanced 
problem. Which Rotation Forest improved the 
accuracy of classifier by focusing on class samples 
and SMOTE algorithm improved the performance 
of classifier in the minority of class samples. It 
should be noted that although SMOTE-RO FO is 
less diverse in general but has most accurate value 
and less error rate. Acceptable results for SMOTE-
RO FO obtained in N= 200%, 300% and 400% of 
sample size. In compare with performance of other 
ensemble methods, SMOTE-RO FO is similar to 
SMOTE-Bagging but more accurate. Totally, in 
average SMOTE-RO FO can address class 
imbalance problem with high overall accuracy, 
better AUC, efficient CKC, and lower FNrate (type 
II error) in performance. The evaluation results are 
proven together and justified validness of 
introduced novel ensemble method. 
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