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ABSTRACT 

For improving software development processes with the goal of developing high-quality software within 
budget and planned cycle time, Capability Maturity Model (CMM) has become a popular methodology. 
Prior investigation focusing on CMM level 5 projects, has identified  many factors as determinants of 
software development effort, quality, and cycle time. Using a linear regression model based on data 
collected from different CMM level 5 projects of reputed  organizations, that high levels of process 
maturity, as indicated by CMM level 5 rating, reduce the effects of most factors that were previously 
believed to impact software development effort, quality, and cycle time were found. The only factor found 
to be significant in determining effort, cycle time, and quality was software size. Testing is more than just 
debugging. The purpose of testing can be quality assurance, verification and validation, or reliability 
estimation. Particularly regression testing is an expensive, but important, process. Unfortunately, there may 
be insufficient resources to allow for the re execution of all test cases during regression testing. In this 
situation, test cases are needed to be prioritized. Regression testing improves the effectiveness of regression 
by ordering the test cases so that the most beneficial are executed first. There are many studies on 
regression test case prioritization which mainly has focuses on Greedy Algorithms(GA). However, it is 
known that these algorithms may produce suboptimal results because they may construct results that denote 
only local minima within the search space. By contrast, meta heuristic and evolutionary search algorithms 
aim to avoid such problems. This paper addresses the problems of choice of fitness metric, characterization 
of  landscape modality and determination of the most suitable search technique to apply. The empirical 
results replicate previous results concerning GA. The results show that GA perform well, although Greedy 
approaches are surprisingly effective given the multimodal nature of the landscape. 

Keywords:  Capability Maturity Model (CMM).Greed Algorithms (GA), Kilo Source Lines Of Code 
(KSLOC), Capability Maturity Model Integration (CMMI), Function Points (FP), Total 
Quality Management (TQM). 

 
1. INTRODUCTION 

 The main goal of every software development 
organization is to develop software to meet clients 
functional needs with acceptable levels of quality, 
within schedule and cost estimates,.  For this, two 
major contributions are focused. First, it is 
necessary to identify key project factors such as 
software size that determine software project 
development outcomes for projects. Second, it is 
to provide benchmarks for effort and quality based 
on project data. The results suggest that estimation 
models based on project data are portable across 
multiple organizations. The object-oriented 
software development process is increasingly used 
for the construction of complex distributed 
systems. In [3], behavior models have long been 
recognized as the basis for systematic approaches 

to requirements capture, specification, design, 
simulation, code generation, testing, and 
verification. In general, conformance testing of 
concurrent applications, testing of all possible 
invocation orderings is unrealistic due to a 
combinatorial explosion in the number of 
orderings permitted by the specification. User-
defined test objectives constitute a way of limiting 
the number of test cases to be produced by test 
synthesis from a specification. Test objectives can 
be described in the form of high-level test 
scenarios, which are then easily understood as 
behavioral test patterns by developers. The 
advantages of using test case synthesis according 
to test objectives for both centralized and 
distributed applications are the following:  
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1.1 Productivity Gain 

 A test objective specifies the essential aspects 
of a test, independent of low-level design and 
implementation choices. While defining a high-
level test scenario is not difficult when the main 
classes are identified, refining and adapting it to 
the final software product is a difficult process. 
Automating the completion of the test objective 
with the low-level design details obtained from the 
UML model holds out the promise of significant 
productivity gain. The main expected behaviors 
can easily be represented as test objectives. Such 
test objectives can be derived from use case 
scenarios, contributing to the overall consistency 
of the development process.  

1.2 Version/Product Independence 

Test objectives can be chosen to be 
independent of software versions and variants. 
This is particularly important in a product-line 
context, since it enables generic test objectives to 
be defined for an entire product line. Regression 
Testing is frequently applied but expensive 
maintenance process that aims to (re)verify 
modified software. The principle  that the element 
with the maximum weight is taken first, followed 
by the element with the second-highest weight, 
and so on, until a complete, but possibly 
suboptimal, solution has been constructed. Greedy 
search seeks to minimize the estimated cost to 
reach some goal. It is simple, but in situations 
where its results are of high quality, it is attractive 
because it is typically inexpensive both in 
implementation and execution time. The 2-
Optimal GA is an instantiation of the K-Optimal 
Greedy Approach [12] when K ¼ 2. The K-
Optimal approach selects the next K elements that, 
taken together, consume the largest part of the 
problem. In the case of K-Optimal Additional 
Greedy, it is the largest remaining part of the 
problem that is selected. In this study, a 2-Optimal 
Additional GA was used.  

2. LITERATURE REVIEW 

 The impacts of the factors from prior research, 
which have been used to estimate development 
effort and quality is summarized. 

2.1 Software Development Effort 

 Software development effort typically 
includes human effort expended for high-level 
design, detailed design, coding, unit testing, 
integration testing and customer acceptance 

testing. Effort is often regarded as a surrogate for 
software development cost since personnel cost is 
the dominant cost in software development. Many 
models is such as COCOMO [7], PRICE-S [8], 
ESTIMACS [9], SEER-SEM [10] have been 
developed to estimate software development costs. 
Effort-estimation models such as COCOMO 
primarily use the number of source lines of code 
(SLOC) as the basis for effort estimation [10]. 
Thus, effort in man-months is expressed as a 
function of Kilo Source Lines cf Code (KSLOC). 
The COCOMO II model, which is the current 
version of COCOMO, uses 17 effort multipliers 
and five scale factors to estimate development 
effort based on project size. Some of these effort 
multipliers such as application experience (APEX) 
and language and tool experience (LTEX) have 
been found to be insignificant [7]. An alternative 
metric for SLOC is Function Points (FPs), where 
the FP is the product of the number of function 
counts and the processing complexity adjustment 
[11]. An excellent summary of early models to 
estimate software development effort has been 
provided by Mohanty [12]. For a software system 
with 36,000 lines of machine language executable 
instructions and well-defined specifications for all 
independent variables, the various models 
described in [34] have predicted costs ranging 
from $300,000 to $2,500,000 and development 
times ranging from 13 to 25 months. Kemerer [15] 
compared software estimation models such as 
COCOMO[7],SLIM[13], FPs[14] and ESTIMACS 
[16] using data from 15 projects with an average 
size of a little under 200 KSLOC and found that 
various estimation models resulted in average 
effort estimation error rates ranging from 85 to 772 
percent. This wide range has been attributed to the 
differences in productivity between the test 
environment and the environments in which the 
models were calibrated, suggesting wide variations 
in software development outcomes across 
organizations. Also, differences in application 
domain influenced the accuracy of these estimates. 
For example, the projects in the data set used in 
[16] were primarily business applications with 12 
out of 15 projects implemented in COBOL. In 
contrast, the COCOMO database consisting of 63 
projects had only seven business applications [32]. 
A study by Maxwell et al. [24] found that a 
relatively small set of factors explained the 
required effort to complete a software project (size 
in SLOC), and productivity factors such as 
application category, language, required reliability 
and programming practices. This study also found 
that organization specific models predicted 
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required effort more accurately than general 
models. It was therefore important to identify 
organization-level factors that affected software 
development costs. Banker and Slaughter  found 
that data complexity, defined as the number of 
data elements per unit of application functionality, 
significantly increased the enhancement cost of 
software. Specifically focusing on the impact of 
capability maturity, improvements in process 
maturity were found to be associated with 
reductions in effort [4], [25]. According to an SEI 
report[38], by adopting Capability Maturity Model 
Integration (CMMI) based process improvements, 
Boeing Australia had a 60 percent reduction in 
work, whereas Lockheed Martin achieved a 30 
percent increase in software productivity. In [26] 
the authors found that process improvements were 
not significantly related to development costs. 
Perhaps reflecting on the lack of theory on 
software estimation, a number of studies found 
success at effort estimation by simply using 
analogies to compare the features of a new project 
with earlier projects [8], [22]. 

2.2 Software Quality 

 Initially software quality was defined as 
conformance to a standard or a specification. 
Later, the definition was changed to adapt to 
highly dynamic business environments. In 1991, 
the International Organization for Standardization 
adopted ISO 9126 as the standard for evaluating 
software quality. This standard defines quality as 
“the totality of features and characteristics of a 
product or service that bears on its ability to satisfy 
given needs” ISO 9126 compliments ISO 9001, 
which deals with the quality assurance of the 
process used for developing products. A 
commonly used definition of software quality is 
the density of post release defects in a software 
program, which is measured as the number of 
defects per thousand lines of code [6], Gaffney 
[18] reported that the best estimator for the number 
of errors in a software module was the number of 
lines of code. Krishnan and Kellner [23] also 
confirmed this finding. Harter and Slaughter[22] 
found that product complexity significantly 
lowered software quality, which is somewhat 
contrary to [18], which did not find software 
complexity affecting error rates significantly. 
Banker and Slaughter[37] found that software 
volatility, defined as the frequency of 
enhancements per unit of functionality in a given 
time frame to be a significant predictor of software 
errors. Data complexity is defined as the number 
of data elements per unit of application 

functionality also increased the number of defects. 
They also found that structured programming 
techniques moderated the effects of volatility and 
data complexity on software errors. Using a game-
theoretic model Austin suggested that under 
schedule pressures, developers were likely to 
compromise on quality. Krishnan et al. [26] found 
personnel quality, which is measured using peer 
and supervisor assessments, to be a significant 
estimator of software quality. They also found that 
front-end investments, which improved customer 
requirements analysis, enhanced quality. A 
number of approaches have been proposed to 
improve software quality .These include (TQM), 
Six Sigma [3], and CMM [1]. The basic idea 
behind in all these approaches is to identify ways 
to improve quality in a given situation. The 
relationship between process improvements and 
quality has also been investigated. The most 
significant development in this area has been the 
development of CMM [2], For example, as a 
software unit at Motorola improved from CMM 
level 2 to level 5, the average defect density 
reduced from 890 defects per million assembly-
equivalent lines of code to about 126 defects per 
million assembly-equivalent lines of code [6]. In 
an empirical study using 33 software products 
developed over 12 years by an IT company, Harter 
et al. [4], found that a one  percent improvement in 
process maturity was associated with a 1.589 
percent increase in product quality. In another 
study, Krishnan and Kellner [23] found that 
process maturity and personnel capability to be 
significant predictors of the number of defects.  

3. RESEARCH METHODOLOGY 

3.1 Software Development Effort: 

 Software development effort typically 
includes human effort expended for high-level 
design, detailed design, coding, unit testing and 
integration. This is attributed to the reduction in 
rework due to improved processes thereby leading 
to reduced, testing and customer acceptance 
testing. Effort is often regarded as a surrogate for 
software development cost since personnel cost is 
the dominant cost in software development. Many 
models such as COCOMO, PRICES, ESTIMACS, 
SEER-SEM have been developed to estimate 
software development costs. Effort-estimation 
models such as COCOMO primarily use the 
number of (SLOC) as the basis for effort 
estimation. 
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3.2 Software Quality 

 Software quality is defined as “the totality of 
features and characteristics of a product or service 
that bears on its ability to satisfy given needs”. It 
deals with the quality assurance of the process 
used for developing products. A commonly used 
definition of software quality is the density of post 
release defects in a software program which is 
measured as the number of defects per thousand 
lines of code. A number of approaches have been 
proposed to improve software quality. These 
include TQM, Six Sigma, and CMM. The basic 
idea behind all these approaches is to identify 
ways to improve quality in a given situation. The 
relationship between process improvements and 
quality has also been investigated [2]. The most 
significant development in this area has been the 
development of CMM. 

3.3 Design 

 It can be seen that prior research on software 
process improvement has focused on finding 
evidence of reduced effort, improved quality and 
faster cycle times from software process 
improvements. The most important factors 
identified from prior research on software 
development effort and quality, while focusing 
specifically on CMM level 5 projects 

3.4 Development 

 It includes effort during high level design, 
detailed design, coding, unit testing, integration 
testing and customer acceptance testing. 

3.5 Product Quality 

 The metric used for product quality (QUAL) 
is defects, which were measured as the total 
number of defects that escaped to the customer and 
were detected during the first three months of 
production use of the software. A period of three 
months is used, as it is typically the warranty 
period of newly developed software and the defect 
data for the first three months is generally tracked 
by software development organizations [2]. 

3.7 Product Size  

 The actual lines of codes developed, 
excluding comments and blank lines are  measured 
in KSLOC to represent product size. Although the 
use of KSLOC is in line with prior research a 
limitation of this measure is that it is usually not 
consistent across programming languages.  

3.8 Product Complexity 

 Product complexity (COMPLX) is measured 
using two items on a seven point Likert scale, 
ranging from low to high data complexity and 
decision complexity. 

3.9 Schedule Pressure 

 Schedule pressure (SP) is defined as the 
relative compression of the development schedule 
mandated by management compared to the initial 
estimate provided by the development team based 
on project parameters [5]. The size of a team at its 
peak is considered a good proxy for the relative 
size of the team compared to other projects. Also, 
the peak team size is easier to measure than the 
average team size over the life of the team. 
Therefore, TEAM is measured as the peak team 
size. SP=(Team estimated cycle-time Management 
mandated cycle-time)=Team estimated cycle-time. 

3.10 Personal Capability 

 The technical skill of each project team is 
computed as the mean of the five items used to 
measure the technical capabilities of the team 
members [6]. Team skill is calculated as the mean 
of the three items used to measure individual team 
skills. Finally, it is also included that an overall 
item is to obtain the supervisor’s average rating of 
the team member. 

3.11 Project Supervisor Experience 

 To account for the management skills of 
project supervisors, their experience can be used  
in the software industry (INDEXP), as well as 
their experience in managerial roles (MGROL) 
within the industry. Both measures are used to 
examine the impact of managerial quality on 
software outcomes [7]. 

3.12 Greedy Algorithm 

 A GA is an implementation of the “next best” 
search philosophy. It works on the principle that 
the element with the maximum weight is taken 
first, followed by the element with the second-
highest weight, and so on, until a complete, but 
possibly suboptimal, solution has been 
constructed. Greedy search seeks to minimize the 
estimated cost to reach some goal. It is simple, but 
in situations where its results are of  high quality, 
it is attractive because it is typically inexpensive 
both in implementation and execution time. 
Consider the example of statement coverage for a 
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program containing m statements and a test suite 
containing n test cases. For the GA, the statements 
covered by each test case should be counted first, 
which can be accomplished in O(mn) time, then 
the test cases should be sorted according to the 
coverage. In the second step, quick sort can be 
used, thereby increasing the time complexity by 
O(n log n). Typically, m is greater than n, in which 
case, the cost of this prioritization is O(mn). The 
Additional GA requires coverage information to be 
updated for each unselected test case following the 
choice of a test case. Given a program containing 
m statements and a test suite containing n test 
cases, selecting a test case and readjusting 
coverage information has cost O(mn) and this 
selection and readjustment must be performed 
O(n) times. Therefore, the cost of the Additional 
GA is O(mn2) Note that, after 100 percent 
coverage has been achieved, there are possible 
remaining unprioritized test cases that cannot add 
additional coverage. These remaining test cases 
could be ordered using any algorithm. In this 
study, the remaining test cases were ordered by 
reapplying the same Additional GA. However, 
after 100 percent coverage has been achieved, no 
further fitness improvement will be possible. In the 
case of K-Optimal Additional Greedy, it is the 
largest remaining part of the problem that is 
selected. In this research, a 2-Optimal Additional 
GA was used, hereinafter referred to as 2-Optimal” 
Algorithm: The “2-Optimal” GA for shortness. 
The K-Optimal approach has been studied in the 
area of heuristic search to solve the Traveling 
Salesman Problem (TSP) that is defined as “find 
the cycle of minimum cost that visits each of the 
vertices of a weighted graph G at least once”. 
Extensive experiments suggest that 3-optimal tours 
are usually within a few percent of the cost of 
optimal tours for TSP. As shown by Skiena, for K 
>3, the computation time increases considerably 
faster than solution quality. The 2-Optimal 
approach has been found to be fast and effective 
.Again, consider statement coverage: The 2-
Optimal Algorithm updates coverage information 
for each unselected test case following the choice 
of each pair of test cases. Given a program 
containing m statements and a test suite containing 
n test cases, selecting a pair of test cases and 
readjusting coverage information has cost O(mn2) 
and this selection and readjustment must be 
performed O(n) times. Therefore, the time 
complexity of the 2-Optimal Algorithms is 
O(mn3).  

 

3.13 Generic Algorithm 

 In Generic Algorithm procedure, which 
includes initializing a population P, evaluating 
individuals, selecting pairs of individuals that are 
combined and mutated to generate new 
individuals, and forming the next generation. The 
search proceeds through a number of generations 
until the termination condition has been met. The 
initial population is a set of randomly generated 
individuals. Each individual is represented by a 
sequence of variables / parameters (called 
genes),known as the chromosome. The 
chromosome encodes a possible solution to a 
given problem. The encoding can take many 
forms, for example, binary, real-valued, or 
character-based. A biased selection depending on 
the fitness value decides which individuals are to 
be used as the “parents” for producing the next 
generation. Crossover is a genetic operator that 
combines two individuals (the parents) to produce 
a new individual (the offspring). A probability of 
crossover determines whether crossover should be 
performed. The mutation operator alters one or 
more gene values in the individual, depending on 
the probability of mutation. A GA is not   
guaranteed  to converge upon a single solution. 
The termination condition is often specified as a 
maximal number of generations, or as a given 
value of the fitness function that is deemed to be 
sufficient. There were 1000 small test suites and 
1000 large test suites in many programs. All test 
suites were obtained from the same infrastructure 
as the programs. In order to reduce the 
computation time for the experiments, without 
significant loss of generality, half of these test 
suites were used in the experiments. Box plots of 
the fitness metrics APBC, APDC, and APSC for 
all programs with small test suites. Each row of 
subfigures indicates the results for one program. 
They increase in program size, the differences 
between the algorithms become more evident. For 
small programs, the algorithms show almost 
identical performance. The mean fitness value for 
each program revealed that the GA is the worst 
and the Genetic Algorithm is slightly better than 
the others. First, consider the small programs with 
small test suites. The ANOVA results for these 
experiments are summarized. 

4. ANALYSIS AND DISCUSSIONS 

   Table 4.1 

   Table 4.2 
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4.1 ANOVA Analysis and LSD Multiple 

Comparisons 

 The corresponding results from Table 4.1 and 
Table 4.2 for the programs, with large test suites 
are given. This data shows that the same results as 
those produced from programs with small test 
suites. That is, there is no significant difference 
between Additional Greedy and the GA for small 
programs and no significant difference between 
Additional Greedy and the 2-Optimal Algorithm. 

Table 4.3 

Table 4.4 

5. CONCLUSION 

 In this paper, by considering the previous 
research a method and a tool is proposed for the 
automated production of test cases from state-
based design models of distributed software 
guided by test objectives. From the practical point 
of view, the specific contribution is in motivating 
the test generation process with behavioral test 
patterns, i.e., reusable (and incomplete) testing 
scenarios. Overall, the results indicates that the 
adoption of highly mature software development 
processes during software development reduced 
the significance of many factors such as personnel 
capability ,requirements pecifications requirements 
volatility and so forth. From this it can be 
concluded that increased adoption of best practices 
by client organizations that were to a great degree 
influenced by the software development 
organizations, thereby leading to well-defined 
requirements, and software development 
organizations leveraging their expertise from prior 
engagements in assisting clients in requirements 
gathering and specification. The data and analysis 
indicate that the Greedy Algorithm performs much 
worse than Additional Greedy, 2-Optimal, and 
Genetic Algorithms overall. Also, the 2-Optimal 
Algorithm overcomes the weakness of the Greedy 
Algorithm and Additional Greedy Algorithm 
referred to by previous authors. However, the 
experiments indicate that, in terms of 
effectiveness, there is no significant difference 
between the performance of the2-Optimal and 
Additional Greedy Algorithms. This suggests that, 
where applicable, the cheaper-to-implement and 
execute Additional Greedy Algorithm should be 
used. The choice of coverage criterion does not 
affect the efficiency of algorithms for the test case 
prioritization problem. The size of the test suite 
determines the size of the search space, thereby 

affecting the complexity of the test case 
prioritization problem. The size of the program 
does not have a direct effect, but increases the 
difficulty of computing fitness values. 

REFERENCES 

[1] L.C. Briand, Y. Labiche, and J. Cui, 
“Automated Support for Deriving Test 
Requirements from UML Statecharts,” J. 
Software and Systems Modeling, vol. 4, no. 4, 
Nov. 2005. 

[2] S. Burton, J. Clark, and J. McDermid, 
“Automatic Generation of Tests from 
Statecharts Specifications,” Proc. First 
Workshop Formal Approaches to Testing of 
Software (FATES ’01), E. Brinksma and J. 
Tretmans,eds.,Aug.2001,http://www.brics.dk/
NS/01/4/BRICSNS-01-4.pdf. 

[3]  L.D. Bousquet, H. Martin, and J.-
M.Je´ze´quel, “Conformance Testing from 
UML Specifications, Experience Report,” 
Proc. UML 2001 Workshop: Practical UML-
Based Rigorous Development Methods, A. 
Evans, R. France, A. Moreira and B. Rumpe, 
eds.,2001.  

[4] D. Clarke, T. Je´ron, V. Rusu, and E. 
Zinovieva, “STG: A Symbolic Test 
Generation Tool,” Proc. Eighth Int’l Conf. 
Tools and Algorithms for the Construction 
and Analysis of Systems (TACAS ’02), J.-P. 
Katoen and P.Stevens, eds., Apr. 2002. 

[5]  W. Damm, B. Josko, A. Pnueli, and A. 
Votintseva, “A Discrete- Time UML 
Semantics for Concurrency and 
Communication in Safety-Critical 
Applications,” Science of Computer 
Programming, vol. 55, nos. 1-3, 2005. 

[6]  The Testing and Test Control Notation, 
Version 3. Part 3: TTCN-3 Graphical 
Presentation Format (GFT), ETSI ES 201 873, 
parts 1 to 7 V3.0.0 (2005-03), European 
Telecomm. Standards Inst., 2005. 

[7]  E. Gamma, R. Helm, R. Johnson, and J. 
Vlissides, Design Patterns: Elements of 
Reusable Object-Oriented Software. Addison-
Wesley, 1995.B.W. Boehm et al., Software 
Cost Estimation with COCOMO II. Prentice-
Hall, 

[8] “True S and Price S: Software Development 
and Lifecycle Estimating Models,” PRICE 
Systems, 2006.  

 



Journal of Theoretical and Applied Information Technology 
 10

th
 February 2015. Vol.72 No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
139 

 

[9] “CA-Estimacs,” Computer Assoc.,2006. 

[10]  B.W. Boehm, Software Engineering 
Economics. Prentice-Hall, 1981. Function 
Point Counting Practices Manual. Int’l 
Function Point Users Group, 2006. 

[12] S.N. Mohanty, “Software Cost Estimation: 
Present and Future,” Software-Practice and 
Experience, vol.11, pp. 103-121, 1981 

[13] C.A. Behrens, “Measuring the Productivity of 
Computer Systems Development Activities 
with Function Points,” IEEE Trans. Software 
Eng., vol. 9, no. 6, pp. 648-652, Nov.1983. 

[14] H.A. Rubin, “Macroestimation of Software 
Development Parameters: The Estimacs 
System,” Proc. SOFTFAIR Conf. Software 
Development Tools, Techniques, and 
Alternatives, 1983. 

[15]  R.D. Banker and S.A. Slaughter, “The 
Moderating Effects of Structure on Volatility 
and Complexity in Software Enhancement,” 
Information Systems Research, vol. 11, pp. 
219-240, 2000. 

[16]  D.R. Goldenson and D.L. Gibson, 
“Demonstrating the Impact and Benefits of 
CMMI: An Update and Preliminary Results,” 
Technical Report CMU/SEI-2003-SR-009, 
Software Eng. Inst., 2003. 

[17] S.S. Vicinanza, T. Mukhopadhyay, and M.J. 
Prietula, “Software-Effort Estimation: An 
Exploratory Study of Expert Performance,” 
Information Systems Research, vol. 2,pp. 243-
262, 1991. 

[18]  T. Mukhopadhyay and S. 
Kekre,“Software Effort Models for Early 
Estimation of Process Control Applications,” 
IEEE Trans.Software Eng., vol. 18, no. 10, pp. 
915-924, Oct. 1992. 

[19] C.K. Prahalad and M.S. Krishnan,“The New 
Meaning of Quality in the Information Age,” 
Harvard Business Rev., vol. 1999, pp. 109-
118, 1999. 

[20] ISO/IEC 9126-1, 2001, Int’lStandards 
Organization, 1991.  

[21]  C. Fox and W. Frakes, “The Quality 
Approach: Is It Delivering?” Comm. ACM, 
vol. 40, pp. 25-29, 1997. 

[22] D.E. Harter and S.A. Slaughter, “The 
Cascading Effect of Process Maturity on 
Software Quality,” Proc.Int’l Conf. 
Information Systems, 2000. 

[23] R.D. Austin, “The Effects of Time Pressure on 
Quality in Software Development: An Agency 
Model,” Information Systems Research, vol. 
12, pp. 195-207, 2001. 

[24] W.S. Humphrey, “Characterizing the Software 
Process: A Maturity Framework,” IEEE 
Software, vol. 5, no.3, pp. 73-79, Mar. 1988. 

[25] M.C. Paulk et al., “Capability Maturity 
Model, Version 1.1,” IEEE Software, vol. 10, 
no. 4, pp. 18-27, July 1993. 

[26] F.P.J. Brooks, The Mythical Man-Month, 
second ed. Addison-Wesley, 1995. 

[27] M. van Genuchten, “Why is Software Late? 
An Empirical Study of Reasons for Delay in 
Software Development,” IEEE Trans. 
Software, Eng., vol. 17, no. 6, pp. 582-590, 
June 1991. 

[28] D.E. Harter, S.A. Slaughter, and M.S. 
Krishnan, “Benefits of CMM  Based Process 
Improvements for Support Activities-An 
Empirical Study,” Proc. Am. Conf. 
Information Systems, 1998. 

[29] A.J. Albrecht and J.E.J. Gaffney, “Software 
Function, Source Lines of Code and 
Development Effort Prediction: A Software 
Science Validation,” IEEE Trans. Software 
Eng., vol. 9, pp. 639-648, 1983. 

[30] J. Baik, “Disaggregating and Calibrating the 
Case Tool Variable in COCOMO II,” IEEE 
Trans. Software Eng., vol. 28, no. 6, pp. 1009-
1022, Nov. 2002. 

[31]  J.E.J. Gaffney, “Estimating the Number 
of Faults in Code,” IEEE Trans. Software 
Eng., vol. 10, no. 4, pp. 459-464, July 1984 

[32] H. Wohlwend and S. Rosenbaum, 
“Schlumberger’s Software Improvement 
Program,” IEEE Trans. Software Eng., vol. 
20,no. 11, pp. 833-839, Nov. 1994. 

[33] M. Diaz and J. Sligo, “How Software Process 
Improvement Helped Motorola,” IEEE 
Software, vol.14, no. 5, pp. 75-81, Sept.-Oct., 
1997. 

[34] M.S. Krishnan et al., “An Empirical Analysis 
of Productivity and Quality in Software 
Products,” Management Science, vol. 46,pp. 
745-759, 2000. 

[35] M.S. Krishnan and M.I. Kellner, “Measuring 
Process Consistency: Implications Reducing 
Software Defects,” Management Science, vol. 
25, pp. 800-815, 1999. 



Journal of Theoretical and Applied Information Technology 
 10

th
 February 2015. Vol.72 No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
140 

 

[36] M.C. Paulk, “How ISO 9001 Compares with 
the CMM,” IEEE Software, vol. 12, no. 1, pp. 
74-83, Jan.1995. 

[37] T. Pyzdek, The Six Sigma Handbook: The 
Complete Guide for Greenbelts, Blackbelts, 
and Managers at All Levels. McGraw-
Hill,2003. 

[38] D.E. Harter, M.S. Krishnan, and S.A. 
Slaughter, “Effects of Process Maturity on 
Quality, Cycle Time and Effort in Software 
Product Development,” Management Science, 
vol. 46, pp. 451-466, 2000. 

[39] J.E. Matson, B.E. Barrett, and 
J.M.Mellichamp, “Software Development 
Cost Estimation Using Function Points,” 
IEEETrans. Software Eng., vol. 20, pp. 275-
287, 1994. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Journal of Theoretical and Applied Information Technology 
 10

th
 February 2015. Vol.72 No.1 

© 2005 - 2015 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
141 

 

Table 4.1  ANOVA Analysis For Small  Programs With Small Test Suites 

 Sum of Squares Df Mean Square F Significance 

Between Groups 15430.153 4 3857.538 776.233 0.000 

Within Groups 149062.028 29995 4.970 - - 

Total 164492.181 29999 - - - 
 

Table 4.2  ANOVA Analysis For The Large Program (Space) With Small Test Suites 

 Sum of Squares Df Mean Square F Significance 

Between Groups 75903.588 4 18975.857 2904.341 0.000 

Within Groups 48969.569 7495 6.534 - - 

Total 124873.157 7499 - - - 

 

Table 4.3 Multiple Comparisons (Least Significant Difference) For Small Programs With Small Test Suites 

Algorithm X 
Algorithm Y 

 

Mean-diff 

(X-Y) 
Significance 

Greedy 

 

A-Greedy 

2-Optimal 

HC 

GA 

-1.88928(*) 

-1.57361(*) 

-1.01015(*) 

-1.91488(*) 

000 

000 

000 

000 

Greedy 

 

A-Greedy 

2-Optimal 

HC 

GA 

-1.88928(*) 

-.31567(*) 

-.87913(*) 

-.02560 (*) 

000 

000 

000 

.529 

2-Optimal 

 

A-Greedy 

2-Optimal 

HC 

GA 

1.5736(*) 

-.3157(*) 

-.3635(*) 

-.3413(*) 

000 

000 

000 

000 

 

Table 4. 4 Multiple Comparisons (Least Significant Difference) For The Large Program (Space) With Small Test Suites 

Algorithm X 

 

Algorithm Y 

 

Mean-DIFF 

(X-Y) 
Significance 

Greedy A-Greedy 

2-Optimal 

HC 

GA 

7.34957(*) 

7.41580(*) 

.76127(*) 

5.14745(*) 

000 

000 

000 

000 

Greedy A-Greedy 

2-Optimal 

HC 

GA 

-7.34957(*) 

-0.6623 (*) 

-6.65452(*) 

-2.26835 (*) 

000 

-478 

000 

000 

2-Optimal Greedy 

A-Greedy 

HC 

GA 

-5.1474(*) 

-2.2021 (*) 

-2.26201(*) 

-2.2635(*) 

000 

-478 

000 

000 

2-Optimal 

 

Greedy 

A-Greedy 

2-Optimal 

GA 

1.91488(*) 

02.560(*) 

.34127(*) 

-.9047(*) 

000 

000 

000 

000 

 


