
Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

133

A STUDY ON HUMANIZING SOFTWARE TEST EFFORT

AND QUALITY

Dr N.SRINIVASAN

Professor, Department of Computer Applications
Sathyabama University,Chennai

E-Mail: professorsrini@gmail.com

ABSTRACT

For improving software development processes with the goal of developing high-quality software within
budget and planned cycle time, Capability Maturity Model (CMM) has become a popular methodology.
Prior investigation focusing on CMM level 5 projects, has identified many factors as determinants of
software development effort, quality, and cycle time. Using a linear regression model based on data
collected from different CMM level 5 projects of reputed organizations, that high levels of process
maturity, as indicated by CMM level 5 rating, reduce the effects of most factors that were previously
believed to impact software development effort, quality, and cycle time were found. The only factor found
to be significant in determining effort, cycle time, and quality was software size. Testing is more than just
debugging. The purpose of testing can be quality assurance, verification and validation, or reliability
estimation. Particularly regression testing is an expensive, but important, process. Unfortunately, there may
be insufficient resources to allow for the re execution of all test cases during regression testing. In this
situation, test cases are needed to be prioritized. Regression testing improves the effectiveness of regression
by ordering the test cases so that the most beneficial are executed first. There are many studies on
regression test case prioritization which mainly has focuses on Greedy Algorithms(GA). However, it is
known that these algorithms may produce suboptimal results because they may construct results that denote
only local minima within the search space. By contrast, meta heuristic and evolutionary search algorithms
aim to avoid such problems. This paper addresses the problems of choice of fitness metric, characterization
of landscape modality and determination of the most suitable search technique to apply. The empirical
results replicate previous results concerning GA. The results show that GA perform well, although Greedy
approaches are surprisingly effective given the multimodal nature of the landscape.

Keywords: Capability Maturity Model (CMM).Greed Algorithms (GA), Kilo Source Lines Of Code
(KSLOC), Capability Maturity Model Integration (CMMI), Function Points (FP), Total
Quality Management (TQM).

1. INTRODUCTION

 The main goal of every software development
organization is to develop software to meet clients
functional needs with acceptable levels of quality,
within schedule and cost estimates,. For this, two
major contributions are focused. First, it is
necessary to identify key project factors such as
software size that determine software project
development outcomes for projects. Second, it is
to provide benchmarks for effort and quality based
on project data. The results suggest that estimation
models based on project data are portable across
multiple organizations. The object-oriented
software development process is increasingly used
for the construction of complex distributed
systems. In [3], behavior models have long been
recognized as the basis for systematic approaches

to requirements capture, specification, design,
simulation, code generation, testing, and
verification. In general, conformance testing of
concurrent applications, testing of all possible
invocation orderings is unrealistic due to a
combinatorial explosion in the number of
orderings permitted by the specification. User-
defined test objectives constitute a way of limiting
the number of test cases to be produced by test
synthesis from a specification. Test objectives can
be described in the form of high-level test
scenarios, which are then easily understood as
behavioral test patterns by developers. The
advantages of using test case synthesis according
to test objectives for both centralized and
distributed applications are the following:

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

134

1.1 Productivity Gain

 A test objective specifies the essential aspects
of a test, independent of low-level design and
implementation choices. While defining a high-
level test scenario is not difficult when the main
classes are identified, refining and adapting it to
the final software product is a difficult process.
Automating the completion of the test objective
with the low-level design details obtained from the
UML model holds out the promise of significant
productivity gain. The main expected behaviors
can easily be represented as test objectives. Such
test objectives can be derived from use case
scenarios, contributing to the overall consistency
of the development process.

1.2 Version/Product Independence

Test objectives can be chosen to be
independent of software versions and variants.
This is particularly important in a product-line
context, since it enables generic test objectives to
be defined for an entire product line. Regression
Testing is frequently applied but expensive
maintenance process that aims to (re)verify
modified software. The principle that the element
with the maximum weight is taken first, followed
by the element with the second-highest weight,
and so on, until a complete, but possibly
suboptimal, solution has been constructed. Greedy
search seeks to minimize the estimated cost to
reach some goal. It is simple, but in situations
where its results are of high quality, it is attractive
because it is typically inexpensive both in
implementation and execution time. The 2-
Optimal GA is an instantiation of the K-Optimal
Greedy Approach [12] when K ¼ 2. The K-
Optimal approach selects the next K elements that,
taken together, consume the largest part of the
problem. In the case of K-Optimal Additional
Greedy, it is the largest remaining part of the
problem that is selected. In this study, a 2-Optimal
Additional GA was used.

2. LITERATURE REVIEW

 The impacts of the factors from prior research,
which have been used to estimate development
effort and quality is summarized.

2.1 Software Development Effort

 Software development effort typically
includes human effort expended for high-level
design, detailed design, coding, unit testing,
integration testing and customer acceptance

testing. Effort is often regarded as a surrogate for
software development cost since personnel cost is
the dominant cost in software development. Many
models is such as COCOMO [7], PRICE-S [8],
ESTIMACS [9], SEER-SEM [10] have been
developed to estimate software development costs.
Effort-estimation models such as COCOMO
primarily use the number of source lines of code
(SLOC) as the basis for effort estimation [10].
Thus, effort in man-months is expressed as a
function of Kilo Source Lines cf Code (KSLOC).
The COCOMO II model, which is the current
version of COCOMO, uses 17 effort multipliers
and five scale factors to estimate development
effort based on project size. Some of these effort
multipliers such as application experience (APEX)
and language and tool experience (LTEX) have
been found to be insignificant [7]. An alternative
metric for SLOC is Function Points (FPs), where
the FP is the product of the number of function
counts and the processing complexity adjustment
[11]. An excellent summary of early models to
estimate software development effort has been
provided by Mohanty [12]. For a software system
with 36,000 lines of machine language executable
instructions and well-defined specifications for all
independent variables, the various models
described in [34] have predicted costs ranging
from $300,000 to $2,500,000 and development
times ranging from 13 to 25 months. Kemerer [15]
compared software estimation models such as
COCOMO[7],SLIM[13], FPs[14] and ESTIMACS
[16] using data from 15 projects with an average
size of a little under 200 KSLOC and found that
various estimation models resulted in average
effort estimation error rates ranging from 85 to 772
percent. This wide range has been attributed to the
differences in productivity between the test
environment and the environments in which the
models were calibrated, suggesting wide variations
in software development outcomes across
organizations. Also, differences in application
domain influenced the accuracy of these estimates.
For example, the projects in the data set used in
[16] were primarily business applications with 12
out of 15 projects implemented in COBOL. In
contrast, the COCOMO database consisting of 63
projects had only seven business applications [32].
A study by Maxwell et al. [24] found that a
relatively small set of factors explained the
required effort to complete a software project (size
in SLOC), and productivity factors such as
application category, language, required reliability
and programming practices. This study also found
that organization specific models predicted

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

135

required effort more accurately than general
models. It was therefore important to identify
organization-level factors that affected software
development costs. Banker and Slaughter found
that data complexity, defined as the number of
data elements per unit of application functionality,
significantly increased the enhancement cost of
software. Specifically focusing on the impact of
capability maturity, improvements in process
maturity were found to be associated with
reductions in effort [4], [25]. According to an SEI
report[38], by adopting Capability Maturity Model
Integration (CMMI) based process improvements,
Boeing Australia had a 60 percent reduction in
work, whereas Lockheed Martin achieved a 30
percent increase in software productivity. In [26]
the authors found that process improvements were
not significantly related to development costs.
Perhaps reflecting on the lack of theory on
software estimation, a number of studies found
success at effort estimation by simply using
analogies to compare the features of a new project
with earlier projects [8], [22].

2.2 Software Quality

 Initially software quality was defined as
conformance to a standard or a specification.
Later, the definition was changed to adapt to
highly dynamic business environments. In 1991,
the International Organization for Standardization
adopted ISO 9126 as the standard for evaluating
software quality. This standard defines quality as
“the totality of features and characteristics of a
product or service that bears on its ability to satisfy
given needs” ISO 9126 compliments ISO 9001,
which deals with the quality assurance of the
process used for developing products. A
commonly used definition of software quality is
the density of post release defects in a software
program, which is measured as the number of
defects per thousand lines of code [6], Gaffney
[18] reported that the best estimator for the number
of errors in a software module was the number of
lines of code. Krishnan and Kellner [23] also
confirmed this finding. Harter and Slaughter[22]
found that product complexity significantly
lowered software quality, which is somewhat
contrary to [18], which did not find software
complexity affecting error rates significantly.
Banker and Slaughter[37] found that software
volatility, defined as the frequency of
enhancements per unit of functionality in a given
time frame to be a significant predictor of software
errors. Data complexity is defined as the number
of data elements per unit of application

functionality also increased the number of defects.
They also found that structured programming
techniques moderated the effects of volatility and
data complexity on software errors. Using a game-
theoretic model Austin suggested that under
schedule pressures, developers were likely to
compromise on quality. Krishnan et al. [26] found
personnel quality, which is measured using peer
and supervisor assessments, to be a significant
estimator of software quality. They also found that
front-end investments, which improved customer
requirements analysis, enhanced quality. A
number of approaches have been proposed to
improve software quality .These include (TQM),
Six Sigma [3], and CMM [1]. The basic idea
behind in all these approaches is to identify ways
to improve quality in a given situation. The
relationship between process improvements and
quality has also been investigated. The most
significant development in this area has been the
development of CMM [2], For example, as a
software unit at Motorola improved from CMM
level 2 to level 5, the average defect density
reduced from 890 defects per million assembly-
equivalent lines of code to about 126 defects per
million assembly-equivalent lines of code [6]. In
an empirical study using 33 software products
developed over 12 years by an IT company, Harter
et al. [4], found that a one percent improvement in
process maturity was associated with a 1.589
percent increase in product quality. In another
study, Krishnan and Kellner [23] found that
process maturity and personnel capability to be
significant predictors of the number of defects.

3. RESEARCH METHODOLOGY

3.1 Software Development Effort:

 Software development effort typically
includes human effort expended for high-level
design, detailed design, coding, unit testing and
integration. This is attributed to the reduction in
rework due to improved processes thereby leading
to reduced, testing and customer acceptance
testing. Effort is often regarded as a surrogate for
software development cost since personnel cost is
the dominant cost in software development. Many
models such as COCOMO, PRICES, ESTIMACS,
SEER-SEM have been developed to estimate
software development costs. Effort-estimation
models such as COCOMO primarily use the
number of (SLOC) as the basis for effort
estimation.

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

136

3.2 Software Quality

 Software quality is defined as “the totality of
features and characteristics of a product or service
that bears on its ability to satisfy given needs”. It
deals with the quality assurance of the process
used for developing products. A commonly used
definition of software quality is the density of post
release defects in a software program which is
measured as the number of defects per thousand
lines of code. A number of approaches have been
proposed to improve software quality. These
include TQM, Six Sigma, and CMM. The basic
idea behind all these approaches is to identify
ways to improve quality in a given situation. The
relationship between process improvements and
quality has also been investigated [2]. The most
significant development in this area has been the
development of CMM.

3.3 Design

 It can be seen that prior research on software
process improvement has focused on finding
evidence of reduced effort, improved quality and
faster cycle times from software process
improvements. The most important factors
identified from prior research on software
development effort and quality, while focusing
specifically on CMM level 5 projects

3.4 Development

 It includes effort during high level design,
detailed design, coding, unit testing, integration
testing and customer acceptance testing.

3.5 Product Quality

 The metric used for product quality (QUAL)
is defects, which were measured as the total
number of defects that escaped to the customer and
were detected during the first three months of
production use of the software. A period of three
months is used, as it is typically the warranty
period of newly developed software and the defect
data for the first three months is generally tracked
by software development organizations [2].

3.7 Product Size

 The actual lines of codes developed,
excluding comments and blank lines are measured
in KSLOC to represent product size. Although the
use of KSLOC is in line with prior research a
limitation of this measure is that it is usually not
consistent across programming languages.

3.8 Product Complexity

 Product complexity (COMPLX) is measured
using two items on a seven point Likert scale,
ranging from low to high data complexity and
decision complexity.

3.9 Schedule Pressure

 Schedule pressure (SP) is defined as the
relative compression of the development schedule
mandated by management compared to the initial
estimate provided by the development team based
on project parameters [5]. The size of a team at its
peak is considered a good proxy for the relative
size of the team compared to other projects. Also,
the peak team size is easier to measure than the
average team size over the life of the team.
Therefore, TEAM is measured as the peak team
size. SP=(Team estimated cycle-time Management
mandated cycle-time)=Team estimated cycle-time.

3.10 Personal Capability

 The technical skill of each project team is
computed as the mean of the five items used to
measure the technical capabilities of the team
members [6]. Team skill is calculated as the mean
of the three items used to measure individual team
skills. Finally, it is also included that an overall
item is to obtain the supervisor’s average rating of
the team member.

3.11 Project Supervisor Experience

 To account for the management skills of
project supervisors, their experience can be used
in the software industry (INDEXP), as well as
their experience in managerial roles (MGROL)
within the industry. Both measures are used to
examine the impact of managerial quality on
software outcomes [7].

3.12 Greedy Algorithm

 A GA is an implementation of the “next best”
search philosophy. It works on the principle that
the element with the maximum weight is taken
first, followed by the element with the second-
highest weight, and so on, until a complete, but
possibly suboptimal, solution has been
constructed. Greedy search seeks to minimize the
estimated cost to reach some goal. It is simple, but
in situations where its results are of high quality,
it is attractive because it is typically inexpensive
both in implementation and execution time.
Consider the example of statement coverage for a

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

137

program containing m statements and a test suite
containing n test cases. For the GA, the statements
covered by each test case should be counted first,
which can be accomplished in O(mn) time, then
the test cases should be sorted according to the
coverage. In the second step, quick sort can be
used, thereby increasing the time complexity by
O(n log n). Typically, m is greater than n, in which
case, the cost of this prioritization is O(mn). The
Additional GA requires coverage information to be
updated for each unselected test case following the
choice of a test case. Given a program containing
m statements and a test suite containing n test
cases, selecting a test case and readjusting
coverage information has cost O(mn) and this
selection and readjustment must be performed
O(n) times. Therefore, the cost of the Additional
GA is O(mn2) Note that, after 100 percent
coverage has been achieved, there are possible
remaining unprioritized test cases that cannot add
additional coverage. These remaining test cases
could be ordered using any algorithm. In this
study, the remaining test cases were ordered by
reapplying the same Additional GA. However,
after 100 percent coverage has been achieved, no
further fitness improvement will be possible. In the
case of K-Optimal Additional Greedy, it is the
largest remaining part of the problem that is
selected. In this research, a 2-Optimal Additional
GA was used, hereinafter referred to as 2-Optimal”
Algorithm: The “2-Optimal” GA for shortness.
The K-Optimal approach has been studied in the
area of heuristic search to solve the Traveling
Salesman Problem (TSP) that is defined as “find
the cycle of minimum cost that visits each of the
vertices of a weighted graph G at least once”.
Extensive experiments suggest that 3-optimal tours
are usually within a few percent of the cost of
optimal tours for TSP. As shown by Skiena, for K
>3, the computation time increases considerably
faster than solution quality. The 2-Optimal
approach has been found to be fast and effective
.Again, consider statement coverage: The 2-
Optimal Algorithm updates coverage information
for each unselected test case following the choice
of each pair of test cases. Given a program
containing m statements and a test suite containing
n test cases, selecting a pair of test cases and
readjusting coverage information has cost O(mn2)
and this selection and readjustment must be
performed O(n) times. Therefore, the time
complexity of the 2-Optimal Algorithms is
O(mn3).

3.13 Generic Algorithm

 In Generic Algorithm procedure, which
includes initializing a population P, evaluating
individuals, selecting pairs of individuals that are
combined and mutated to generate new
individuals, and forming the next generation. The
search proceeds through a number of generations
until the termination condition has been met. The
initial population is a set of randomly generated
individuals. Each individual is represented by a
sequence of variables / parameters (called
genes),known as the chromosome. The
chromosome encodes a possible solution to a
given problem. The encoding can take many
forms, for example, binary, real-valued, or
character-based. A biased selection depending on
the fitness value decides which individuals are to
be used as the “parents” for producing the next
generation. Crossover is a genetic operator that
combines two individuals (the parents) to produce
a new individual (the offspring). A probability of
crossover determines whether crossover should be
performed. The mutation operator alters one or
more gene values in the individual, depending on
the probability of mutation. A GA is not
guaranteed to converge upon a single solution.
The termination condition is often specified as a
maximal number of generations, or as a given
value of the fitness function that is deemed to be
sufficient. There were 1000 small test suites and
1000 large test suites in many programs. All test
suites were obtained from the same infrastructure
as the programs. In order to reduce the
computation time for the experiments, without
significant loss of generality, half of these test
suites were used in the experiments. Box plots of
the fitness metrics APBC, APDC, and APSC for
all programs with small test suites. Each row of
subfigures indicates the results for one program.
They increase in program size, the differences
between the algorithms become more evident. For
small programs, the algorithms show almost
identical performance. The mean fitness value for
each program revealed that the GA is the worst
and the Genetic Algorithm is slightly better than
the others. First, consider the small programs with
small test suites. The ANOVA results for these
experiments are summarized.

4. ANALYSIS AND DISCUSSIONS

 Table 4.1

 Table 4.2

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

138

4.1 ANOVA Analysis and LSD Multiple

Comparisons

 The corresponding results from Table 4.1 and
Table 4.2 for the programs, with large test suites
are given. This data shows that the same results as
those produced from programs with small test
suites. That is, there is no significant difference
between Additional Greedy and the GA for small
programs and no significant difference between
Additional Greedy and the 2-Optimal Algorithm.

Table 4.3

Table 4.4

5. CONCLUSION

 In this paper, by considering the previous
research a method and a tool is proposed for the
automated production of test cases from state-
based design models of distributed software
guided by test objectives. From the practical point
of view, the specific contribution is in motivating
the test generation process with behavioral test
patterns, i.e., reusable (and incomplete) testing
scenarios. Overall, the results indicates that the
adoption of highly mature software development
processes during software development reduced
the significance of many factors such as personnel
capability ,requirements pecifications requirements
volatility and so forth. From this it can be
concluded that increased adoption of best practices
by client organizations that were to a great degree
influenced by the software development
organizations, thereby leading to well-defined
requirements, and software development
organizations leveraging their expertise from prior
engagements in assisting clients in requirements
gathering and specification. The data and analysis
indicate that the Greedy Algorithm performs much
worse than Additional Greedy, 2-Optimal, and
Genetic Algorithms overall. Also, the 2-Optimal
Algorithm overcomes the weakness of the Greedy
Algorithm and Additional Greedy Algorithm
referred to by previous authors. However, the
experiments indicate that, in terms of
effectiveness, there is no significant difference
between the performance of the2-Optimal and
Additional Greedy Algorithms. This suggests that,
where applicable, the cheaper-to-implement and
execute Additional Greedy Algorithm should be
used. The choice of coverage criterion does not
affect the efficiency of algorithms for the test case
prioritization problem. The size of the test suite
determines the size of the search space, thereby

affecting the complexity of the test case
prioritization problem. The size of the program
does not have a direct effect, but increases the
difficulty of computing fitness values.

REFERENCES

[1] L.C. Briand, Y. Labiche, and J. Cui,
“Automated Support for Deriving Test
Requirements from UML Statecharts,” J.
Software and Systems Modeling, vol. 4, no. 4,
Nov. 2005.

[2] S. Burton, J. Clark, and J. McDermid,
“Automatic Generation of Tests from
Statecharts Specifications,” Proc. First
Workshop Formal Approaches to Testing of
Software (FATES ’01), E. Brinksma and J.
Tretmans,eds.,Aug.2001,http://www.brics.dk/
NS/01/4/BRICSNS-01-4.pdf.

[3] L.D. Bousquet, H. Martin, and J.-
M.Je´ze´quel, “Conformance Testing from
UML Specifications, Experience Report,”
Proc. UML 2001 Workshop: Practical UML-
Based Rigorous Development Methods, A.
Evans, R. France, A. Moreira and B. Rumpe,
eds.,2001.

[4] D. Clarke, T. Je´ron, V. Rusu, and E.
Zinovieva, “STG: A Symbolic Test
Generation Tool,” Proc. Eighth Int’l Conf.
Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’02), J.-P.
Katoen and P.Stevens, eds., Apr. 2002.

[5] W. Damm, B. Josko, A. Pnueli, and A.
Votintseva, “A Discrete- Time UML
Semantics for Concurrency and
Communication in Safety-Critical
Applications,” Science of Computer
Programming, vol. 55, nos. 1-3, 2005.

[6] The Testing and Test Control Notation,
Version 3. Part 3: TTCN-3 Graphical
Presentation Format (GFT), ETSI ES 201 873,
parts 1 to 7 V3.0.0 (2005-03), European
Telecomm. Standards Inst., 2005.

[7] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley, 1995.B.W. Boehm et al., Software
Cost Estimation with COCOMO II. Prentice-
Hall,

[8] “True S and Price S: Software Development
and Lifecycle Estimating Models,” PRICE
Systems, 2006.

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

139

[9] “CA-Estimacs,” Computer Assoc.,2006.

[10] B.W. Boehm, Software Engineering
Economics. Prentice-Hall, 1981. Function
Point Counting Practices Manual. Int’l
Function Point Users Group, 2006.

[12] S.N. Mohanty, “Software Cost Estimation:
Present and Future,” Software-Practice and
Experience, vol.11, pp. 103-121, 1981

[13] C.A. Behrens, “Measuring the Productivity of
Computer Systems Development Activities
with Function Points,” IEEE Trans. Software
Eng., vol. 9, no. 6, pp. 648-652, Nov.1983.

[14] H.A. Rubin, “Macroestimation of Software
Development Parameters: The Estimacs
System,” Proc. SOFTFAIR Conf. Software
Development Tools, Techniques, and
Alternatives, 1983.

[15] R.D. Banker and S.A. Slaughter, “The
Moderating Effects of Structure on Volatility
and Complexity in Software Enhancement,”
Information Systems Research, vol. 11, pp.
219-240, 2000.

[16] D.R. Goldenson and D.L. Gibson,
“Demonstrating the Impact and Benefits of
CMMI: An Update and Preliminary Results,”
Technical Report CMU/SEI-2003-SR-009,
Software Eng. Inst., 2003.

[17] S.S. Vicinanza, T. Mukhopadhyay, and M.J.
Prietula, “Software-Effort Estimation: An
Exploratory Study of Expert Performance,”
Information Systems Research, vol. 2,pp. 243-
262, 1991.

[18] T. Mukhopadhyay and S.
Kekre,“Software Effort Models for Early
Estimation of Process Control Applications,”
IEEE Trans.Software Eng., vol. 18, no. 10, pp.
915-924, Oct. 1992.

[19] C.K. Prahalad and M.S. Krishnan,“The New
Meaning of Quality in the Information Age,”
Harvard Business Rev., vol. 1999, pp. 109-
118, 1999.

[20] ISO/IEC 9126-1, 2001, Int’lStandards
Organization, 1991.

[21] C. Fox and W. Frakes, “The Quality
Approach: Is It Delivering?” Comm. ACM,
vol. 40, pp. 25-29, 1997.

[22] D.E. Harter and S.A. Slaughter, “The
Cascading Effect of Process Maturity on
Software Quality,” Proc.Int’l Conf.
Information Systems, 2000.

[23] R.D. Austin, “The Effects of Time Pressure on
Quality in Software Development: An Agency
Model,” Information Systems Research, vol.
12, pp. 195-207, 2001.

[24] W.S. Humphrey, “Characterizing the Software
Process: A Maturity Framework,” IEEE
Software, vol. 5, no.3, pp. 73-79, Mar. 1988.

[25] M.C. Paulk et al., “Capability Maturity
Model, Version 1.1,” IEEE Software, vol. 10,
no. 4, pp. 18-27, July 1993.

[26] F.P.J. Brooks, The Mythical Man-Month,
second ed. Addison-Wesley, 1995.

[27] M. van Genuchten, “Why is Software Late?
An Empirical Study of Reasons for Delay in
Software Development,” IEEE Trans.
Software, Eng., vol. 17, no. 6, pp. 582-590,
June 1991.

[28] D.E. Harter, S.A. Slaughter, and M.S.
Krishnan, “Benefits of CMM Based Process
Improvements for Support Activities-An
Empirical Study,” Proc. Am. Conf.
Information Systems, 1998.

[29] A.J. Albrecht and J.E.J. Gaffney, “Software
Function, Source Lines of Code and
Development Effort Prediction: A Software
Science Validation,” IEEE Trans. Software
Eng., vol. 9, pp. 639-648, 1983.

[30] J. Baik, “Disaggregating and Calibrating the
Case Tool Variable in COCOMO II,” IEEE
Trans. Software Eng., vol. 28, no. 6, pp. 1009-
1022, Nov. 2002.

[31] J.E.J. Gaffney, “Estimating the Number
of Faults in Code,” IEEE Trans. Software
Eng., vol. 10, no. 4, pp. 459-464, July 1984

[32] H. Wohlwend and S. Rosenbaum,
“Schlumberger’s Software Improvement
Program,” IEEE Trans. Software Eng., vol.
20,no. 11, pp. 833-839, Nov. 1994.

[33] M. Diaz and J. Sligo, “How Software Process
Improvement Helped Motorola,” IEEE
Software, vol.14, no. 5, pp. 75-81, Sept.-Oct.,
1997.

[34] M.S. Krishnan et al., “An Empirical Analysis
of Productivity and Quality in Software
Products,” Management Science, vol. 46,pp.
745-759, 2000.

[35] M.S. Krishnan and M.I. Kellner, “Measuring
Process Consistency: Implications Reducing
Software Defects,” Management Science, vol.
25, pp. 800-815, 1999.

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

140

[36] M.C. Paulk, “How ISO 9001 Compares with
the CMM,” IEEE Software, vol. 12, no. 1, pp.
74-83, Jan.1995.

[37] T. Pyzdek, The Six Sigma Handbook: The
Complete Guide for Greenbelts, Blackbelts,
and Managers at All Levels. McGraw-
Hill,2003.

[38] D.E. Harter, M.S. Krishnan, and S.A.
Slaughter, “Effects of Process Maturity on
Quality, Cycle Time and Effort in Software
Product Development,” Management Science,
vol. 46, pp. 451-466, 2000.

[39] J.E. Matson, B.E. Barrett, and
J.M.Mellichamp, “Software Development
Cost Estimation Using Function Points,”
IEEETrans. Software Eng., vol. 20, pp. 275-
287, 1994.

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

141

Table 4.1 ANOVA Analysis For Small Programs With Small Test Suites

 Sum of Squares Df Mean Square F Significance

Between Groups 15430.153 4 3857.538 776.233 0.000

Within Groups 149062.028 29995 4.970 - -

Total 164492.181 29999 - - -

Table 4.2 ANOVA Analysis For The Large Program (Space) With Small Test Suites

 Sum of Squares Df Mean Square F Significance

Between Groups 75903.588 4 18975.857 2904.341 0.000

Within Groups 48969.569 7495 6.534 - -

Total 124873.157 7499 - - -

Table 4.3 Multiple Comparisons (Least Significant Difference) For Small Programs With Small Test Suites

Algorithm X
Algorithm Y

Mean-diff

(X-Y)
Significance

Greedy

A-Greedy

2-Optimal

HC

GA

-1.88928(*)

-1.57361(*)

-1.01015(*)

-1.91488(*)

000

000

000

000

Greedy

A-Greedy

2-Optimal

HC

GA

-1.88928(*)

-.31567(*)

-.87913(*)

-.02560 (*)

000

000

000

.529

2-Optimal

A-Greedy

2-Optimal

HC

GA

1.5736(*)

-.3157(*)

-.3635(*)

-.3413(*)

000

000

000

000

Table 4. 4 Multiple Comparisons (Least Significant Difference) For The Large Program (Space) With Small Test Suites

Algorithm X

Algorithm Y

Mean-DIFF

(X-Y)
Significance

Greedy A-Greedy

2-Optimal

HC

GA

7.34957(*)

7.41580(*)

.76127(*)

5.14745(*)

000

000

000

000

Greedy A-Greedy

2-Optimal

HC

GA

-7.34957(*)

-0.6623 (*)

-6.65452(*)

-2.26835 (*)

000

-478

000

000

2-Optimal Greedy

A-Greedy

HC

GA

-5.1474(*)

-2.2021 (*)

-2.26201(*)

-2.2635(*)

000

-478

000

000

2-Optimal

Greedy

A-Greedy

2-Optimal

GA

1.91488(*)

02.560(*)

.34127(*)

-.9047(*)

000

000

000

000

