
Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

124

MODELING AND GENERATING THE USER INTERFACE OF

MOBILE DEVICES AND WEB DEVELOPMENT WITH DSL

1MOHAMED LACHGAR, 2ABDELMOUNAÏM ABDALI

1Laboratory of Applied Mathematics and Computer Science (LAMAI),

Faculty of Science and Technology (FSTG),
University Cadi Ayyad, Marrakech, Morocco

1Laboratory of Applied Mathematics and Computer Science (LAMAI),
Faculty of Science and Technology (FSTG),
University Cadi Ayyad, Marrakech, Morocco

E-mail: 1lachgar.m@gmail.com, 1aabdali5@gmail.com

ABSTRACT

Due to the large number and variety of mobile technologies (Android, iOS, Windows Phone, etc) and web
(Java Server Faces, Asp.net, HTML 5, etc) based-components, developing the same application for these
different platforms becomes a tedious task. The Model Driven Architecture (MDA) approach aims to
provide an easy and efficient practical solution for developing a cross-platform application. In this work,
we propose a new approach to the design of the user interface for mobile applications and web applications,
which we apply to the android platform and Java Server Faces Framework. This approach is later
generalized for all mobile platforms and web based-components, by defining a language for the
development of graphical interfaces, the Technology Neutral DSL (Domain-specific language) intended to
be cross-compiled to generate native code for a diversity of platforms.

Keywords: Model-driven engineering, Domain-specific language, Cross-Platforms, Code Generation,

Templates

1. INTRODUCTION

Considering the variety of mobiles technologies
(Android, IOS, Windows phone etc) and Web (Java
server Faces, Asp.net, HTML5 etc) based on the
component, developing the same application for
these different platforms becomes an exhausting
task. In view of the fact that each platform uses
different tools, different programming languages
and user interface declarations. This heterogeneity
development tools and languages makes difficult to
develop multi-platform applications. Thus, it
requires developers to make a choice on the
platform, while ensuring the widest possible
dissemination.

The Model Driven Architecture (MDA) [1]
approach provides significant advances in term of
controlling the development of software
applications and allows productivity gains,
increased reliability, significant improvement in
sustainability and better ways to deal changing
constraints.

The MDA [1] approach is highly focused around
models. The objective is to switch from mainly
documentary models to productive models, by
defining a number of operations on these models in
order to produce software applications. Such
operations include model transformation, the
reverse engineering, and the models checking. Its
aim is to perform automatic transformations of
models until the generation of the code that
implements the software. MDA expects to replace
the slogan “Write once, Run anywhere” by “Model
once, Generate anywhere”.

In order to clarify the concepts, the Object
Management Group (OMG) has defined a number
of terms around the models named meta-meta-
model, meta-model, model, business model (CIM)
which specifies system requirements of a particular
problem domain, functional model (PIM) which is
independent from the technique and technical
model (PSM) illustrated in “Figure1” and “Figure
2”.

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

125

Figure 1: Four-level Meta model Architecture

Thus, the MDA approach allows for the same
model to be implemented on multiple platforms
through standardized projections. It allows
applications to interoperate with models and
support the development of new platforms and
techniques. The implementation of the MDA is
entirely based on the models and their
transformations, as illustrated in “Figure 2”.

Figure 2 : Key Models in MDA

The transformations between the different
models are produced with tools compatible with the
OMG standard called QVT (Query / View /
Transformation) [2].

The transformation of the entities of the model
source involves two steps [3]. The first step to
identify the correspondences between the concepts
of source and target models in their meta-models,
which indicate the existence of a transformation
function applicable to all instances of the source
meta-model. Next, the second step is to apply the

transformation of the source model to automatically
generate the target model by a program called
transformation engine or execution, “Figure 3”
illustrates these two steps of a model
transformation.

Figure 3: Transformation Process in the MDA Approach

In this work, we propose a new approach for the
design of the user interface for mobile applications
(using the example of Android) and web
applications (using the example of Java Server
Faces). This approach is later generalized for all
mobile platforms and web based-components, by
defining a fully share language for the development
of graphical interfaces, the Technology Neutral
DSL (Domain-specific language) intended to be
cross-compiled to produce native GUI code for a
variety of platforms.

This paper is organized as follows. The first
section presents some related work. The approach
to the development of graphical interface is
described in the second part. The third section
shows the applicability of our approach through a
case study. The last section concludes the paper and
presents future work.

2. RELATED WORK

The MDA approach has proven itself for the
development of enterprise applications and can also
bring a lot for mobile applications. The MDA
approach can help us ensure the sustainability of
expertise, and gain productivity while addressing
the issues of fragmentation of mobile platforms. In
recent years, several studies have been done in this
direction. Juliano de Almeida Monte Mor et al [4]
contributed to the improvement of the generation of
graphical user interfaces for a variety of platforms
such as JSF and JSTL by using the AndroMDA

« instanceof »

« instanceof »

« instanceof »

« instanceof »

Meta-meta-model

Meta-model

Model

Instance

Meta-Meta Model: defines the

structure of meta-model

� EX : MOF, Ecore (EMOF)

Meta-model: defines how a model is

built.

� Abstract syntax of modeling

� EX : UML, DSL, Ecore (EMF)

Model: abstraction of reality

� Graphic / Textuel

Source code

CIM PIM PSM

Transformation

rules

to

Conform to

Meta-meta-model

Target

Meta-model

Target Model

Source

Meta-model

Source Model

Conform to

from

Conform to

Transformation

Conform to

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

126

open source Framework. The approach described in
their paper is based on the analysis and design of
the PIM model using UML diagrams, and then
enriched by stereotypes to obtain the model PSM,
once the PIM to PSM transformation is achieved.
Then, AndroMDA generates the specific code of
the target platform. Other research works have
already focused on the subject. Stefan Link et al [5]
propose UML profiles for the modelling of user
interfaces. These researchers exploit the MDA
approach to define a model independent from the
platform, then enriched by stereotypes in order to
obtain a specific model to a platform by using M2M
transformations. The latter model is transformed to
source code further to M2C (Model to code)
transformations. In order to do this, the authors use
UML diagrams to define the PIM and the QVT to
realize the various transformations. In our paper, we
present a new approach to the design of the user
interface of mobile applications. We use the MDA
approach to provide a platform independent model
under textual format and the M2M M2T
transformations are applied to generate the GUI for
a specific platform. In order to do this, we use
Xtext to define a DSL and Xtend 2 to perform
different transformations.

An MDA approach [6] has been implemented in
order to model and generate graphical interfaces
mobile platforms. This approach consists of three
main steps:

• Modelling of the graphical interface under
UML,

• Transformation of diagrams obtained in a
simple plan XML by using JDOM API,

• Generation of the graphical interface on
the basis of the approach MDA.

This method presents the advantage of
automatically generating graphical interfaces for
several mobile platforms from a UML model. Our
approach is based on a textual model allowing a
simplification of the way models are represented,
and generation of graphical interfaces for platforms
based on components.

A study of a variety of meta-model of mobile
platforms such as Symbian, JavaME and .NET
platforms and contribution to the improvement of
the common Meta model for these mobile platforms
had been investigated by Madari et al [7].
Moreover, projection towards the definition of an
abstract syntax of the target platforms is also
discussed in this work.

In [8] a Web DSL for integration and data
validation that allows unified syntax, error handling
mechanisms, and semantics for data validation
checks. This enables the Web application
developers to adopt a model-driven, focusing on the
logical design of an application rather than the
accidental complexity of technical implementation
approach at low altitude. Thus, our approach is
relatively simple and has taken into account the web
and mobile application.

3. DESIGN OF THE GRAPHICAL USER
INTERFACE FOR AN APPLICATION
BASED ON COMPONENTS

To cover the structural aspect, we propose a DSL

to describe and conceive the graphic user interfaces
of the applications based on components. Our
approach proposes a meta-model GUI to design a
model of the graphic user interface of an application
based on components. Then, M2M (Model To
Model) and M2T (Model to Text) transformations
are applied to generate the code of the graphic user
interface targeting a specific platform the “Figure
4” presents the various stages which characterize
our method.

Figure 4: Architecture Proposed for the Generation of

Graphical User Interfaces from a Platform Independent
Model (PIM-GUI)

3.1 Meta-Model GUI DSL

Our Meta-model is described by the following
class diagram:

M2T

PIM - GUI

Meta Model

(DSL) GUI
PSM – GUI for

Android

PSM – GUI for

IPhone

PSM – GUI for

Java Server Faces

XML,

JAVA

XAML,
Objective

- C

XHTML,

JAVA

M2M

M2M

M2M

M2T

M2T

instanceOf

Other Platforms
HTML 5, ASP.net …

Windows mobile …

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

127

3.2 GUI DSL

Keep the code "clean" is important for software
development (and that includes modularity,
readability and maintainability). Xtext [9] offers
many features to keep DSL clean and modular,
thanks to its decomposition into many diverse
aspects. Xtext is the solution envisaged for the
creation of our DSL.

3.2.1 Description

An application is composed of several pages and
each page contains a collection of elements. An
element can represent groups of elements or a
single component. The type attribute is able to
distinguish the type of elements (date, email, text,
image, etc) during the transformation.
A page is a collection of graphic components,
which can be buttons, text, but also groupings of
the other graphic components, for which we can
define common attributes (size, positioning, etc.).

An extract of our DSL is represented below.

Application:

 'Application'

 'root' root=STRING

 'title' title=STRING

 'version' version=STRING

 NEXT

 pages+=Page*;

Page:

 'Page'

 'title' titre=STRING

 OPEN

 (elements+=Element*)

 CLOSE;

Element:

 Container | Component;

Container:

 FieldSet | Table | Panel;

Component:

 Input | Label | RadioButton | CheckBox |

GroupComponent |

 ListBox;

FiledSet:

 OPENATT 'filedset'

 'legend' title=STRING

 attribut=Attribut CLOSEATT

 OPEN

 (elements+=Element (NEXT elements+=Element)*)?

 CLOSE;

Panel:

 'panel'

 OPENATT attribut=Attribut

 ('header' header=STRING)?

 ('columns' column=STRING)? CLOSEATT

 OPEN

 (elements+=Element (NEXT elements+=Element)*)?

 CLOSE;

Figure 5 : Proposed Meta-Model GUI DSL

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

128

Input:

 'input'

 OPENATT attribut=Attribut CLOSEATT;

Label:

 'label'

 OPENATT attribut=Attribut CLOSEATT;

RadioButton:

 'radio'

 OPENATT attribut=Attribut CLOSEATT;

CheckBox:

 'checkBox'

 OPENATT attribut=Attribut CLOSEATT;

Button:

 'button'

 OPENATT attribut=Attribut CLOSEATT;

Groupe:

 'groupe'

 OPENATT attribut=Attribut CLOSEATT

 OPEN
 (components+=Component (NEXT components+=Component)*)?

 CLOSE;

ListBoxItem:

 'item'

 OPENATT

 'label' label=STRING

 'value' value=STRING

 CLOSEATT;

ListBox:

 'list'

 OPENATT attribut=Attribut CLOSEATT

 OPEN
 (items+=ListBoxItem (NEXT items+=ListBoxItem)*)?

 CLOSE;

3.2.2 Model validation

Most controls for DSL is usually implemented,
according to the semantics which we wish that our
DSL respects. These additional controls are
implemented using the Xtend 2 class that Xtext has
generated. The validation takes place in the
background while the user of the DSL is typing in
the editor, so that an immediate feedback is
provided. An example is illustrated in the following
figure:

Figure 6: Model validation

3.2.3 Transformation Model to Model (M2M)

The transformation from the PIM towards the PSM
is realized with Xtend 2 [10]. For every element of
our PIM which associated with one or
several elements of the PSM, often this distinction

is assured by the type attribute. Some
transformations are represented in following table:

Table 1: Some Transformation Rule for Android Platform

Table 2: Some Transformation Rule for Java Server

Faces

PIM PSM JSF

Label outPutLabel

Input

� type = text

� type = date

� type = multiline

� type = email

inputText

calendar

inputTextarea

inputText1

Output

� type = text

outputText

Button

� type = image

� type = simple

commandButton2

commandButton

CheckBox selectBooleanCheckbox

RadioButton selectItem

Group

� type = radio

selectOneRadio

ListBox selectOneMenu

TableRow columns

3.2.4 Projection in the templates

When the transformation M2M is realized. A 2nd
stage which consists in generating the code from
the obtained PSM, what we call the projection. The

1 inputText with validator

2 commandButton with icon attribute

PIM PSM Android

Label TextView

Input

� type = text

� type = date

� type = multiline

� type = email

EditText

� inputType = text

� inputType = date

� inputType = textMultiLine

� inputType = textEmailAddress

Output

� type = text

TextView

Button

� type = image

� type = simple

ImageButton

Button

CheckBox CheckBox

RadioButton RadioButton

Group

� type = radio

RadioGroupe

ListBox Spinner

TableRow TableRow

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

129

Template of targets pages is developed with Xtend
2. A part of template is represented below.

override doGenerate(Resource input, IFileSystemAccess fsa) {

 var application = input.contents.head as Application

 pages = application.pages

 title = application.title

 for (Page page : pages) {

 id = pages.indexOf(page) + 1

 elements = page.elements

 titlePage = page.title

 for (Element e : elements) {

 fsa.generateFile (application.root + "android/" + titlePage +

 ".xml", e.compile)

 fsa.generateFile (application.root + "jsf/" + titlePage +

 ".xhtml", e.compileJsf)

 }

 }

 fsa.generateFile (application.root + 'values/string' + ".xml", gen)

}

def gen()'''

 <?xml version="1.0" encoding="utf-8"?>

 <resources>

 <string name="app_name">«titre»</string>

 <string name="action_settings">Settings</string>

 «FOR m : pages»

 «var int id = pages.indexOf(m) + 1»

 «FOR v : m.elements»

 «genString(v, id)»

 «ENDFOR»

 «ENDFOR»

 </resources>

'''

3.2.5 Synthesis

To sum up, our approach is based on four main
steps:

• Analysis and modeling of graphical
interfaces with a textual model in compliance
with our DSL,

• Validation of model by means of Xtend 2,

• Transformation PIM to PSM by means of
Xtend 2,

• Generation of code by projecting in the
Templates of the target platforms.

In the following, we present the diagrams for the
generation of the graphic interfaces for android
platfom and Java Server Faces (JSF) Framework.

a) Android Platform

Figure 7: Diagram of Transformation for Android

Platform

b) Java Server Faces Framework

Figure 8: Diagram of Transformation for JSF

DSL with Xtext Transformation

With Xtend 2

Projection in
the templates
With Xtend 2

DSL - GUI

PIM - GUI
instanceOf

AndroidManifest.xml layout.xml string.xml

PSM – GUI

Android

Android

Application

Presentation layer

Validation

DSL with Xtext Transformation

With Xtend 2

Projection in
the templates

With Xtend 2

DSL - GUI

PIM - GUI
instanceOf

message.properties page.xhml web.xml

PSM – GUI

JSF

JEE - JSF

Application

Presentation layer

Validation

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

130

4. CASE STUDY: ENGLISH GRAMMAR
QUIZ APPLICATION

In this section, we present an example that allows
us to illustrate our approach which automatically
generates the graphical interface for an application
Android and Java Server Faces. We consider a test
application with multiple choices named English
Grammar quiz (EGQ), is an easy way to learn
English Grammar with in quiz as games.

The application contains a huge number of
questions in English grammar and vocabulary that
are selected randomly to improve your English
which are presented in different windows. The
application automatically grades the quiz, and
provides immediate feedback to the user.

4.1 Analysis and model creation

The objective of this stage is to design the
various graphic interfaces for our application by
using a model corresponding to our DSL, illustrated
in “Figure 9”.

Application root "C:\\" titre "English Grammar Quiz" version "V 1.0",

Page title "page_1" {

 panel [id 1 type "simple" orientation 'horizontal' header "Question 1 from 2"] {
 panel [id 2 type "grid" orientation 'vertical' columns "1"] {

 label [id 1 text 'I________a new car last month. '] ,
 groupe [id 2 type "radio" orientation "vertical"] {

 radio [id 1 text 'buyed'] ,
 radio [id 2 text 'bought'],

 radio [id 3 text 'have bought'],
 radio [id 4 text 'did bought']

 } ,
 panel [id 3 type "simple" orientation 'horizontal' columns "2"] {

 button [id 1 text 'Next Question >>']
 }
 }
 }
}

Page title "page_2" {
 panel [id 1 type "simple" orientation 'horizontal' header "Question 2 from 2"] {

 panel [id 2 type "grid" orientation 'vertical' columns "1"] {
 label [id 1 text '________ students attended the meting ? '],

 groupe [id 2 type "check" orientation "vertical"] {
 checkBox [id 1 text 'How many'] ,

 checkBox [id 2 text 'How much'],
 checkBox [id 3 text 'How long'],

 checkBox [id 4 text 'How was']
 } ,

 panel [id 3 type "simple" orientation 'horizontal' columns "2"] {
 button [id 1 text 'Submit']

 }
 }

 }
}

Figure 9: Model of the English Grammar Quiz

In this case, our application is constituted by two
pages named “page_1” and “page_2” which contain
a collection of elements.

4.2 GUI generated targeting the Android
platform

 We can automatically generate the source files
in an Android project from a model consistent with
our DSL. The “Figure 10” illustrates the result
obtained.

Screen_1

Screen_2

Figure 10: EGQ with Android

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

131

4.3 GUI generated targeting the Java Server
Faces Framework

We can automatically generate the source files
into a Java Enterprise Edition Web project from a
model consistent with our DSL. It develops a
quality application at effective time without
technical concerns. The “Figure 11” shows the
result obtained.

Page_1

Page_2

Figure 11: EGQ with JSF

5. CONCLUSION AND FUTURE WORK

Due to the large number and variety of mobile
technologies and web based-components,
developing the same application for these different
platforms becomes a tedious task. In view of the
fact that each platform uses diverse tools,
programming languages and user interface
declarations. This heterogeneity development tools
and languages makes hard to develop multi-
platform applications. Thus, it requires developers
to make a choice on the platform, while ensuring
the widest possible dissemination.

In this paper we presented a study of the mobile
Android platform and the Java Server Faces
Framework, and we have adopted the MDA
approach to automatically generate the Graphical
User Interface (GUI code) for the two platforms by
defining a new GUI DSL. This approach is later
generalized for all mobile platforms (iPhone,
Windows mobile etc) and web (Asp.net, HTML5
etc) based-components.

The potential benefits of the MDA comes from
the cost reduction in having only one code to write
and maintain, and the time reduction being able to
write one code and target multiple devices and
platforms, making researching cross-platform
applications development with one's effort and
findings. Our work falls into this category of
research that aims to automate GUI code generation
for cross-platform applications from a textual model
in accordance with our DSL. This approach is based
on four main steps:

• Analysis and modeling of graphical
interfaces with a textual model in compliance
with our DSL,

• Validation of model by means of Xtend 2,

• Transformation PIM-GUI to PSM by means
of Xtend 2,

• Generation of GUI code by projecting in the
the adequate Templates of the target
platforms.

For future studies we intend to complete this
code generator to generate source code, such as the
structure of classes, the management of transitions
between the screens of the GUI and system events,
avoiding the developer to write repetitive code.

Furthermore, we will be going to work on the
support of all the platforms by analyzing and
defining the characteristics of each one.

Journal of Theoretical and Applied Information Technology
 10

th
 February 2015. Vol.72 No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

132

REFRENCES:

[1] Object Management Group, “MDA Guide

Version 1.0.1”, omg/2003-06-01, June 2003.

[2] Object Management Group, “Meta Object
Facility (MOF) 2.0 Query/View/Transformation
Specification”, Version 1.1, January 2011,
http://www.omg.org/spec/QVT/1.1/.

[3] S. Diaw, R. Lbath, and B. Coulette, “Etat de
l’art sur le développement logiciel basé sur les
transformations de modèles”. TSI, Hermès
Sciences Publications, Vol. 29, N. 4-5/2010, p.
505-536, juin 2010.

[4] J. A. Monte-Mor, E. O. Ferreira, H. F. Campos,
A. M. da Cunha, and L. A. V. Dias, “Applying
MDA Approach to Create Graphical User
Interfaces”, Eighth International Conference on

Information Technology: New Generations, Las
Vegas, NV, IEEE, 11-13 April 2011, p.p. 766-
771.

[5] S. Link, T. Schuster, P. Hoyer, and S. Abeck,
“Focusing Graphical User Interfaces in Model-
Driven Software Development", First
International Conference on Advances in
Computer-Human Interaction”, Sainte Luce, 10-
15 Feb. 2008, pp. 3-8.

[6] A. Sabraoui, M.E. Koutbi and I. Khriss, “GUI
Code Generation for Android Applications
Using a MDA Approach”, Mobile Intell. Syst.
Team (MIS), Ecole Nat. Super. d'Inf. et d'Anal.
Des Syst. (ENSIAS), Rabat, Morocco, IEEE, 5-
6 Nov. 2012.

[7] I. Madari, L. Lengyel, and T. Levendovszky,
“Modeling the User Interface of Mobile
Devices with DSLs”, 8th International

Symposium of Hungarian Researchers on

Computational Intelligence and Informatics,
Budapest, Hungary, November 15-17 2007, pp.
583-589.

[8] D. M. Groenewegen and E. Visser, “Integration
of Data Validation and User Interface Concerns
in a DSL for Web Applications”, In Mark G. J.
van den Brand, Jeff Gray, editors, Software

Language Engineering, Second International

Conference, SLE 2009, Denver, USA, October,
2009, Lecture Notes in Computer Science,
Springer, 2009, pp 164-173.

[9] Eclipse, Xtext “LANGUAGE
DEVELOPMENT MADE EASY”,
https://www.eclipse.org/Xtext/.

[10] Eclipse, Xtend “JAVA 10, TODAY”,
https://www.eclipse.org/xtend/.

