
Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

153

EXPERIMENTAL EVALUATION OF TCP CONGESTION

CONTORL MECHANISMS IN SHORT AND LONG

DISTANCE NETWORKS

Mudassar Ahmad,

Md Asri Ngadi, Mohd Murtadha Mohamad

Department of Computer Science, Faculty of Computing,

 Universiti Teknologi Malaysia (UTM), 81310 Johor, Malaysia.

E-mail : mudassar.utm@gmail.com , dr.asri@utm.my (Correspondence Author), murtadha@utm.my

ABSTRACT

Originally TCP was designed for early, low bandwidth, short distance networks, so Standard TCP did not
utilize the maximum bandwidth in today’s high bandwidth network environments. Therefore a lot of TCP
congestion control mechanisms also known as TCP variants have been developed for today’s long distance
high bandwidth networks. In this paper the experimental results evaluating the performance of TCP Reno,
HighSpeed TCP, BIC TCP, TCP CUBIC and Compound TCP in short and long distance high bandwidth
networks are presented. Results show that TCP CUBIC shows the highest performance in goodput whereas
TCP Compound shows the highest performance in protocol fairness and TCP friendliness as compared to
the other stat of the art congestion control mechanisms.

Keywords: Congestion Control Mechanism, Protocol Fairness, TCP Friendliness, Goodputs.

1 INTRODUCTION

 TCP is officially adopted as a standard in RFC
793 (Requests for Comments) in 1981 and is
designed to deal with message flow control and
error correction [1]. TCP works on the top of IP,
ensuring reliable communication in today’s
Internet. TCP is a reliable because of its main
component that is congestion control which is
responsible for detecting and re acting the overload
traffic on the Internet. TCP still requires high
performance by preventing congestion collapse.
Long distance, high bandwidth networks are
spanning in several continents rapidly and TCP has
been widely used as a primary transfer protocol in
these networks.

 TCP performance is one of the main critical
issues in long distance networks, because TCP is
not utilizing the maximum bandwidth. TCP
performance depends upon the three main
components: poor loss detection, coefficients of
congestion window (cwnd) before or after loss and
increase in cwnd at the beginning of connection.
The small additive growth of cwnd used in TCP
congestion control was blamed for its poor
performance on these networks. Many advanced
TCP congestion control mechanisms have been

proposed, adopting more scalable cwnd window
growth function for better performance in high
bandwidth, long distance high bandwidth networks.
Most of these new congestion control mechanisms
only modify the protocol behavior during
congestion avoidance phase. These advance TCP
congestion control mechanisms are briefly
discussed in Section 3.

 For long distance high bandwidth networks most
of existing TCP congestion control mechanisms are
not optimized, because when they run in such
environments, they fall into some rare states where
TCP obtain extremely low performance. The aim of
this paper is to compare the performance of
competing TCP congestion control mechanisms by
using a set of benchmark tests that can probe a
series of important aspects inside protocols and can
apply to all other TCP proposals. In this paper
experimental evaluation and behavior of TCP Reno
[2], HighSpeed TCP [3], BIC TCP [4], TCP
CUBIC [5] and Compound TCP [6] are discussed.
The empirical results highlight a number of
deficiencies in the studied protocols and finally to
render this weakness in the protocols future
direction toward the deployment of the protocol in
real network is also suggested.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

154

2 TCP CONGESTION CONTROL

 In order to avoid congestion collapse, TCP
congestion control follows a packet conversation
principle [7], which confirms the transmitted packet
delivery by acknowledgment (ACK). For every
packet sent on the network by a source, an ACK is
expected to be transmitted back from the
destination. The source controls the packet sending
rate by using a variable called congestion window
cwnd, which determines the number of packets that
the source is allowed to send.

 The destination also advertises to the source the
amount of data it is willing to buffer for connection
called advertised window (rwnd). By using these
two variables, the source can transmit the data up to
the maximum amount of congestion window or
advertised window. Data transmission between
source and destination depends upon comparative
minimum values of either cwnd or rwnd. Figure 1
shows the typical behavior of TCP congestion
control.

Figure 1: Dynamics of TCP Congestion Control

 TCP congestion control has four main
components, slow start and congestion avoidance,
fast retransmit and fast recovery. Slow start and
congestion avoidance algorithms control the
transmissions. The slow start threshold (ssthresh)
is used to determine which algorithm, slow-start or
congestion avoidance is being used by TCP to
control the data transmission. If the amount of cwnd
is less than ssthresh, then slow start algorithm is
used and if cwnd is greater than or equal to
ssthresh, then congestion avoidance algorithm is
used as denoted in Eq. 1.

≥ AlgorithmAvoidanceCongestionssthreshcwnd

AlgorithmStartSlowssthreshcwnd <

 (1)

 During the initial stage of the connection, the
slow start algorithm increases the congestion
window exponentially to find the unknown
equilibrium state of the network. However, on the
other hand, congestion avoidance algorithm
controls the growth of congestion window, because
the source has already reached the equilibrium state
of the network. After receiving three duplicate
ACKs, the fast retransmit algorithm re transmits the
dropped packet without waiting for a
retransmission timer to expire. After fast retransmit
algorithm, the fast recovery algorithm continues to
work to maintain the same number of packets prior
to entering into the fast recovery. When the source
receives the ACK of lost data, fast recovery
algorithm terminates.

 Slow start algorithm is used to probe the time-
varying available bandwidth of the current network
path. Source increases its cwnd by one at each
ACK, which doubles it when receiving ACKs for
all the packets. Eq. 2 denotes the cwnd evolution
during slow start upon receiving an ACK. A
destination running different ACK scheme affects
the ramp-up speed of slow start algorithm on the
source. Microsoft Windows and FreeBSD [8]
operating system use delayed ACK from the
beginning of the connection, while Linux uses
quick ACK for initial 16 packets, then delayed
ACK, because delayed ACK is mandatory for TCP
end systems. When the size of cwnd becomes larger
than a ssthresh, the source exit slow start phase and
enters into congestion avoidance phase. ssthresh is
an estimated conservative measure of available link
bandwidth in the network path.

)<(1: ssthreshcwndifcwndcwndACK +←

(2)

 Filling the network pipe in slow start phase is a
very important concept in performance. In
congestion avoidance phase, normally a source
increases its congestion window by (1/cwnd) for
each incoming ACK (for TCP Reno [2], New Reno
[9] and SACK [10] only). This makes the source
gradually increase its cwnd by only one packet per
each RTT, because the source has already reached
the equilibrium state of the network. Upon loss
detection after receiving three duplicate ACKs, the
source reduces its cwnd by half. Eqs. 3 & 4 show
the cwnd evolution during congestion avoidance
upon receiving an ACK and upon loss detection
respectively. The source uses packet loss as an
indication of network congestion. In the absence of
network congestion, the source increases its cwnd

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

155

additively, while in presence of network congestion
by receiving three duplicate ACKs, source drops its
cwnd by half (1/2) of its current cwnd to reduce the
congestion in the network path. This mechanism is
called Additive Increase and Multiplicative
Decrease (AIMD) [11]. Eq. 5 shows the general

Standard TCP with 1)=(α and
)

2

1
=(β

.

)(
1

: ssthreshcwndif
cwnd

cwndcwndACK ≥+←

(3)

cwndcwndLoss ×←

2

1
:

 (4)
(4)

×−←

+←

cwndcwndLoss

cwnd
cwndcwndACK

AIMD

)(1=

=
:

β

α

 (5)
(5)

3 EVALUATING HIGH SPEED

NETWORK PROTOCOLS

 In this section performance of TCP Reno,
HighSpeed TCP, BIC TCP, TCP CUBIC and
Compound TCP is measured with respect to
goodput, protocol fairness and TCP friendliness.
These congestion control mechanisms have been
the subject of consideration and experimentation in
recent years with the implementation in Linux
operating system which is now publically available
on the Internet. NS-2 [12] with dumbbell network
topology is used for simulation as shown in Figure
7. For each simulation two flows of each TCP
congestion control mechanisms are run on short and
long RTTs network scenarios with different
bottleneck and link speed bandwidth. Simulation
time for each experiment test is set to 300 seconds
and no background traffic is used. For all the
simulation experiments, the buffer size of Drop Tail
router is set to [0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.5,
1.0, 1.5, 2.0] BDP-Q. Complete set of simulation
parameters are shown in Table 1. Before
proceeding, a comprehensive review of each
protocol with respect to its behavior on each
acknowledgment and after loss event is discussed
in the form of equations in next sub sections.

3.1 TCP Reno

 TCP Reno [2] is developed by Van Jacobson and
it is an enhanced form of TCP Tahoe [13]. In TCP
Reno, congestion is detected via a packet loss
through Re-transmit Time Out (RTO) not by three
duplicate ACKs. After loss event the value of
congestion window (cwnd) is set to half (1/2) of its
previous value as denoted in Eq. 7. If the source is

still able to receive the ACKs and after receiving a
number of duplicate ACKs, TCP Reno enter in the
fast recovery phase and the source re transmits the
lost packet, however, unlike TCP Tahoe, it will not
fall back into slow start state [14]. In fast recovery
mode, when a duplication ACK is received, the
cwnd size is increased by one segment
(cwnd=cwhd+1). However cwnd is restored to
ssthresh (cwnd=ssthresh) when a non-duplicate
acknowledgment corresponding to retransmitted
segment is received.

 The Main problem in TCP Reno is that fast
retransmit mechanism assumes that only one
segment is lost, if more than one segment is lost, it
leads towards poor performace in the presence of
multiple packet losses. TCP New Reno [9] and TCP
SACK [10] solved this issue. ACK starvation is
another problem in TCP Reno, which occurs due to
the ambiguity of duplicate ACKs. Hence, TCP
Reno is better than TCP Tahoe only in case of
single packet loss, but not much better if multiple
packets are lost. Most of the new TCP congestion
control mechanisms are based on TCP Reno. Eqs. 6
& 7 represent the value of cwnd in slow start and
fast recovery phases. Figure 2 shows the typical
behavior of congestion window growth of TCP
Reno.

Figure 2: TCP Reno Congestion Window Growth

Behavior

×←

+←

cwndssthresh

cwndcwnd

ACK

2

1

1

=

(6)

←

×←

+

+

nn

nn

ssthreshcwnd

cwndssthresh
Loss

1

1

2

1

=

(7)

3.2 Highspeed TCP

 HighSpeed TCP [3] is a modified form of original
TCP congestion avoidance algorithm. HighSpeed
TCP uses modified AIMD parameters, where the

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

156

linear increase factor cwnd

cwndf)(
α

and the multiplicative

decrease factor
)(cwndgβ are adjusted by a convex

function for the current cwnd size. When the size of
cwnd is less than or equal to 38, HighSpeed TCP
uses the similar increase and decrease factors as
Standard TCP. When the cwnd grows beyond the
cutoff value, the function raises the increase factor
and reduces the decrease factor proportional to the
cwnd size. Based on [3, 15], Eqs. 8 & 9 denote the
congestion window value at each ACK and loss
events respectively. Figure 3 shows the growth of
cwnd for this protocol.

Figure 3: HighSpeed TCP Congestion Window Growth

Behavior

cwnd

cwndf
cwndcwndACK

)(
: α

+←

(8)

cwndcwndgcwndLoss ×←)(: β

(9)

3.3 BIC TCP

 BIC (Binary Increase Congestion Control
Algorithm) TCP [4] uses two window size control
policies called additive increase and binary search
increase to maximize the cwnd. For a packet loss,
BIC reduces its cwnd by a multiplicative decrease

factor
)(β

 as shown in Eq. 10. The cwnd size prior

to reduction is set to
)(

max
W

 and after reduction is

set to
)(

min
W

. Since packet loss have occurred at

)(
max

W
, the cwnd size that the network can

currently handle without loss must be some where
between these two numbers, so BIC performs a

binary search by using
)(

max
W

 and
)(

min
W

parameters, by jumping to the midpoint between
these two parameters. If the distance between the

midpoint

 +

2

maxmin
WW

 and the current minimum

)(
min

W
 is larger than the maximum

increment
)(

max
S

, BIC increases the current

window size by
)(

max
S

, thus

max
Scwndcwnd +=

 and this is called linear
increase. If BIC does not get packet loss at the
updated window size, that window size becomes

the new
)(

min
W

 and if it gets a packet loss, the

updated window size becomes the new
)(

max
W

.
This process continues until the window increment

is less than minimum increment
)(

min
W

 at which
point, the window is set to the current

maximum
)(

max
W

. The window growth function of
BIC TCP is explained graphically in Figure 4.

Figure 4: BIC TCP Congestion Window Growth

Behavior

cwndcwndLoss ×−←)(1: β
(10)

3.4 TCP Cubic

 TCP CUBIC [5] adopted new slow-start
algorithm called HyStart [16], which prevents long
burst losses by finding a Safe exit point during
slow-start and thus improves the start-up
throughput of TCP CUBIC in long distance, high
bandwidth networks. After a window size reduction

due to a loss event, TCP CUBIC registers
)(

max
W

as the widow size where the loss even occurred.
Then it decreases the cwnd by a constant decrease

factor
)(β

 and enters into congestion avoidance
phase and begins to increase the window size by
using a concave feature of cubic function, until the

window size becomes
)(

max
W

. The window grows
very fast after a window reduction, but as it gets

close to
)(

max
W

, it slows down its growth,

around
)(

max
W

; the window increment becomes

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

157

almost zero. Eq. 11 show the growth function of
TCP CUBIC, where (C) is the TCP CUBIC
parameter, (t) is the elapsed time from the last
window reduction and (K) is the time period that

the function requires to increase
)(W

 to
)(

max
W

(when there are no further loss events occur). (K) is
calculated by using the function given in Eq. 12.

TCP CUBIC sets the
))((RTTtW +

 as the
candidate target value of cwnd. The cwnd growth of
this protocol is shown in Figure 5.

Figure 5: TCP CUBIC Congestion Window Growth

Behavior

max
WKtCtW +−

3
)(=)(

(11)

3=

C

W
K

max
β

(12)

3.5 Compound TCP

 Compound TCP (CTCP) [6] developed by
Microsoft for the Vista operating system and
designed for high bandwidth delay product network
uses a scalable delay based component of TCP
Vegas [17] into the Standard TCP Reno congestion
avoidance algorithm. A new state variable called
delay window cwnd is introduced in current TCP
Control Block (TCB) [18] to control the delay
based component in CTCP.

×

+
←

lossadetectinguponcwnd

ACKanreceivingupon
win

cwnd
cwnd

2

1

1

(13)

+

+

AvoidanceCongestiondwndcwnd

StartSlowcwnd
win

0
=

(14)
k

ttt
winwinwinACK ×+←

+
α

1
:

(15)

ttt
winwinwinLoss ×−←

−

β
1

:
(16)

()

()

−−

−

≥

−+

←
+

),0
2

)(1(

),0(

1),0)((

<

1

cwnd
winmax

lossdetectingupon

Diffdwndmax

Diffif

winmaxdwnd

Diffif

dwnd

t

t

k

tt

t

β

ζ

γ

α

γ

(17)

 At the starting of a new connection, this protocol
uses the slow-start behavior of the regular TCP by
increasing the cwnd in a manner similar to TCP
New Reno as expressed in Eq. 13 and sets the value
of dwnd to 0. When the connection switches to
congestion avoidance phase, delay-based
component is enabled. Thus, CTCP maintains two
windows concurrently, a regular cwnd based on
legacy TCP’s AIMD algorithm and a delay window
dwnd based on delay-based component of TCP
Vegas. The sending rate of CTCP is determined by
(win) by summing these two windows as shown in
Eq. 14. Delay window dwnd is determined by using
a queuing delay mechanism of Vegas. When a new
connection is started, this protocol estimated and
measured (baseRTT) also known as (minRTT) and
exponentially smoothed round trip time (sRTT). It
also estimated the number of backlogged packets
on the connection as (Diff), which is equal

to
baseRTT

sRTT

win

baseRTT

win
×−)(

. It stands for the
amount of data that injected into the network in last
round but does not pass through the network in this
round i.e., the amount of data backlogged in the
bottleneck router. An early congestion indication
can be detected, if the number of packets in queue

(Diff) is larger than a threshold
)(γ

.

If
)<(γDiff

, the network path is considered as
under utilized, otherwise the network path is
determined as congested. In the absence of
congestion, CTCP window increases as Eq. (15)
and if there is a loss, the window is multiplicative
decreased as Eq. 16. The overall CTCP follows the
behavior defined in theses two Eqs. At the end of
each round trip time, (Diff) is calculated. Based on
the value of this Vegas gap (Diff) and a global

constant threshold
)(γ

, which is equal to 30
packets in this protocol, (dwnd) is calculated as in

Eq. 17, here
)(ζ

 is a parameter that defines how
rapidly the delay based component should reduce
this window when early congestion is detected. If

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

158

the (Diff) is small, dwnd increases very rapidly to
utilize the link maximum. If it is large, this is an
indication that the network path is getting
congested, the dwnd decreases. Figure 6 shows the
cwnd graph of TCP Compound.

Figure 6: Compound TCP Congestion Window Growth

Behavior

4 EXPERIMENTAL SETUP

 NS-2 is one of the best commonly used
simulation tool for evaluation of TCP protocols. In
this paper, NS-2 is used to analyze the goodput,
fairness and TCP friendliness behavior of all these
TCP variants. Simulation tests are run according to
the simulation parameters as defined in Tables 1 &
2. NS-2 version 2.35 on Linux Fedora Core 16
installed on Core i7 HP Elite book 2540P is used.
Simulation topology shown in Figure 7 consists of
7 nodes. Two nodes are acting as data sources, two
are as data destinations and two are acting as
routers among sources and destinations. Hamilton
benchmark suite [19] is used in all simulation
experiment tests. Tmix traffic [20] is used among
source and destination nodes. Awk [21] scripts are
used to extract useful information from NS-2 trace
files. Finally all empirical data is analyzed in SPSS
[22] to get useful results in the form of graphs.

Figure 7: Test Bed.

Table 1: Simulation Parameters1.

Parameter Values

Protocol TCP Linux

Variant CUBIC, BIC TCP, Compound,

 TCP Reno, HighSpeed TCP

Bottleneck

Bandwidth

 [50, 100, 150, 200, 250] Mbps

Link

Bandwidth

 [100, 200, 300, 400, 500] Mbps

Flow 1 RTT 160 ms

Flow 2 RTT [10, 30, 50,, 310] ms

BDP Q Size 0.5, 1.0. 1.5, 2.0

Background

Traffic

 nil

Test duration 600 seconds

Test repetition 3 times

Table 2: Simulation Parameters 2.

Simulation Parameter Values

Protocol TCP Linux

TCP Variant CUBIC, BIC, Compound,

Reno, HighSpeed TCP.

Bottleneck Bandwidth [50, 100, 150, 200, 250] Mbps

Link Speed (Bandwidth) [100, 200, 300, 400, 500] Mbps

Network Scenarios Short RTTs, Long RTTs

Flow1 RTTs

(Short-Diff-RTT) 50 ms

Flow1 RTTs

(Short-Same RTT) [2, 4, 6,..,16] ms

Flow1 RTTs

(Long-Diff-RTT) 100 ms

Flow1 RTTs

(Long-Same-RTT) [50, 70, 90,..,190] ms

Flow2 RTTs

(Short RTT) [2, 4, 6,..,16] ms

Flow2 RTTs

(Long RTT) [50, 70, 90,..,190] ms

BDP-Q Size 0.01, 0.02, 0.05, 0.1, 0.2,

in all networks 0.4, 0.5, 1.0, 1.5, 2.0

Background Traffic nil

NS-2 Tests Duration 300 Seconds

Tests Repetition 3 Times

5 PERFORMANCE METRICS

 To evaluate the performance of TCP variants,
many performance metrics measured by
simulations are presented in this section. Long term

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

159

and steady state values of the performance metrics
are used in analysis. Following is a list of
performance metric used in this paper:
• Goodput: It is the application layer throughput
measured at the data receiving node. It is the
number of bits deviled to the application layer of
the receiving node by the transport layer per unit
time. Goodput per transport flow is normalized
with the tight link bandwidth.

 −

meTransferTi

tedDataRetransmitSentData
Goodput =

(18)
 • Protocol Fairness: This performance metric is
defined by Jain [23] to show protocol fairness
which is defined as the equality of the bandwidth
sharing in a network. Mostly, Fairness is calculated
by using Jain’s fairness formula which is defined in
Eq. 19. For a given set of

throughput
),,,,,,,,,,,,,(

54321 n
xxxxxx

, this
formula calculates the fairness index. Fairness
index is a value between 0 and 1, with 1 showing
the most fair or equal allocating or sharing of
available bandwidth among competing flows in a
network [24]. Here throughput are non-negative, if
the entire throughput are same, the fairness index
will be 1.

2

1

2

1

321
=),........,,(

i

n

i

n

n

xn

x

xxxxf

∑

∑

×

(19)

 (18)
There are two types of fairness: inter protocol
fairness and intra protocol fairness. Inter protocol
fairness measures the protocol fairness between two
flows of a protocol having different RTTs. Intra
protocol fairness measures the protocol fairness
between two flows of a particular protocol with the
same RTT. This performance metric represents a
degree of bandwidth share between two flows of
the same protocol.

 • TCP Friendliness: TCP Friendliness relates to
how sets of connections running different TCP
variants affect the performance of each other. The
TCP friendliness doctrine [25] states that a non
TCP flow should not consume more available
bandwidth than what a confirming TCP flow would
consume under the same network conditions (RTT,
Loss and Segment Size). Floyd and Mahdavi
introduced the TCP friendly equation Eq. 20 in
1997.

×

×

lossRTT

MSS
onsumedBandwidthC

1.22
=

(20)

6 RESULTS AND DISCUSSION

6.1 Goodput Analysis

 In this section goodput of TCP Reno, HighSpeed
TCP, BIC TCP, TCP CUBIC and Compound TCP
is measured according to Eq. 18. Goodput is
measuring on long RTT and short RTT network
scenarios having bottleneck bandwidth 50Mbps to
250Mbps and link speed 100Mbps to 500Mbps. In
all experiments, different sets of BDP-Q values are
used without any background traffic. Figure 8
shows the goodput comparison of TCP Reno,
HighSpeed TCP, TCP CUBIC, BIC TCP and
Compound TCP variants at bottleneck bandwidth
50Mbps along with link speed among nodes
100Mbps and different sets of bandwidth delay
product queue (BDP-Q) sizes. In all scenarios, no
any background traffic is introduced while
measuring the goodput. There are two major groups
of performance evaluation experiments, first group
is about short round trip time (RTT) network
scenarios having flow1 RTT is 50ms and second
group is about long RTT scenarios where flow1
RTT is equal to 100ms. From simulation results it
is observed that overall TCP CUBIC shows the
highest goodput results whereas TCP Reno shows
the lowest goodput results as shown in Figures 8a

and 8d. In all experiment when competing flows
have either similar or different RTT values, overall
higher goodput of all the above TCP variants is
noticed in long RTT experiments cases as
compared to short RTT scenarios experiments.

 In Figures 8a and 8b, all the above five TCP
variants show higher goodput when their individual
flows have short RTTs and their RTT values are not
similar to each other, whereas in Figures 8c and 8d,
all the five TCP variants show higher goodput
when their individual flows have long RTTs and
their RTT values are similar to each other. Hence,
this shows the reverse behavior of Reno,
HighSpeed TCP, and BIC. CUBIC and Compound
TCP variants in long and short RTTs network
scenarios at bottleneck bandwidth 50Mbps along
with link speed 100Mbps.

 Figure 9 shows the goodput of Reno, HighSpeed
TCP, BIC, CUBIC and Compound TCP variants, in
this case goodput of CUBIC is again at high level
as compared to other TCP variants whereas TCP
Reno is again at lower level in goodput as

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

160

compared to others, this behavior of CUBIC and
Reno is same as in Figure 8. It is also observed that
goodput of all said TCP variant is higher in long
RTT networks scenarios as compared to googput in
short RTT case. When both the competing flows of
each TCP variant have short RTTs and their RTT
values are similar to each other, goodput of all
variants increases if the RTT increases or in other
words goodput is directly proportional to round trip
time. However, when the flows have not similar
round trip time values, goodput is inversely
proportional to RTT is shown in Figure 9a.

(a) [Flows having different short RTTs]

(b) [Flows having same short RTTs]

(c) [Flows having different long RTTs]

(d) [Flows having same long RTTs]

Figure 8: Goodput comparison of two flows. Setup:

Bottleneck bandwidth is 50Mbps, link rate is 100Mbps,

10 sets of BDP buffering are used, 50ms short RTT,

100ms long RTT and No Background Traffic is

introduced

In long RTT network scenarios, when the round trip
time of both flows are similar to each other, then
CUBIC shows very high goodput while Compound
goodput constantly decreases with in increase in
RTT as shown Figure 9d.

(a) [Flows having different short RTTs]

(b) [Flows having same short RTTs]

(c) [Flows having different long RTTs].

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

161

(d) [Flows having same long RTTs]

Figure 9: Goodput comparison of two flows. Setup:

Bottleneck bandwidth is 250Mbps, link rate is 500Mbps,

10 sets of BDP buffering are used, 50ms short RTT,

100ms long RTT and No Background Traffic is
introduced

Figures 10 and 11 show the goodput behavior of
Reno, HighSpeed TCP, BIC, CUBIC and
Compound TCP variants with respect to bandwidth
delay product queue (BDP-Q) size. All the
experiments are divided into two different network

(a) [Buffering queue size is 0.5 BDP]

(b) [Buffering queue size is 1.0 BDP]

(c) [Buffering queue size is 1.5 BDP]

(d) [Buffering queue size is 2.0 BDP]

Figure 10: BDP Q-wise Goodput comparison of two

flows having same RTTs. Setup: Bottleneck bandwidth is

250Mbps, link rate is 500Mbps, BDP buffering is
configured, 160ms flow 1 RTT and No Background

Traffic is introduced
groups having similar and non similar flows RTTs
with bottleneck bandwidth 250Mbps and link speed
500Mbs. Simulation parameters of these two
network groups are shown in Tables 1 & 2. TCP
CUBIC and BIC TCP show similar goodput values

(a) [Buffering queue size is 0.5 BDP]

(b) [Buffering queue size is 1.0 BDP]

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

162

(c) [Buffering queue size is 1.5 BDP]

(d) [Buffering queue size is 2.0 BDP]

Figure 11: BDP Q-wise Goodput comparison of two

flows having different RTTs. Setup: Bottleneck bandwidth
is 250Mbps, link rate is 500Mbps, BDP buffering is

configured, 160ms flow 1 RTT and No Background

Traffic is introduced

at [0.5-2.0] BDP-Q as shown in Figures 10 and 11.
Results show that at BDP-Q size 1.0 and when
RTTs of both the competing flows are not similar to
each other, all the said five TCP versions can
achieve similar highest goodput as shown in Figure
11b. It is also observed that goodput of Compound,
Reno and HighSpeed TCP is inversely proportional
to flows round trip time, specially when both flows
have similar RTTs as shown in Figures 11a, 11c
and 11d.

 From Figure 10, it is noticed that if the competing
flows have [10-120]ms round trip time, then
goodput of all five said TCP variants is almost
equal showing in one line, whereas in Figure 11,
goodput is exactly same at round trip time [10-
80]ms. Overall it is also observed that, goodput of
each TCP variant is also increase, if the queue size
of bandwidth delay product (BDP) increases. It is
also observed that goodput of Compound, Reno and
HighSpeed TCP decreases, if the round trip time of
competing flows increase as shown in Figures 11a,
11c and 11d.

6.2 Protocol Fairness Analysis

 Inter protocol fairness measures the protocol
fairness between two flows of a protocol having
different RTTs. Intra protocol fairness measures the
protocol fairness between two flows of a particular
protocol with the same RTT. This performance
metric represents a degree of bandwidth share
between two flows of the same protocol. Inter and
Intra protocol fairness between two individual
competing flows of Reno, HighSpeed TCP,
CUBIC, BIC and Compound TCP versions are
measured in this section. Experiments are
performed on short and long RTT network
scenarios. For short RTT experiments, flow1 RTT
is fixed which is equal to 50ms and flow2 RTT
vary from 2ms to 16ms. For long RTT experiments,
flow1 RTT is fixed which is equal to100ms instead
of 50ms and flow2 RTT starting and ending range
is 50ms and 190ms respectively. A major
difference between the fairness of long RTTs and
short RTTs networks is noticed.

(a) [Flows having different short RTTs]

(b) [Flows having same short RTTs]

(c) [Flows having different long RTTs]

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

163

(d) [Flows having same long RTTs]

Figure 12: Fairness comparison of two flows. Setup:

Bottleneck bandwidth is 50Mbps, link rate is 100Mbps,

10 sets of BDP buffering are used, 50ms short RTT,

100ms long RTT and No Background Traffic is

introduced

 (a) [Flows having different short RTTs]

 (b) [Flows having same short RTTs]

(c) [Flows having different long RTTs]

(d) [Flows having same long RTTs]

Figure 13: Fairness comparison of two flows. Setup:

Bottleneck bandwidth is 250Mbps, link rate is 500Mbps,

10 sets of BDP buffering are used, 50ms short RTT,

100ms long RTT and No Background Traffic is

introduced

 According to Figures 12 and 13, it is observed
that TCP Compound which is the default TCP
version in Microsoft operating system visa and 7,
shows the highest inter and intra protocol fairness
in both long and short round trip time network
cases. It is also observed that when both the
competing flows are configured at long RTTs
having bottleneck bandwidth [50-250]Mbps, link
speed [100-500]Mbps and without presence of any
background traffic, TCP CUBIC which is default
TCP protocol in Linux operating system, shows
lowest inter and intra protocol fairness as shown in
Figures 12c, 12d, 13c and 13d. Reno, HighSpeed
TCP, CUBIC, BIC and Compound TCP variants
show pathetic low inter protocol fairness as shown
in Figures 12a and 13a, when their individual
competing flows are configured with short round
trip time and their RTT values are not similar to
each other, but if both the flows have similar RTT
values, all the above said five variants show
pathetic high intra protocol fairness as shown in
Figures 12b and 13b. In Figures 12d, 13c and 13d,
Reno and Compound show very high fairness and a
clear gap among the fairness of these two variants
with CUBIC, BIC and HighSpeed TCP variants is
observed, in this same figure, it is also seen that
CUBIC, BIC and HighSpeed TCP variants present
almost similar fairness but very low as compared to
Reno and TCP Compound as discussed above.
Finally it is concluded that all the five TCP
protocols show very high fairness when their flows
have short RTTs and values of their RTTs are not
similar to each other.

6.3 TCP Friendliness

 It calculates the bandwidth consumed by a TCP
flow confirming with the TCP congestion control
algorithms. [26] extended the Eq. 20 in 1998 to

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

164

include time out events. In this section friendliness
behavior of TCP CUBIC, BIC TCP, TCP
Compound and HighSpeed TCP with Standard TCP
is measured and from the results, it is found that
Compound TCP, which is the default congestion
control protocol in Microsoft Vista / 7, show the
highest TCP friendliness in all cases of NS-2
experiments of long and short RTT network
scenarios having bottleneck bandwidth 50Mbps to
250Mbps and link speed 100Mbps to 500Mbps as
shown in Figure 14. All experiments regarding TCP
friendliness are run according to simulation
parameters defined in Tables 1 & 2. When
competing flows of each TCP variant (TCP
CUBIC, BIC TCP, Compound TCP and HighSpeed
TCP) are short, bottleneck bandwidth is low
(50Mbps) and link speed is also low (100Mbps),
then all the said four TCP variants behave friendly
with Standard TCP as shown in Figure 14a. Results
show that TCP CUBIC, BIC TCP and HighSpeed
TCP are not friendly with Standard TCP when
round trip time of competing flows are very long
and even the change in bottleneck bandwidth and

(a) [Flows having short RTTs and link rate is 100Mbps]

(b) [Flows having long RTTs and link rate is 100Mbps]

(c) [Flows having short RTTs and link rate is 500Mbps]

(d) [Flows having long RTTs and link rate is 500Mbps]

Figure 14: Friendliness comparison of two flows. Setup:

Bottleneck bandwidth is [50,250]Mbps, link rate is

[100,500]Mbps, 10 sets of BDP buffering are used, 50ms

short RTT, 100ms long RTT and No Background Traffic
is introduced

link speed cannot improve their TCP friendliness
behavior. So it is concluded that these three TCP
variants cannot equally share bandwidth with
Standard TCP in any network condition when
nodes have long RTTs as shown in Figures 14b and
14d.

(a) [Flows having short RTTs]

(b) [Flows having long RTTs]

Figure 15: Link speed wise friendliness comparison of

two flows. Setup: Bottleneck bandwidth is [50 to

250]Mbps, link rate is [100 to 500]Mbps, 10 sets of BDP
buffering are used, 50ms short RTT, 100ms long RTT and

No Background Traffic is introduced

Results show that Compound TCP is the only one
TCP variant out of four variants that shows very
high TCP friendliness performance even in long
RTT network cases as shown in Figures 14b and

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

165

14d. It is also observed that TCP friendliness
behavior of BIC TCP is very poor in short RTT
network cases when link bandwidth is very high
(500Mbps) as shown in Figure 14c. Finally it is
concluded that all the above four variants show
highest TCP friendliness performance at during
short RTTs, lower bottleneck bandwidth and lower
link speed experiments as shown in Figure 14a.

 Figures 15a and 15b represent the TCP
friendliness behavior of TCO CUBIC, BIC TCP,
Compound TCP and HighSpeed TCP variants with
respect to link speed in Mbps. Figure 15a represents
the variants friendliness in short RTTs network
configurations whereas Figure 15b shows the
friendliness of variants when their individual flows
have long RTTs. TCP Compound is at highest point
in performance regarding to TCP friendliness in
both short and long RTT cases. TCP CUBIC shows
very good TCP friendliness in short RTTs case
whereas it shows very poor friendliness
performance in long RTTs network scenarios. TCP
CUBIC and BIC TCP behave exactly similar
friendliness behavior with Standard TCP in long
RTTs networks as shown in Figure 15b. Finally it is
concluded that all four TCP variants show very
high TCP friendliness in short RTTs networks as
compared to long RTTs network scenarios.

7 CONCLUSION

Results show that, TCP CUBIC shows the highest
while TCP Reno shows the lowest goodput results
in all experiments. TCP Reno, HighSpeed TCP,
TCP CUBIC, BIC TCP and TCP Compound show
reverse goodput behavior in long and short RTTs
networks with respect to round trip time. Goodput
of all above five variants is higher in long RTT
networks as compared to short RTT scenarios.
When both the competing flows of each TCP
variant have short RTTs and their RTT values are
similar to each other, goodput of all variants
increases if the RTT increases. In other words
goodput is directly proportional to round trip time.
However, when the flows have not similar round
trip time values, goodput is inversely proportional
to RTT. TCP CUBIC and TCP BIC show similar
goodput results at [0.5 to 2.0] BDP -Q size.
Goodput of TCP Compound, TCP Reno and
HighSpeed TCP is inversely proportional to flows
round trip time, specially when both flows have
similar RTTs. Goodput of each TCP variant is also
increase, if the queue size of bandwidth delay
product (BDP) increases. TCP Compound shows

the highest while TCP CUBIC shows the lowest
inter and intra protocol fairness in both long and
short distance BDP networks. TCP Reno,
HighSpeed TCP, TCP CUBIC, BIC TCP and TCP
Compound show pathetic low inter protocol
fairness when their individual competing flows are
configured with short round trip time and their RTT
values are not similar to each other, however, if
both the flows have similar RTT values, all the
above said five variants show very high intra
protocol fairness. Finally it is concluded that all the
five TCP protocols show very high protocol
fairness when their flows have short RTTs and
values of their RTTs are not similar to each other.
TCP Compound shows the highest TCP
friendliness in all cases of short or long distance
BDP network scenarios, whereas TCP CUBIC, BIC
TCP and HighSpeed TCP variants are not friendly
with Standard TCP. Finally it is concluded that all
the above four variants show highest TCP
friendliness performance at during short RTTs,
lower bottleneck bandwidth and lower link speed
experiments. TCP CUBIC shows very good TCP
friendliness in short RTTs case whereas it shows
very poor friendliness performance in long RTTs
network scenarios. TCP CUBIC and BIC TCP
behave exactly same friendliness behavior with
Standard TCP in long RTTs networks. Finally it is
concluded that all four TCP variants show very
high TCP friendliness in short RTTs networks as
compared to long RTTs network scenarios. In
future, we will enhance the performance of TCP
CUBIC regarding protocol fairness and TCP
friendliness and goodput.

ACKNOWLEDGMENTS

This work is supported by Ministry of Higher
Education (MOHE) and UTM/RUG/04H11
Universiti Teknologi Malaysia. The authors also
gratefully acknowledge the helpful comments and
suggestions of the reviewers, which have improved
the presentation.

REFRENCES:

[1] Allman, M., Paxson, V., Stevens, W. et al.
(1999). TCP congestion control.

[2] V. Jacobson, Modified TCP congestion
avoidance algorithm, email to the end2end list,
April 1990.

[3] Floyd, S. (2003). HighSpeed TCP for large
congestion windows.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

166

[4] Xu, L., Harfoush, K. and Rhee, I. (2004).
Binary increase congestion control (BIC) for
fast long-distance networks. In INFOCOM
2004. Twenty-third AnnualJoint Conference of
the IEEE Computer and Communications
Societies, vol. 4. IEEE, 2514-2524.

[5] Ha, S., Rhee, I. and Xu, L. (2008). CUBIC: A
new TCP-friendly high-speed TCP variant.
ACM SIGOPS Operating Systems Review.
42(5), 64-74.

[6] Song, K., Zhang, Q. and Sridharan, M. (2006).
Compound TCP: A scalable and TCPfriendly
congestion control for high-speed networks.
Proceedings of PFLDnet 2006.

[7] Jacobson, V. (1988). Congestion avoidance and
control. In ACM SIGCOMM Computer
Communication Review, vol. 18. ACM, 314-
329.

[8] McKusick, Marshall Kirk and Neville-Neil, The
design and implementation of the FreeBSD
operating system, George V, 2004, Addison-
Wesley Professional

[9] Floyd, S.; Henderson, T. & Gurtov, A. The
NewReno modification to TCP’s fast recovery
algorithm RFC 2582, April, 1999

[10] M. Mathis, J. Mahdavi, S. Floyd, and A.
Romanov, RFC2018TCP selective
acknowledgment options RFC, 1996.

[11] Floyd, S.; Handley, M. & Padhye, J. A
comparison of equation-based and AIMD
congestion control Citeseer, 2000

[12] The Network Simulator 2 (NS-2) Web page.
http://www.isi.edu/nsnam/ns/.

[13] V. Jacobson, Congestion avoidance and control,
ACM SIGCOMM, pp. 314-329, 1988.

[14] Kerkar, S. (2004). Performance analysis of
TCP/IP over high bandwidth delay product
networks.

[15] Li, Y.-T., Leith, D. and Shorten, R. N. (2007).
Experimental evaluation of TCP protocols for
high-speed networks. Networking, IEEE/ACM
Transactions on. 15(5), 1109-1122.

[16] Ha, S. and Rhee, I. (2011). Taming the
elephants: New TCP slow start. Computer
Networks.

[17] Brakmo, L. and Peterson, L. (1995). TCP
Vegas: End to end congestion avoidance on a
global Internet. Selected Areas in
Communications, IEEE Journal on. 13(8),
1465-1480.

[18] Touch, Joe, TCP control block interdependence,
1997

[19] Hamilton Institute TCP benchmark suite.
http://www.hamilton.ie/net/tcptesting.zip.

[20] Weigle, Michele C and Adurthi, Prashanth. A
tool for generating realistic TCP application
workloads in ns-2, ACM SIGCOMM Computer
Communication Review, year 2006, volume 36,
pages 65–76, number 3, ACM.

[21] Wood, Lloyd, Awk script to get end-to-end
delays from NS2 tracefiles.

[22] Bryman, Alan and Cramer, Duncan.
Quantitative data analysis with IBM SPSS 17,
18 & 19: A guide for social scientists,
Routledge, 2011.

[23] Jain, Raj, The art of computer systems
performance analysis, John Wiley & Sons
Chichester, 1991, Vol-182

[24] Aydin, Ilknur and Iyengar, Janardhan and
Conrad, Phillip and Shen, Chien-Chung and
Amer, Paul, Evaluating TCP-friendliness in
light of Concurrent Multipath Transfer, journal
= Computer Networks, year = 2012, volume =
56, pages = 1876-1892, number 7, Elsevier

[25] S. Floyd, K. Fall, Promoting the use of end-to-
end congestion control in the internet,
IEEE/ACM Transactions on Networking 7
(1999) 458-472.

[26] J. Padhye, V. Firoiu, D. Towsley, J. Kurose,
Modeling TCP Throughput: A Simple Model
and its Empirical Validation, ACM SIGCOMM
(1998) 303-314.

