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ABSTRACT 

 
We present a modified Temporal Deep Belief Networks (TDBN) for human motion analysis and synthesis 
by incorporating Sparse Encoding Symmetric Machines (SESM) improvement on its pre-training. SESM 
consisted of two important terms: regularization and sparsity. In this paper, we measure the effect of these 
two terms on the smoothness of synthesized (or generated) motion. The smoothness is measured as the 
standard deviation of five bones movements with three motion transitions. We also address how these two 
terms influence the free energy and reconstruction error profiles during pre-training of the Restricted 
Boltzmann Machines (RBM) layers and the Conditional RBM (CRBM) layers. For this purpose, we 
compare gait transitions by bifurcation experiments using four different TDBN settings: original TDBN; 
modified-TDBN(R): a TDBN with only regularization constraint; modified-TDBN(S): a TDBN with only 
sparsity constraint; and modified-TDBN(R+S): a TDBN with regularization plus sparsity constraints. These 
experiments shows that the modified-TDBN(R+S) reaches lower energy  faster in RBM pre-training and 
reach lower reconstruction error in the CRBM training. Even though the smoothness of the synthesized 
motion from the modified-TDBN approaches is slightly less smooth than the original TDBN, they are more 
responsive to the action command to change a motion (from run to walk or vice versa) while preserving the 
smoothness during motion transitions without incurring much overhead computation time. 

Keywords: Temporal Deep Belief Network (TDBN), Sparse Encoding Symmetric Machines (SESM), 

Restricted Boltzmann Machine (RBM), Conditional RBM (CRBM) 
 

1. INTRODUCTION  

 
The advent of motion capture technology has 

enabled deeper analysis and synthesis not only of 
human motion and action, but also general human 
activity and even behavior. Human activity 
recognition and reconstruction is one of the most 
active research in the field of computer vision, 
computer animation, computer graphics, and human 
computer interface. Its application is covering vast 
area of fields including medical, security in a public 
area, industrial film, games development, and 
education. In one review [1], methodologies used 
by previous researches to detect human activity can 
be classified into two categories: a single-layer 
approach and a hierarchical approach. Recent 
developments indicate that the hierarchical 
approach can provide a significant improvement 
compared to the single-layer approach. 

Deep model is one of the hierarchical 
approaches, where this model can learn multiple-
layer of features hierarchically and can 

automatically generate multi-level representation of 
input data. Layer at the bottom detects simple 
features and provide the result to layer above, 
which is subsequently used to detect more complex 
features. In addition, one of the main advantage of 
deep learning framework is the recognition process 
for action analysis and the reconstruction process 
for action synthesis can be performed in a single 
unit. Deep Belief Networks (DBNs) [2] is a deep 
model with several layers that have been 
successfully applied for a variety of machine 
learning problems, such as handwritten digit 
recognition [2] and also human motion recognition 
from motion capture data [3]. The DBNs 
architecture is composed from several Restricted 
Boltzmann Machine (RBM), i.e., a neural network 
with two layers: visible and hidden layers. RBM 
was initially limited for statistical pattern, like an 
image, but [3] shows that RBM can be modified to 
learn motion data by adding an additional layer to 
keep the past state of the visible layer, which is 
called Conditional RBM (CRBM). 
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Sukhbaatar et al. [4] proposed a system that 
utilizes RBM and CRBM in a single architecture for 
motion analysis and synthesis which is called as 
Temporal Deep Belief Network (TDBN). TDBN is 
a DBN with two layers, where the first layer 
consists of 5 RBM that represent the body part, and 
the second layer consists of single CRBM.  

One of the shortcoming of RBM as the main 
component of TDBN is their objective function 
cannot be maximized directly, so there is no 
obvious function to monitor and decide when to 
stop the training process, and required a mechanism 
for adjust the computational time as well as the 
amount of memory required for computation [5]. 
Thus, the process is inefficient and weights as a 
result of training is not optimal. Sparse Encoding 
Symmetric Machine (SESM) is intended to deal 
with this problem by inserting a sparsity penalty 
into the Contrastive Divergence (CD) method in 
RBM. SESM is an alternative method that can be 
used for pre-training, where SESM allows the 
objective function to be optimized directly and it 
can be used as an indicator to stop the training 
process. SESM was first implemented for hand-
written digit recognition [6], while [5] improved the 
SESM algorithm and implement it on speech 
recognition.  

In this paper, we evaluate an analysis and 
synthesis of motion capture data by the modified 
TDBN. The Modification is conducted by adding 
regularization and sparsity penalty to RBM during 
the pre-training process of TDBN. Our experiments 
show that the addition of regularization and sparsity 
constraints can improve performance and provide a 
smooth transition between motion (walking and 
running) on the synthesis result.  

The reminder of this paper is organized as 
follows: In Section 2 we briefly review some 
previous works on analysis and synthesis of human 
motion using a hierarchical approach. In Section 3, 
we describes the methods used to construct 
modified TDBN system. Details of data set, 
implementation, experiments, and also evaluation 
results is described briefly in Section 4. 

 

2. RELATED WORKS 

 
Numerous research on analysis and synthesis 

of human motion using a hierarchical approach with 
deep model has been carried out in recent years, and 
it is estimated that the number of research in this 
area will continuously increases. Song et al. [7] 
developed a model of Hierarchical Sequence 
Summarization (HSS) using Conditional Random 

Fields (CRF) with a set of hidden variables to learn 
the sequential data and modify the function of the 
standard features to learn the representation of 
different features automatically. Baccouche et al. 
[8] developed a model for classifying human 
actions without the use of prior knowledge. The 
scheme is an extension of Convolutional Neural 
Network (CNN) that automatically learn the 
spatiotemporal features, and Recurrent Neural 
Networks (RNN) which are trained to classify each 
sequence. Le et al. [9] propose a model, which is 
named Space-Time Deep Belief Network (ST-
DBN) using Convolutional Restricted Boltzmann 
Machine (CRBM) as a basis for processing. While 
Wolf et al. [10] developed a Conditional Deep 
Belief Networks (CDBNs) which consists of the 
arrangement of Conditional RBM (CRBM) with the 
purpose of classifying human activities on very 
short sequences. Feature generated by CDBN 
subsequently be classified using a Support Vector 
Machine (SVM). 

Our research is inspired by a research paper of 
Sukhbaatar et al. [4], where the goal is to re-
construct human motions using two-layer DBN 
which is called Temporal Deep Belief Networks 
(TDBN). The first layer consists of multiple RBM 
which is used to    encode the spatial pattern of 
motion frames into a compact representation. The 
number of RBM in the first layer according to the 
amount of different body parts. They used five 
RBM on the first layer, and each of them is used for 
one of the body part, that is right arm, left arm, right 
leg, left leg, and trunk. So, RBM that corresponding 
to the right foot will only be used to train any 
movement on the right food, as well as four other 
RBM. While the layer above is one Conditional 
RBM (CRBM), which are used to learn the 
temporal constraint contained in the transition of 
compact representation that is generated in the 
previous layer. 

 

3. METHODS 
 

In this paper, we modify Temporal Deep Belief 
Network (TDBN) method that has been developed 
by Sukhbaatar [4]. TDBN is a Deep Belief Network 
(DBN) with two layers that consist of: (1) Five 
RBMs in the first layer where each represents 5 
groups of body parts (right hand, left hand, right 
foot, left foot, trunk); (2) A CRBM in the second 
layer will accept the result of training in the first 
layer as input. The RBMs are trained using 
Contrastive Divergence (CD) that utilizes Gibbs 
sampling algorithm. Hidden layer on the first layer 
is used as an input or visible layer on the second 
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layer. The second layer serves to unify the training 
result on the first layer, as well as to control the 
synchronization of the body parts that previously 
separated. CRBM on the second layer is also 
trained using CD algorithm as RBM. The 
illustration of TDBN architecture can be seen in 
Figure 1. The system used in this study is an 
extension of TDBN where RBM in the first layer 
added with regularization and sparsity penalty. 
Modification that applied to TDBN system can 
provide better reconstruction result 
 

 

Figure 1: TDBN architecture with two layer 

 

Restricted Boltzmann Machine (RBM) 

 

Restricted Boltzmann Machine (RBM) is a type 
of Boltzmann Machine that has a special structure, 
in which its units are divided into visible layer and 
hidden layer [11]. Each unit on the visible layer are 
connected with hidden layer units, but each unit in 
the same layer have no connection with each other. 
This kind of bi-partite structure ensures that units in 
the hidden layer are conditionally independent to 
the units in the visible layer, and vice versa. The 
simple structure and inference accuracy are the 
main advantages of the use of RBM compared to 
conventional Boltzmann Machine, which has all it 
sunits are connected. Comparison of the structure 
between RBM and Boltzmann Machine can be seen 
in Figure 2. 

    
(a)   (b) 

Figure 2: Structure of (a) Boltzmann Machine and (b) 

RBM 

In RBM, the probability value for each joint of 
visible unit v and hidden unit h defined as follows:  
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where E(v,h) is a function of energy and Z is a 
normalization constant or commonly called 
partition function, which is used to calculate the 
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where vi is a node on the visible unit i, while hj is a 
node on the hidden unit j. The ai is bias on the 
visible unit, while bj is bias on the hidden unit. The 
wij is the weight of edge that connects vi and hj. To 
make a visible unit with real-value, the energy 
function need to be transformed into 
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Conditional Restricted Boltzmann Machine 

(CRBM) 
 

Initially, RBM can only model the static frame in 
data (such as images) and does not include 
temporal information thus cannot models sequential 
data. Conditional RBM (CRBM) that was 
introduced by Taylor et al. [3] is an extension 
model of RBM that can learn transition on time-
series data. The general concept of CRBM is 
combining temporal information in the data. 
Temporal information of data will be combined by 
adding a layer called past visible layer, and two 
types of directed connections: (1) Autoregressive 

connection from n time frame of previous visible 
unit to the current visible unit. (2) Directed 

connection from m time frame of previous visible 
unit to the current hidden unit. The structure of 
CRBM can be seen in Figure 3. 

CRBM can be trained with the same training 
algorithm like RBM, because input from the past-
visible unit can be handled in the same way as bias, 
but has different effect because of hidden units in 
CRBM are influenced by past-visible units. To 
reconstruct human motion using CRBM, the past-
visible units and visible units must be real-valued 
because motion is represented as a real-valued 
joint-angles. 
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Figure 3: Structure of CRBM with n=2 [3] 
 

Contrastive Divergence 
 

An algorithm which commonly used to train 
RBM with the purpose to optimize the weight 
vector W is Contrastive Divergence (CD) which 
was developed by [12]. CD using Gibbs sampling 
algorithm and also implement gradient descent 
procedure to perform weight update calculation. 
Briefly, the procedure which performed one phase 
of CD algorithm (CD-1) in the one sample can be 
written as follows: 
1. For the training sample v, calculate the 

probability of hidden unit and sampling hidden 
activation vector h from probability 
distribution of calculation result. 

2. Calculate the outer product of v and h. The 
result of this calculation called positive 
gradient. 

3. From h, sampling on the reconstruction result 
of visible unit v’. From this sampling result, 
resampling on hidden activation h’. 

4. Calculate the outer product of v’ and h’. The 
result of this calculation called negative 
gradient. 

The weights Wij are updated by the difference value 
between positive gradient and negative gradient. 
Illustration of the training process using CD 
algorithm can be seen in Figure 4. 
 

 

Figure 4: Training process using CD 
 
 
 
 

Sparse Encoding Symmetric Machine (SESM) 
 

Training the weights by greedily propagating 
back and forth from one layer to the next layer is an 
effective and efficient method for determining the 
initial weights in a neural network, rather than just 
initializing the weights with random values. Such 
greedy training is commonly called pre-training. In 
the pre-training phase, unsupervised model is 
defined as a distribution of input vector Y on energy 
function E(Y,Z,W) as follows: 
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where β is a constant variable. Weight matrix W 
will be updated during the training to obtain 
optimal Z value. The equation to calculate weights 
that can minimize the loss function, which is equal 
to the negative log likelihood on the training data: 
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The first term is free energy and the second term 

is called log partition function. The log partition 
function ensures that we observed low energy for 
the (true) data distribution and high values 
anywhere else [5]. Two approaches can be used to 
estimate the log partition function. RBM uses the 
concept of Contrastive Divergence (CD) to obtain 
the log partition function, whereas SESM replacing 
the log partition by adding sparsity constraint on 
the prediction of the output of neural network. 
Sparseness in SESM allows for the optimization of 
the objective function directly.  

The training of SESMs is performed by simply 
minimizing the average energy in combination with 
the additional sparseness term of the output. Similar 
to the RBM, SESM follows the encoder-decoder 
paradigm. The encoder and decoder are described 
by 

 

decdecenc

T
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where l function is a logistic non-linearity 

))exp(1/(1)( gxxl −+=  with gain g = 1 for all 

experiments. While the energy function of SESM 
can be described as follows: 
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Overall, the optimization of the loss function 
during SESM training can be calculated using: 
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where ∑ +=
d d

zlZh ))(1log()(
2 . The loss contains 

the free energy (Eqn. 6), a sparseness term (h(Z)) as 
an approximation to the log partition function and a 
l1-regularization term on the weights. Instead of 
sampling the output as for RBM, SESM uses the 
output of the encoder directly. In this paper, 
however, we use l2 regularization. 

  
4. EXPERIMENTS AND EVALUATIONS 

Data used in this study is an Acclaim format, 
with two types of file: (1) Acclaim Skeleton File 
(ASF) which is used to store skeleton information 
and (2) Acclaim Motion Capture (AMC) which is 
used to store motion information. Overall data 
derived from CMU Graphics Lab Motion Capture 
Database (http://mocap.cs.cmu.edu). Our 
experiment is performed on 8x Intel(R) Core(TM) 
i7-3770 CPU @ 3.40GHz processor with 32909MB 
(13668MB used) memory and Ubuntu 14.04.1 LTS 
operating syste 

We perform gait transitions by bifurcation 
experiment similar to Sukhbaatar et al., [4]. In our 
experiments, however, we test and compare four 
different TDBN schemes: original TDBN, 
modified-TDBN(R), modified-TDBN(S), and 
modified-TDBN(R+S). We train the model on two 
different gait styles: walking and running. The 
TDBN learns and generates two different motions 
by a single TDBN and generates a natural gait 
transition motion. The walking and running frames 
have to be learned in a random order to prevent a 
bias to one gait. We give the motion change 
command at the 100-th and 200-th frames for all 
four TDBNs are more responsive to the action 
command to change a motion (from run to walk or 
vice versa). 

Our TDBN parameter settings are as follows. 
The number of hidden nodes in RBMs is 30, 
whereas in the CRBMs we set 15 hidden nodes. 
According to [4] more units boost the effect of the 
gait parameter on the hidden layer, making the 
transition more sudden and short. On the contrary, 
fewer units will increase the effect of the past 
hidden states on the hidden layer, making transition 

slower and even impossible in some cases. 
However, in our experiments, we observed that the 
number of hidden nodes (30 for RBMs, and 15 for 
CRBM) gives visually natural transitions. 
According to the epoch that is used by [4], RBMs 
in the first layer is trained with 200 epochs, and the 
CRBMs is trained with 40 epochs. The 
regularization and sparsity constants are 
respectively set to 1.0x10-5 and 2.0x10-7. The 
smoothness of gait transition is measured by 
statistical evaluation on the variation of the rotation 
angles of five bones movement (root, left hand, 
right hand, left foot, and right foot) as shown in 
Table 1. The smoothness differences between the 
modified TDBN and the original TDBN is 
relatively small. 

Table 1: Bone motions smoothness measure as standard 

deviation of points in bones trajectory (the smaller is the 

better). 

Bone 

Name 

Original 

TDBN 

Mod-

TDBN 
(R) 

Mod-

TDBN 
(S) 

Mod-

TDBN 
(R+S) 

Root RX 0.00597 0.00797 0.00866 0.02491 

Root RY 0.01175 0.01406 0.01342 0.01455 

Root RZ 0.00925 0.01273 0.01264 0.01371 

lhand RX 0.00264 0.04546 0.00413 0.00437 

lhand RZ 0.01289 0.04685 0.01786 0.02942 

rhand RX 0.00441 0.04024 0.00518 0.03373 

rhand RZ 0.01045 0.04051 0.01318 0.06286 

lfoot RX 0.06138 0.07779 0.07644 0.07626 

lfoot RZ 0.03010 0.03804 0.03368 0.04423 

rfoot RX 0.06288 0.07421 0.07306 0.08200 

rfoot RZ 0.02548 0.03183 0.03139 0.02947 

mean 0.02313 0.04217 0.02809 0.03906 

 
As a result preview, the comparison between the 

reconstruction result of original TDBN and 
modified-TDBN for walking and running motions, 
along with the transition between those motions can 
be seen in Figure 5. Gait transitions from the four 
TDBN schemes show that the modified TDBN is 
more responsive that the original TDBN while 
preserving the smoothness between motions 
transitions. Figure 6 shows that the free energy 
during training of RBMs, which is real-binary pair 
layers, in the modified TDBNs get lower faster than 
the RBM in the original TDBN, whereas the 
reconstruction error are about the same. Figure 7 
shows that the energy of CRBM, which is a binary-
binary layer, in the modified TDBN diverge but 
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attain lower reconstruction error than the original TDBN.  

 
Figure 5: Reconstructed motions  

 

 
Figure 6: RBM learning: free energy and reconstruction 

error 
 
Table 2 shows that the modified TDBN learning 
does not incur much additional total computation 
time. Figure 8 shows the transition of the right-hand 
bone from walk to run of the rotation angle with 
respect to Z axis. The transition profile of the 
modified TDBN is comparably similar to the 
original TDBN. 
 

 
 
 

 
Figure 7: CRBM learning: free energy and 

reconstruction error 
 

5. CONCLUSION 

 

This paper presents an application of SESM pre-
training into TDBN for human motion analysis and 
synthesis. The application is SESM includes the 
regularization and sparsity constraints into the CD 
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algorithm inside RBM and CRBM of a single 
TDBN. We compare gait transitions by bifurcation 
experiments using four different TDBN settings.   

 
Figure 8: The smoothness of transition of rhand RZ 

rotation  
 

These experiments show that the modified-
TDBN reaches lower energy faster in RBM pre-
training and reach lower reconstruction error in the 
CRBM training. Even though the synthesized 
motions from the modified-TDBN approaches is 
slightly less smooth than the original TDBN, the 
modified-TDBN is more responsive to the action 
command to change a motion (from run to walk or 
vice versa) while preserving the smoothness during 
motion transitions without incurring much overhead 
computation time. For our future works, we plan to 
try another types of motion data such as dances and 
sport movement. We also plan to use the auto-
encoder method in the first layer of TDBN to 
replace RBM. 
 

Table 2: TDBN schemes computation time 

training 
Original 

TDBN 

Mod-

TDBN 

(R) 

Mod-

TDBN 

(S) 

Mod-

TDBN 

(R+S) 

RBM 39.696 s 40.076s 40.962s 40.941s 

CRBM 
1m 

29.983s 

1m 

28.443s 

1m 

28.041 

1m 

30.45s 

Total 
2m 

9.679s 

2m 

8.519s 

2m 

9.003s 

2m 

11.391s 

 
Table 3: TDBN schemes memory usage (in MB) 

training 
Original 
TDBN 

Mod-
TDBN 

(R) 

Mod-
TDBN 

(S) 

Mod-
TDBN 

(R+S) 

RBM 119.4 114.1 94.3 116.4 

CRBM 81.2 79.1 60.8 78.6 

Total 200.6 193.2 155.0 195.1 
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