
Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

257

A COMPARATIVE EVALUATION OF STATE-OF-THE-ART

INTEGRATION TESTING TECHNIQUES OF

COMPONENT-BASED SOFTWARE

1
ABUBAKAR ELSAFI,

 2
DAYANG N. A. JAWAWI,

3
ABDELZAHIR ABDELMABOUD, and

4
AWAD ALI

1,2,3 Department of Software Engineering, Faculty of Computing, Universiti Teknologi Malaysia,

81310 UTM Skudai, Johor Bahru, Malaysia.

4 Faculty of Computer Science and Information Technology, Kassala University, Sudan.

E-mail: 1eaaabubakar2@live.utm.my, 2dayang@utm.my, 3areabdelzahir2@live.utm.my,

4awad.uofkassala@gmail.com

ABSTRACT

In the last few years, component-based software has gained widespread notice and acceptance as a method
that facilitates the development of existing large, complex, and very critical systems by integrating
prefabricated small pieces of software called components. Component integration becomes an essential
stage in the component-based software development Lifecycle. Therefore, testing components after
integration is an important activity. Due to the unavailability of source code of integrated components and
due to the lack of component information or documentations, integration testing becomes more difficult and
very complex task. In the literature, different techniques have been proposed with the purpose of facilitating
the integration testing of component-based software. In this paper, we study, classify, and evaluate some of
the existing integration testing techniques and make a comparison in order to help in develop new, better
and more efficient and effective techniques for integration testing of component-based software systems.

Keywords: Comparative Evaluation, Integration Testing, Component-Based Software, Component

Testing, Critical Review

1. INTRODUCTION

Nowadays, software applications have become

increasingly larger, more complicated, distributed
amongst network and very critical. On the other
hand, time-to-market need to be decreased due to
the competition amongst Software Company. Due
to that, software engineers and developers are
facing several challenges in developing software
applications. To meet these challenges, software
engineers and developers try to look for alternative
approaches that facilitate the development of this
kind of software applications. Consequently, they
found that, today’s large, complex and very critical
software applications could be developed partially
if not completely, by reuse of pre-built sub-systems
that their operations have been previously tested as
a part of successful applications. This approach is
called Component-Based Software Engineering
(CBSE) [1].

CBSE is a way used in developing software
systems by integrating of pre-built software parts or

components. Whereas old approaches that fail to
develop today’s complex software applications,
attempt to develop software from scratch, one at a
time [2]. Given this fact, the overall software
management has becomes more complex and the
results of that, the productivity has becomes low
and the cost of development is becoming higher. In
the literature, there are several definitions for
software component has provided by many the
researchers. However, the most widely accepted
definition for software component is presented by
Clemens Szyperski [3]. According to [3], “a
software component is a unit of composition with
contractually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
composition by third parties”.

Many advantages have been obtaining from
developing software applications using previously
developed components. The most important
advantages are; the efficiency of development
increased, the product becomes more reliable, need

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

258

for maintenance is radically reduced, assemble
systems rapidly with viewer resource, and hence the
development costs will be reduced [4, 5]. In current
software development efforts, more than 70% of all
new complex software applications will closely
depend on Component-Based Software (CBS) [6].

Despite of this several advantages and propensity
of using software components in building large and
complex software systems, CBS has introduced
new problems in the field of software engineering
and software testing as mentioned by many
researchers [4, 7, 8]. Ye et al. [7] mentioned that,
depending on software components for building
software applications introduces new problems of
testing and maintaining software systems. The
evolvement of CBS, which produces systems by
integrating prefabricated software, and the
increased emphasis on software quality, highlight
the need for an improved testing methodology.
Also, the heterogeneous nature of components and
deployment architectures introduce complexities in
the integration process that must be analyzed and
validated during a testing process [8]. Furthermore,
the existing body of knowledge in this field tells us
that there are problems in integrating the
component [4]. This in turn will affect the quality
and reliability of the software constructed by
integrating components. Therefore, failure of
testing CBS means a financial loss, increased
expenses of software and hardware development,
and worse than that, the loss of relationships with
consumers, i.e. Ariane 5.

In the literature, there are several techniques for
integration testing of CBS has been proposed by the
researchers. This paper aims to study, classify, and
analyze the various existing integration testing
techniques of CBS, which can help researchers and
practitioners to develop and build new, better and
more efficient techniques.

The remainder of this paper is organized as
follows. Section 2 presents the procedures for
obtaining relevant study. Section 3 introduces the
related works and background. Section 4 describes
the existing CBS integration approaches and
techniques. Section 5 provides the comparative
evaluation. Section 5 discusses the results. Section
6 summarizes the current issues and future
directions and finally, section 7 concludes the paper
along with future work.

2. METHODOLOGY

In order to analyze various existing integration

testing techniques available for CBS systems,

available literature was extensively studied. This
was done by applying various search techniques to
sources like digital libraries of Science Direct,
IEEE Xplore, Springer Link, ACM Digital Library,
and other online sources such as Google scholar,
DBLP, Inspec, and open access journals. During the
study, various journal, book chapters, technical
reports, and conference papers were referred from
these sources. However, the complete review
process has been described in Figure 1. The
keywords that were used are given in Table 1.

Figure 1: The Comparative Evaluation Procedure.

Table 1: Relevant Keywords

Keywords

1

integration testing

2

integration testing technique

3

component based software

4

component-based testing technique

5

component based software engineering

Define relevant
keywords for search

in e-library

Start searching in

e-library

Exclude all papers whose

title, abstract and conclusion
are not relevant as per

objective of the study

Define and apply the

evaluation criteria to perform

the comparative evaluation

Obtain the final result

for each relevant

paper

Complete

comparative study

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

259

3. RELATED WORKS AND BACKGROUND

During the last decade, there have already been
literature surveys and systematic review works done
in this area. Therefore, several researchers have
already reviewed the state-of-the-art with respect to
testing CBS. Beydeda and Gruhn [9] have
conducted a survey on the current approaches of
component testing that explicitly tackle the problem
of lack of information in development. Beydeda
[10] also has provided an overview of the
approaches to testing CBS. In his work, some of the
drawbacks of these approaches were outlined.
Rehman et al. [11] have provided a review on
proposed techniques for component integration
testing on the component users’ side, and they
highlighted some issues in software component
testing. Shashank et al. [4] have presented a
systematic literature review related to integration
testing of CBSE. The aim of this systematic
literature review is to investigate the state of the art
in integration testing of CBS. The conducted
literature review was based on 49 articles. The
study covers articles that were published between
1995 and 2009.

However, all the above-mentioned studies
aggregated the existing literature as normal
literature survey without following any pre-defined
criteria. To the best of the authors’ knowledge,
there is no any study in this area that considers the
existing literature with respect to a set of pre-
defined criteria.

3.1 CBS Testing Levels

Three basic kinds of testing are needed in
Component-Based Software Development (CBSD)
Lifecycle in order to detect and reveal errors [11].
These kinds are unit testing (component testing),
integration testing (deployment testing), and system
testing. However, Figure 2 and Table 2 illustrate
and summarize these main levels of testing in CBS.
Brief overview of these three main levels are given
in this section.

The first type of testing in CBSD is unit testing
or component testing. It is performed by component
developer or the person who built a component. The
main target of unit testing is to early detection of
possible failures. Due to the availability of source
code, the component developers can use white-box
or black-box testing techniques to perform the
testing process.

The second type of testing in CBSD is
integration testing or deployment testing. It is
mainly performed by the component user or by

independent tester (third-party tester). Referring to
IEEE, integration testing could be defined as
“testing in which software components are
combined and tested to evaluate the interaction
between them” [11, 12]. Therefore, this kind of
testing performed to evaluate the interaction
between combined or multiple components. Due to
the unavailability of source code of integrated
components, a component user limited only to use
black-box testing techniques to perform the testing
process.

The last kind of testing in CBSD is system
testing; which is also performed by the component
user or independent tester (third-party tester) when
all the various components are integrated and the
entire system is ready to run. Since the source code
of a components is also not available to the
component user, the black-box testing techniques
are the only choices for component users to perform
system testing.

3.1.1 Motivation

The topic selected for this study is motivated by
the following; integration of components is
currently a major mode of software development
[13]. Despite the fact that a component might go
through a numerous of successful tests, unit testing
still cannot guarantee the reliability and the
behavior of components in a new environment after
integration [12]. Thus, integration testing plays an
important role and it becomes very essential step in
the testing process in CBSD Lifecycle, which
individual software components are assembled and
verified as a group to attain a high level of quality
and reliability. Approximately, in current software
development efforts, 40% of software errors are
discovered and revealed during integration testing
[14]. Additionally, integration testing is more time
consuming and very expensive part of testing
process in CBS [15].

Figure 2: CBS Testing Level.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

Table 2: Summary of Main Level of Testing in CBS.

Testing Level Specification Scope Technique Who does it?

Unit testing. Low level design.
Actual code structure.

Single component. White-box or
Black-box.

Component
developer.

Integration testing. Low level design.
High level design.

Multiple components. Black-box. Component user or
Independent tester.

System testing. Requirement analysis. Whole product in representative
environment.

Black box. Component user or
Independent tester.

4. INTEGRATION TESTING OF CBS

When considering components integration

testing, many issues and challenges could be
identified [9, 16-19]. More precisely, the crucial
challenges are missing of information (i.e., internal
structure, specifications) of component and the
unavailability of component source code. Due to
that, the traditional techniques such as static
analysis, program slicing, invariant detection,
model extraction, validation and verification have
become ineffective when one considers integration
testing of CBS [20].

Consequently, several approaches has been
proposed by researchers in recent years such as,
Built-in testing approach, Metadata-based testing
approach, Testable architecture approach, Self-
testing approach and Certification strategy, aiming
to facilitate integration testing of CBS. However,
this section presents an overview of these
approaches and the classification of the existing
literature amongst these approaches.

4.1 Built-in Testing Approach

Built-in testing (BIT) is a way in which built-in
tests are incorporated in the component’s code with
aims to facilitate component integration testing [9].
The idea of BIT previously was adopted in Object-
Oriented programming [11]. Therefore, BIT is all
strategies that add information in software
component’s implementation for facilitating
integration testing or checking assertions at runtime
to support self-testing.

Edwards [21] has proposed the use of wrappers
to support the flow of information between
component provider and component user. In this
technique, the component provider attaches the
information that can facilitate in CBS testing to the
component and gives some wrappers that can
interact with the component. So, wrappers can be
used by component user to extract information from
the component. Therefore, wrappers can be added
or removed from software component by
component user without the need to access the
source code.

Wang et al. [22] provides a BIT technique for
enhancing CBS maintainability. In this technique,
built-in tests were added as extra member functions
to the component’s code. Therefore, the component
user can make a decision whether to perform these
tests or not. A software component can operate in
two different modes in this technique. Precisely,
“normal mode” or “test (maintenance) mode”. In
normal mode, tests methods are not executed,
whereas in maintenance mode, the built-in tests
methods are invoked through execution of the
component. However, due to the added test
methods, Wang’s technique increases component
size.

Atkinson et al. [23] has proposed the
Component+ BIT (C+ BIT) technique in order to
deal with Wang’s problem. In this technique, test
cases were separated from software component.
The component developer constructs a BIT-
component and a test-component. In a BIT-
component, the component has built-in testing
abilities. The test-component encloses test cases
and interacts throughout its interfaces with the
built-in testing capabilities of the BIT-component.

Momotko and Zalewska [24] have proposed a
framework for testing the interaction of components
at runtime. This framework is another example of
C+ BIT technique. In this framework, two types of
testing were proposed to test software component:
contract testing and QoS testing.

Self-testable software component using
Transaction Flow Model (TFM) proposed by
Martins et al. [25] is another example to add extra
information to software component intentionally to
improve component testability by integrating
testing resources into it. A tool called Concat was
developed to support the proposed technique and to
generate test cases.

Beydeda and Gruhn [26] have presented a Self-
TEsting COTS Components (STECC) strategy. The
idea of STECC is to supplements the test
component with testing tools and analysis
functionality. By doing this, either the information
that the component user needs to generate test cases

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

261

can be generated on demand, or it can be
augmented in the component.

Mahmood [8] has proposed a CBS integration
testing framework to identify test criteria and to
prioritize test cases based on complexity metrics.

4.2 Metadata-based Testing Approach

The idea of the Metadata-based testing approach
is that a component provider attaches with the
component some information (meta-methods,
component metadata) that the component user can
use for performing integration testing [27]. The
meta-methods are the methods that used by
component user to extract or compute information
about the component while component metadata is
information about the component itself.

Orso et al. [27] has proposed that all software
engineering artifacts used in the development of
software component is metadata and should be
appended along with the component. Therefore, the
component developer can present data-flow and
control-flow graphs of the component that increase
testability and understandability of the component.
In addition, these provided graphs are useful in
implementing coverage analysis during CBS
integration testing.

Wu et al. [6] has suggested idea to attach a
components’ UML model as metadata. This UML
models can be used to define context-dependent
relationships between the components, which can
be useful for CBS integration testing.

Belli and Budnik [28] have extended the work of
[6] by augmenting a component with UML
statecharts diagrams. The UML statecharts will be
used to generate test cases with a help of model-
based tools. Using these techniques, the component
user can perform coverage-based execution of the
model, to achieve greater reliability of the
component. However, the component provider has
to generate the model each time the component is
modified.

Liu and Richardson [29] was introduced the
concept of retro-components. A retro-component
has a retrospector in it that maintains testing and
dynamic execution history. It records the
component developer tests and makes this testing
information available to the component user.
Retrospectors enhance the component such that the
user can query the information provided and collect
relevant information during their own testing
activities.

Silva et al. [30] has presented approach covered
by a CASE tool integrated in the development
environment to support CBS integration testing
aiming to reduce the lack of information between
component developer and component user.

Naseer et al. [31] has presented an approach to
use metadata technique for CBS black box testing
and developed a tool which takes <.dll> component.

4.3 Testable Architecture Approach

In this approach, the component provider equips
a specific testable architecture with software
component that helps the component user to easily
execute the test cases for integration testing.

Ye et al. [32] has proposed a test model for
integration testing called Component Interaction
graph (CIG). In this technique, test elements should
be defined at first to construct a CIG. For each test
element, test cases will be generated, and based on
this test elements the test coverage criteria are
defined.

Gao et al. [33] has introduced testable beans
technique with aims to increase a component
testability. Therefore, the component developer
implements codes test cases and a specific interface
for testing (test interface) in the term of clients.

Jabeen and Rehman [34] have provided a
framework for testing object-oriented components.
In this framework, the requirements of the
component (test information) are inserted in what is
called descriptors, and later the component
provider, component user, and independent tester
will use these descriptors to communicate test
information between them. Therefore, the
component developer should prepare and attach
component descriptor into the component. The
component’s requirement should be specified by the
component consumer in another descriptor called
component requirement descriptor. At last, the test
information will generated by independent tester
using the information in the component descriptor
and the component requirement descriptor.

Brohi and Jabeen [12] have extended the work of
[34] by proposing a framework that enhances
component testability to facilitate the integration
testing process by defining a uniform information
flow in the component Lifecycle.

4.4 Certification Strategy Approach

The philosophy behind this approach come from
assumption a components can be certified before
their reuse in CBS. This certification will increase
the component user’s trust [35]. However, to certify

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

262

a software component, three strategies have been
introduced, third-party certification, developer
certification, and user certification [11].

4.4.1 Third-party certification

Counsill [36] has suggested that a component
must be certified by a third-party. In third-party
certification, the quality of the component should be
tested by independent third-party organization tests
and provides the test results, along with the test
environment, to the component consumer. Yu-
Seung et al. [37] has proposed a framework for
third-party certification which consists of three
steps. The third-party provides guidelines to the
component provider, then, the component provider
generates a test package using these guidelines.
Lastly, the third-party executes the test package and
produces a test report. Some errors in a component
were revealed during the evaluation of this
framework, hence demonstrated its usefulness.

4.4.2 Developer certification

Morris et al. [38] has suggested that the
component developers must perform component

certification. The idea of this approach is that the
component provider adds test cases along with their
results (as a proof of their execution) to the
component in order to avoid the cost problem
related with third-party certification technique.

4.4.3 User certification

Voas [39] has suggested that black-box testing
should be used by the component user to certify the
component, in which test cases are generated from
the interface specifications of the component and
hence will help to address the above issue in
component developer certification technique.
Therefore, the component user may use fault-
injection techniques in which faults are generated
instead of testing the component with the correct
inputs, to determine the reliability of the
component.

To conclude, from Table 3 we can summarize
and observe that each approach described in this
section has some strength and suffers from some
weakness.

Table 3: Strength and Weakness of the Existing Approaches.

Approach

Strength Weakness

BIT approach Increase component
testability.
Allow easy of
maintenance.

Memory consumption problem.
Static test cases.

Metadata-based testing approach Increase component
testability.
Dynamic test case
generation.
No memory consumption
problem.
Generate test data.

Affect implementation transparency of the component.
Don’t handle heterogeneous components.

Testable architecture approach Increase component
testability.
No memory consumption
problem.

Affect implementation transparency of the component.
Extra effort is demanded from developer during the
maintenance time.
Don’t handle heterogeneous components.

Certification

strategy

approach

Third-party

certification

Impartial testing.
Increase the confidence in
component services.
Testing is unbiased as it’s
conducted by third party.

May be too costly for small organizations to afford.

Developer

certification

Test cases are available to
user to re-execute.
Facilitate users'
understanding of
component functionality.

Context-independent testing.
Testing is biased by the component developer.

User certification Context-dependent testing.
Increase reliability in the
component services.

No test adequacy criteria for component reuse.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

263

5. COMPARATIVE EVALUATION

In this section, we present a comparative

evaluation of the most prominent techniques for
integration testing of CBS that are discussed in the
previous section with respect to a set of pre-defined
criteria. At the first, the evaluation criteria will be
identified and described and then the results and
discussion of the results will be presented after
applying the evaluation criteria into existing
techniques.

5.1 The Evaluation Criteria

Similar to [40-42], we base our comparison on a
set of pre-defined criteria. To this end, this section
defines and explains briefly the evaluation criteria
used in this study.

The evaluation criteria have been identified based
on the discussion in the previous section. According
to that, the evaluation criteria (as presented in Table
4) have used to perform the evaluation process, and
the results of evaluating the existing techniques of
integration testing of CBS are presented in Table 5.
For simplicity, as shown in Table 4, the criteria are
numbered like Q1 to represent first criteria, Q2 to
represent second criteria and so on. The criteria
used to evaluate the existing works in integration
testing of CBS are described briefly as follow:

• Q1. This criterion deal with the test case
definition. Component developer,
component user, or independent tester can
define test cases.

Table 4: The Criteria for Evaluating Existing Techniques.

Criteria

Q1 Who defines the test cases?

Q2 Who execute the test cases?

Q3 Is the technique required additional information for test
derivation?

Q4 Is the technique required additional structure for test
execution?

Q5 Does the test specification easily accessible?

Q6 Do the technique Handles heterogeneous components?

Q7 Does the technique have tool support for test case
generation?

Q8 Does the technique have tool support for test data
generation?

• Q2. This criterion deal with the test case
execution. Component developer,
component user, or independent tester can
execute test cases.

• Q3. This criterion will help to check
whether the integration testing technique
requires additional information for test
derivation or not.

• Q4. This criterion will help to examine
whether the integration testing technique
requires additional information for test
execution or not.

• Q5. This criterion will help to examine
whether the technique can easily exploit
test information from components or not.

• Q6. This criterion will help to examine
whether the integration testing technique
has the ability to handle heterogeneous
components or not.

• Q7. This criterion will help to examine
whether the integration testing technique
has a tool to support the test case
generation or not.

• Q8. This criterion will help to examine
whether the integration testing technique
has a tool to support test data generation or
not.

5.2 Comparative Evaluation Remarks and

Discussion

Integration testing is an important activity in
CBSD Lifecycle for developing reliable CBS. The
aim of this study is to provide a classification and
comparison of the most prominent techniques for
integration testing of CBS, which were discussed in
the previous section, with purpose to check how far
the existing techniques can support the proposed
technique. In that case, those techniques categorized
into four main classes, namely BIT Approach,
Metadata-based testing Approach, Testable
Architecture Approach, and Certification Strategy
Approach. We believe that, at this time it is not
possible to claim that the presented classification is
comprehensive.

An evaluation was performed on the existing
techniques for integration testing of CBS based on
eight identified criteria (questions) presented in
Table 4. These eight criteria have been developed
and used as evaluation parameters, to analyze the
strengths and the weaknesses of the existing
techniques of integration testing of CBS.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

264

Table 5: Summary Results of the Comparative Evaluation.

Approach Works Evaluation Criteria

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

BIT approach Edwards [21]

CD CU × √ √ × × ×

Wang et al. [22]

CD CD/ CU × √ √ × × ×

Atkinson et al. [23]

CD CD/CU × √ × √ × ×

Martins et al. [25]

CD CD/ CU × √ √ × √ ×

Beydeda and Gruhn [26]

CD CU × √ √ × × ×

Momotko and Zalewska [24]

CD CD/ CU × √ × √ × ×

Mahmood [8]

CD CD/ CU × √ √ × √ ×

Testable architecture
approach

Ye et al. [32]

CU CU √ √ √ √ × ×

Gao et al. [33]

CU CU × √ √ √ × ×

Jabeen and Rehman [34]

IT IT/ CU √ × √ × × √

Brohi and Jabeen [12]

CU CU √ × √ × × √

Metadata-based testing
approach

Wu et al. [6]

CU CU √ √ √ × × ×

Liu and Richardson [29]

CU CU √ √ √ × √ √

Silva et al. [30]

CU CU √ × √ × √ √

Belli and Budnik [28]

CU CU √ √ √ × √ √

Naseer et al. [31]

CU CU √ × √ × √ √

Certification strategy
approach

Yu-Seung et al. [37]

IT IT √ × √ × × ×

Morris et al. [38]

CD CD/ CU √ × √ × √ ×

Voas [39]

CU CU × × √ × × ×

 Legend:
CD - Component developer. √ - Requirement satisfied.
CU - Component user. × - Requirement unsatisfied.
IT - Independent tester.

Based on that, the above evaluation criteria (as

shown in Table 4) employed in existing works, and
the results of the presented comparative evaluation
of existing techniques of integration testing of CBS
are shown in Table 5.

Generally, our results show that the majority of
the existing techniques of integration testing of
CBS demand additional information packaged with
the component to facilitate the integration testing
process, and/or additional structure for reliable use
of component applications. Moreover, based on the
result in Table 5, we conclude that each technique
suffers from some drawbacks and have it is own
limitations, but all techniques attempt to resolve the
problems of missing information (internal structure)
and the unavailability of component source code
(implementation transparency), which is necessary
for effectively utilizing the reuse benefit of
components. Therefore, our research direction is to
develop a new technique that tries to cover most, if
not all of this drawback and limitations of the
existing techniques, using the idea of learning and
testing approach, which have become an essential

strategy to solve many problems in the software
engineering domain.

6. CURRENT ISSUES AND FUTURE

DIRECTIONS

Based on the work discussed in previous
sections, it is clear that many issues and challenges
are left to be solved. We are summarizing some of
the open research issues; those must be considered
during the future work in order to facilitate the
integration testing process.

The general problem that can be seen in a
majority of existing works is the missing of
component information (i.e., component source
code), and lack of information exchanged between
component developers and component users during
the development of the component itself and during
the development of CBS systems. Unfortunately,
unavailable information limits the capacity of both
component developers and component users to test
candidate components efficiently during the
integration testing. Researchers try to solve this

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

265

problem by using metadata, BIT and UML models,
allowing reverse engineering and to access the
component source code, thus affecting the
implementation transparency of software
components. Therefore, continues efforts and
further works still required to tackle this problem.

Understanding component's behavior is another
issue, especially when considering black-box
components, due to the unavailability of their
formal models, updated specifications or source
code. Strategies or algorithms are needed to extract
the behavior (state) model of integrated
components. The extracted models will be used to
detect faulty interactions (integration bugs) or
compositional problems between integrated
components during integration testing.

Distributed system issues. As a CBS is always
built under a distributed operating environment,
which will then come into all the issues of
distributed systems, such as transaction controlling
and deadlocks. These distributions related issues
can only be detected during the integration phase,
which then requires further testing effort. Moreover,
CBS may even introduce versioning issues, which
is caused by the coexistence of two different
versions of a component in the system.

The last issue deal with analyzing and validating
the component interaction. It is important to ensure
that the components that are developed separately,
work properly together. Therefore, several works
are needed to handle the interactions between
components during the integration testing phase.

7. CONCLUSION AND FUTURE WORK

In this study, most of the existing integration

testing techniques of CBS was discussed and
classified into four main approaches; namely BIT
approach, metadata-based testing approach, testable
architecture approach and certification strategy
approach. The strengths and weaknesses of existing
approaches were also highlighted. Furthermore, the
techniques initially were evaluated based on eight
pre-defined evaluation criteria. Nevertheless, this
study is in the initial stage, and we do not claim that
our classification and evaluation can be seen as
exhaustive. Finally, some of the current issues for
future work were highlighted. We conclude that
there is a need for further research in the field of
integration testing of CBS, and we hope this study
will serve as an introductory review to those who
are new to the subject.

As future work, this study would be extended to
provide a comprehensive report, which contains a
systematic literature review of state-of-the-art of
integration testing of CBS. We hope the systematic
literature review also will help to find out gaps and
future directions in the area of integration testing of
CBS. The final goal, based on the result of the
comparative evaluation, these techniques will be
extended to provide more comprehensive
integration testing technique that addresses these
limitations, and it will be validated using strength
case studies.

ACKNOWLEDGEMENT

The authors would like to thank Universiti

Teknologi Malaysia (UTM) for supporting this
research. We also thank our Embedded & Real-
Time Software Engineering Laboratory (EReTSEL)
members, especially Mr. Muhammad Imran Babar,
and the people of Software Engineering Research
Group (SERG) at UTM for their continuous
support.

REFERENCES:

[1] M. Abdellatief, A. B. M. Sultan, A. A. A.
Ghani, and M. A. Jabar, "A mapping study
to investigate component-based software
system metrics," Journal of Systems and

Software, vol. 86, pp. 587-603, 2013.
[2] A. E. Ali, "A comparative Study of Software

Development Methodologies," M.Sc diss.,
Sudan University of Science and
Technology, 2010.

[3] C. Szyperski, Component Software: Beyond

Object-Oriented Software: Addison-Wesley,
1998.

[4] S. P. Shashank, P. Chakka, and D. V.
Kumar, "A systematic literature survey of
integration testing in component-based
software engineering," in Computer and

Communication Technology (ICCCT), 2010

International Conference on, 2010, pp. 562-
568.

[5] J. Z. Gao, J. Tsao, and Y. W, Testing and

Quality Assurance for Component-Based

Software: Artech House, Inc., 2003.
[6] Y. Wu, M.-H. Chen, and J. Offutt, "UML-

Based Integration Testing for Component-
Based Software," in COTS-Based Software

Systems. vol. 2580, H. Erdogmus and T.
Weng, Eds., ed: Springer Berlin Heidelberg,
2003, pp. 251-260.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

266

[7] W. Ye, P. Dai, and C. Mei-Hwa,
"Techniques for testing component-based
software," in Engineering of Complex

Computer Systems, 2001. Proceedings.

Seventh IEEE International Conference on,
2001, pp. 222-232.

[8] S. Mahmood, "Towards Component-Based
System integration testing framework,"
Lecture Notes in Engineering and Computer

Science, vol. 2, pp. 1231-1235, 2011.
[9] S. Beydeda and V. Gruhn, "State of the art in

testing components," in Quality Software,

2003. Proceedings. Third International

Conference on, 2003, pp. 146-153.
[10] S. Beydeda, "Research in testing COTS

components - built-in testing approaches," in
Computer Systems and Applications, 2005.

The 3rd ACS/IEEE International Conference

on, 2005, p. 101.
[11] M. J. U. Rehman, F. Jabeen, A. Bertolino,

and A. Polini, "Testing software components
for integration: A survey of issues and
techniques," Software Testing Verification

and Reliability, vol. 17, pp. 95-133, 2007.
[12] M. N. Brohi and F. Jabeen, "A Metadata-

based Framework for Object-Oriented
Component Testing," International Journal

of Computer Applications, vol. 41, pp. 8-18,
2012.

[13] R. Groz, K. Li, and A. Petrenko, "Integration
testing of communicating systems with
unknown components," annals of

telecommunications - annales des

télécommunications, pp. 1-19, 2014.
[14] M. E. Khan, "Different Software Testing

Levels for Detecting Errors," International

Journal of Software Engineering (IJSE), vol.
2, 2011.

[15] G. Ning, S. Nakajima, and M. Pantel,
"Hidden Markov model based automated
fault localization for integration testing," in
Software Engineering and Service Science

(ICSESS), 2013 4th IEEE International

Conference on, 2013, pp. 184-187.
[16] A. Bertolino and A. Polini, "A framework

for component deployment testing," in
Software Engineering, 2003. Proceedings.

25th International Conference on, 2003, pp.
221-231.

[17] P. D. L. Machado, J. C. A. Figueiredo, E. F.
A. Lima, A. E. V. Barbosa, and H. S. Lima,
"Component-based integration testing from
UML interaction diagrams," in Systems, Man

and Cybernetics, 2007. ISIC. IEEE

International Conference on, 2007, pp.
2679-2686.

[18] U. A. Khan, I. A. Al-Bidewi, and K. Gupta,
"Challenges in Component Based Software
Engineering as the Technology of the
Modern Era," International Journal of

Internet Computing (IJIC), vol. 1, 2011.
[19] H. Reza and C. Liang, "Context-Based

Testing of COTs Using Petri Nets," in
Information Technology: New Generations

(ITNG), 2012 Ninth International

Conference on, 2012, pp. 572-577.
[20] M. Shahbaz and R. Groz, "Analysis and

testing of black-box component-based
systems by inferring partial models,"
Software Testing, Verification and

Reliability, vol. 24, pp. 253-288, 2014.
[21] S. H. Edwards, "A framework for practical,

automated black-box testing of component-
based software," Software Testing

Verification and Reliability, vol. 11, pp. 97-
111, 2001.

[22] Y. Wang, G. King, and H. Wickburg, "A
Method for Built-in Tests in Component-
based Software Maintenance," presented at
the Proceedings of the Third European
Conference on Software Maintenance and
Reengineering, 1999.

[23] C. Atkinson and H.-g. Groß, "Built-in
contract testing in model-driven, component-
based development," presented at the ICSR-
7 Workshop on ComponentBased
Development Processes, 2002.

[24] M. Momotko and L. Zalewska,
"Component+ built-in testing a technology
for testing software components,"
Foundations of Computing and Decision

Sciences, vol. 29, pp. 133-148, 2004.
[25] E. Martins, C. M. Toyota, and R. L.

Yanagawa, "Constructing self-testable
software components," in Dependable

Systems and Networks, 2001. DSN 2001.

International Conference on, 2001, pp. 151-
160.

[26] S. Beydeda and V. Gruhn, "Merging
components and testing tools: the self-testing
COTS components (STECC) strategy," in
Euromicro Conference, 2003. Proceedings.

29th, 2003, pp. 107-114.
[27] A. Orso, H. Do, G. Rothermel, M. J.

Harrold, and D. S. Rosenblum, "Using
component metadata to regression test
component-based software," Software

Testing, Verification and Reliability, vol. 17,
pp. 61-94, 2007.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

267

[28] F. Belli and C. J. Budnik, "Towards self-
testing of component-based software," in
Computer Software and Applications

Conference, 2005. COMPSAC 2005. 29th

Annual International, 2005, pp. 205-210
Vol. 1.

[29] C. Liu and D. Richardson, "Software
components with retrospectors," in In

International Workshop on the Role of

Software Architecture in Testing and

Analysis, 1998.
[30] F. R. C. Silva, E. S. Almeida, and S. R. L.

Meira, "An approach for component testing
and its empirical validation," presented at the
Proceedings of the 2009 ACM symposium
on Applied Computing, Honolulu, Hawaii,
2009.

[31] F. Naseer, S. ur Rehman, and K. Hussain,
"Using meta-data technique for component
based black box testing," in Emerging

Technologies (ICET), 2010 6th International

Conference on, 2010, pp. 276-281.
[32] W. Ye, P. Dai, and C. Mei-Hwa,

"Techniques for testing component-based
software," in Seventh IEEE International

Proceedings Conference on Engineering of

Complex Computer Systems, 2001, 2001, pp.
222-232.

[33] J. Gao, K. Gupta, S. Gupta, and S. Shim,
"On Building Testable Software
Components COTS-Based Software
Systems." vol. 2255, J. Dean and A. Gravel,
Eds., ed: Springer Berlin / Heidelberg, 2002,
pp. 108-121.

[34] F. Jabeen and M. Rehman, "A framework for
object oriented component testing," in
Emerging Technologies, 2005. Proceedings

of the IEEE Symposium on, 2005, pp. 451-
460.

[35] A. Alvaro, E. S. de Almeida, and S. R. de
Lemos Meira, "Software component
certification: a survey," in Software

Engineering and Advanced Applications,

2005. 31st EUROMICRO Conference on,
2005, pp. 106-113.

[36] W. T. Councill, "Third-party testing and the
quality of software components," Software,

IEEE, vol. 16, pp. 55-57, 1999.
[37] M. Yu-Seung, O. Seung-Uk, B. Doo-Hwan,

and K. Yong-Rae, "Framework for third
party testing of component software," in
Software Engineering Conference, 2001.

APSEC 2001. Eighth Asia-Pacific, 2001, pp.
431-434.

[38] J. Morris, G. Lee, K. Parker, G. A. Bundell,
and C. P. Lam, "Software component
certification," Computer, vol. 34, pp. 30-36,
2001.

[39] J. M. Voas, "Certifying off-the-shelf
software components," Computer, vol. 31,
pp. 53-59, 1998.

[40] A. Abdelmaboud, D. N. A. Jawawi, I. Ghani,
and A. Elsafi, "A Comparative Evaluation of
State-of-the-Art Cloud Migration
Optimization Approaches," in Recent

Advances on Soft Computing and Data

Mining. vol. 287, ed: Springer International
Publishing, 2014, pp. 633-645.

[41] H. M. Rusli, M. Puteh, S. Ibrahim, and S. G.
H. Tabatabaei, "A comparative evaluation of
state-of-the-art web service composition
testing approaches," presented at the
Proceedings of the 6th International
Workshop on Automation of Software Test,
Waikiki, Honolulu, HI, USA, 2011.

[42] A. A. Mansor and W. M. Wan-Kadir, "A
Comparative Evaluation of State-of-the-Art
Approaches in the Design of an Adaptive
Software System," in International

Conference on Software Technology and

Engineering, 3rd (ICSTE 2011), 2011.

