
Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

251

AUTOMATIC ADAPTIVE RECONFIGURABLE FPGA WITH

REUSABLE TECHINIQUES USING ARM

1
C. SUBASHINI,

2
Dr. UMA RAJARAM,

3
DR.S.RAVI

1,2Dr. MGR Educational and Research Institute University, Chennai, INDIA

Email: 1subashini200235617@yahoo.co.in, 2umarajaram1@yahoo.com, 3 ravi_mls@yahoo.com

ABSTRACT

This papers discusses about reconfigurable system that allow online adaptation, whenever a fault occurs in
the system. This is obtained by using FPGA that switches among Configurable Logic Block(CLB)
automatically which has same features in an optimal manner. This reduces the time and complexity. Also
the faulty CLB is tested for its output and if it matches with a desired output pattern, then it can be used
instead of a spare so that the area efficiency improves. Automatic adaptation, selection of signals and
controlling is obtained using ARM STM32 controller . Different modulation application is chosen to
enumerate this reconfiguration by the controller.

Keyword: Field Programmable Gate Array (FPGA), Configurable Logic Blocks (CLB), ARM

1. INTRODUCTION

Fault tolerance is becoming an increasing
important issue. Runtime reconfigurable hardware
architecture have a power to balance fault tolerance
with performance, allowing the amount of fault
tolerance to be tuned at runtime [9,11], BIST can
be designed to run on and take advantage of
runtime reconfigurable architecture.

An analysis of the fault tolerance is achieved by
an autonomous fully embedded evolvable hardware
system [1] which uses a combination of partial
dynamic reconfiguration and an evolutionary
algorithm. It demonstrates the system that may
self-recover from both transient and cumulative
permanent faults [3,16]. Extra resource
requirements are minimal and recovery time is also
minimal.This paper shows that the integration of
online testing in reconfigurable systems incurs only
minimum impact on performance while delivering
high fault coverage and low test latency. The
algorithm provides multi resilience, model free
coverage,autonomy, compartmentalized throughput
and recovery [2] and also time and area efficiency
for FPGA systems.In life-like behavior in respect
to isolating faults, repairing faulty components and
maintaining the pre-defined system goals is
achieved [4]. Fault isolation using actual run time
functional inputs is achieved.

The exhaustive testing procedures or resource
intensive evaluation is also avoided.An area-
efficient dynamic fault-handling approach achieves
high survivability for DSP circuits [5,7]. Fault

detection, isolation, and recovery are performed
using discrepancy information derived from the
existing functional throughput by reconfiguring
one of the N+1 Reconfigurable Partitions (RPs) to
replicate each of the N modules in succession
[15,18].

In the forth coming sections (2) the basic block
diagram that explains about the experimental setup
is discussed. Next in (3) the description of the
proposed system is given. In section (4) the
hardware features is enumerated. Section (5) gives
the pin diagram of the setup that is to be
implemented. In the section 6 the simulation
results and future scope is discussed.

2. EXPLANATION

The basic idea is to develop a system to test
online requirement using FPGA. For achieving this
on line reconfiguration of the system should be
done. Automatic recovery from fault should be
done for better coverage of area.
 The main concept here is on line adaptation and
automatic fault tolerance. This is important to
automatically configure the devices and to test for
automatic selection of CLBs so that it can cover
large volume of faults.

2.1 Basic Block diagram

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

252

Fig. 1 Basic block diagram

The fault tolerance and selecting the core is done
by using an application of selecting either ASK,
FSK or BPSK modulation type [6]. First different
modulation signals are generated using MAT lab.
Then the pattern so obtained is fed to the
reconfigurable controller, here ARM STM32 is
used [10,13]. This selects the signals and bit file is
created and thus, the bit file that is created is fed to
FPGA.

The modulation recognizer constantly monitors
the type of the modulation present in the input
signal and generates distinct enable signals for
ASK, FSK or BPSK modulation type. Each of the
demodulator is equipped with a modulation
recognizer at the front end so that can track the
changes in the modulation of the input signal
[12,14]. While the data is being demodulated the
enable signals are read using the ARM. The ARM
program keeps the state of the FPGA configuration
as to what the current demodulator is. If the
modulation changes the FPGA is reconfigured by
downloading the appropriate bit file. So the ”Logic
Core” can be either ASK, FSK or BPSK
modulation type with a modulation recognizer
hooked onto it.If the recognizer fails then the
nearest spare CLB is identified and functionally
and structurally mapped to continue operation.

2.2 Example

For example, let there be six CLB out of which
three alone are configured and active. In case of
fault, the nearest spare CLB has to be identified
and mapped functionally and structurally to
continue operation. (Refer Figure 2).

Fig. 2 FPGA State-1

When the first active CLB becomes faulty, the
nearest spare PE is (row2, column1) is mapped

along with the routing details, connectivity details
and functional details. This is shown in Figure 3.

Fig.3 FPGA State-2

Now for example let us assume that the second
active CLB becomes faulty then the nearest spare
PE for this (row1, column 2) is mapped along with
the routing details, connectivity details and
functional details. This is shown in Figure 4.

Fig.4 FPGA State-3

In the previous states when one CLB goes faulty,
then its nearest spare is configured. For example,
when we have many faulty CLB, instead of
configuring the spares, we can find if there is any
faulty CLB that gives the pattern or output that
matches the output or pattern of any one of the
CLB that is faulty and use that CLB. For example,
in the state 3 it can be assumed that faulty 1 CLB
gives that output that 2 active has to give then
instead of using another spare we can reuse the
faulty 1 CLB. Thus, the area or number of CLB
used is reduced.

Fig.5 FPGA State-4

3. PROJECT DESCRIPTION

For application different modulation techniques
were considered(eg. ASK, FSK, BPSK). When a
signal is sensed the controller decides what the
incoming signal is and the corresponding signal is
match and compared.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

253

3.1 Automatic FPGA Code Generation

Using matlab different modulation signals using
sysgen was generated. The output got here is .mdl
file. This generates FPGA code for different
modulation techniques automatically. Hence .ise
file is got.

Fig. 6 Automatic FPGA code generation

3.2 Controller Generation

STM32 ARM controller was used as controller
for reconfiguring FPGA. This finds what was the
input signal and corresponding pattern is generated
and that is loaded in FPGA.

Fig. 7 Controller Generation

3.3 Top Module Implementation

.ise file created by matlab was given to FPGA
for implementing the signal pattern; next the
patterns are synthesized and checked. This was
stored and its corresponding structure and
configuration is stored in near CLB which is
marked as its spare. This process is done for all the
modulation signals.

Fig. 8 Downloading the bit file into FPGA and

getting output in CRO

Then it is loaded in the Xilinx. For selecting what
is the signal that is received Arm processor is used
for controlling and comparing the signal received
and only the respective signal is given to the
FPGA. The transmission of signal and its output is
viewed using CRO through FPGA.

During transmission if the path fails then the
FPGA is configured such that the signal
immediately takes the nearest path for transmitting
the signal.Fault detection is an important step in
guaranteeing the correct selection and transmission
of the signal without any loss. Moreover, fault
diagnosis is required. The selection of the nearest
path can be done by using the configured spare
CLB that is having the same configuration. The
main part is selecting the correct CLB.

4. HARDWARE AND SOFTWARE

REQUIREMENTS

4.1 Features of STM32

STM32 was used as the controller. The features of
STM32 are,

• 32-bit RISC processor

• Embedded Flash memory

• Embedded SRAM

• FSMC

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

254

• LCD parallel interface

• Nested vectored interrupt controller

• I²C bus

• USART

• Serial peripheral interface

• Inter-integrated sound

• SDIO

• Controller area network

• Universal serial bus

• GPIOs

• ADC

• DAC

• Serial wire JTAG debug port

• Embedded Trace Macrocell

Fig.9 STM32 ARM kit

4.2FPGA Used Reconfiguration

Spartan 3was used as reconfiguration
core.VHDL was the software used.

5. CONNECTION BETWEEN ARM AND

FPGA

The above circuit diagram shows the
interconnection between ARM and FPGA.

Fig.10Connections between FPGA board and DAC

0808 circuit
 Connection between FPGA and DAC is shown in
Fig.10

Fig.11 Connection between output of DAC circuit

to Oscilloscope

The output is viewed in CRO. The circuit diagram
that shows the connection between DAC and CRO
is shown in Fig.11.

Fig. 12 Overall circuit diagram

The overall connections between ARM, FPGA,
DAC and CRO is shown in Fig.12.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

255

6. RESULTS AND DISCUSSION

The output waveforms of the modulated waves are
shown in the following figures Fig.13, Fig.14,
Fig.15, Fig.16. that are reconfigured.

Fig. 13 Downsampler Waveform

Fig. 14 Output Waveform Of ASK Signal

Fig. 15 Output Waveform Of FSK Signal

Fig. 16 Output Waveform Of BPSK Signal

7. CONCLUSION

The capabilities offered by the re-configurable
platform have been demonstrated which can be a
promising choice.The faulty cores were mapped
and reconfigured in FPGA automatically. The bit
files or configuration word are stored in ARM
which is the controller and matlab .mdl files are
created and converted to .ise file and dumped in
FPGA using sysgen automatically. Thus ,
providing reconfiguring the FPGA. This has helped
to reduce time, cost and area of usage. This is
demonstrated using different modulation signls.
This shown by simulation. The future scope is to
implement in hardware. Also to calculate the
energy needed, and to do spectral analysis.

REFERENCES:

[1] Lars Bauer, “Test Strategies for Reliable
Runtime Reconfigurable Architectures”,
IEEEtransactions on computers, Vol. 62, No.
8, August 2013.

[2] Naveed Imran, “Amorphous Slack
Methodologyfor Autonomous Fault-Handling
in Reconfigurable Devices”, International
Journalof Multimedia and Ubiquitous
Engineering, Vol. 7, No. 4, October 2012.

[3] Carthik A. Sharma, “Self-healing
reconfigurable logic using autonomous
grouptesting”, Microprocessors and
Microsystems 37, pp. 174–184, 2013.

[4] Naveed Imran, “Fault-Mitigation by Adaptive
Dynamic Reconfiguration for Survivable
Signal-Processing Architectures”,International
Journalof Control and Automation Vol. 6, No.
2, April 2013.

[5] P.Prakasam, M.Madheswaran,
“Reconfigurable Automatic Modulation
Identification Hardware Module for Software
Defined Radio Receivers”, International
Journal of Computer Theory and Engineering,
Vol. 1, No. 5, December 2009.

Journal of Theoretical and Applied Information Technology
 20

th
 January 2015. Vol.71 No.2

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

256

[6] Rajib Das, “FPGA Implementation of
DigitalModulation Schemes: BPSK and QPSK
Using VHDL”, IJECT, Vol. 5, Issue2, Jan.–
March2014.

[7] B.Harikrishna and S.Ravi, “Autonomous Self-
Healing of Reconfigurable Circuits”, Indian
Journal of Research, Vol. 2, Issue9, Sept.
2013.

[8] Molabanti Praveen Kumar, T.S.R Krishna
Prasad, M.Vijaya Kumar, “Implementation of
Digital CommunicationLaboratory on FPGA”,
International Journal of Advanced Research in
Computer and Communication Engineering,
Vol. 2, Issue 11, November 2013.

[9] Wang Lie, Wu Feng-yan, “Dynamic partial
reconfiguration in FPGAs”, Third
International Symposium on Intelligent
Information Technology Application, IEEE
Computer Society, 2009.

[10] Khoa Dang Pham, Abhishek Kumar Jain, Jin
Cui, Suhaib A. Fahmy, Douglas L. Maskell,
“Microkernel Hypervisor for aHybrid ARM-
FPGA Platform”, ASAP, IEEE, 2013.

[11] M. Hubner, D. Gohringer, J. Noguera and J.
Becker, “Fast dynamic andpartial
reconfiguration data path with low hardware
overhead on XilinxFPGAs”, in IEEE
International Symposium on Parallel
DistributedProcessing, Workshops and Ph.D.
Forum (IPDPSW), pp. 1–8, 2010.

[12] H. So, A. Tkachenko and R. Brodersen, “A
unified hardware/softwareruntime
environment for FPGA-based reconfigurable
computers using BORPH”, in
Hardware/Software Co-design and System
Synthesis(CODES+ISSS), pp. 259–264, 2006.

[13] M. Hubner, P. Figuli, R. Girardey, D. Soudris,
K. Siozios, and J. Becker,“A heterogeneous
multicore system on chip with run-time
reconfigurable virtual FPGA architecture”
IEEE International Symposiumon Parallel and
Distributed Processing Workshops (IPDPSW),
2011.

[14] P. Sedcole, B. Blodget, T. Becker, J. Anderson
and P. Lysaght, “Modular dynamic
reconfiguration in Virtex FPGAs”, Field
Programmable Logic and Applications, IEE
Proceeding Computer Digital Technology,
Vol. 153, No. 3, May 2006.

[15] Steiger, C., Walder, H., and Platzner, M.,
“Heuristics for onlinescheduling real-time
tasks to partially reconfigurable devices”,
Field-Programmable Logic and Applications,
(Springer-Verlag), pp. 575–58, September
2003.

[16] Blodget, B., James-Roxby, P., Keller, E.,
McMillan, S. andSundararajan, P., “A self-
reconfiguring platform”, Field-Programmable
Logic and Applications, (Springer-Verlag), pp.
565–574, September 2003.

[17] Huebner, M., Becker, T., and Becker, J.:
“Real-time LUT-basednetwork topologies for
dynamic and partial FPGAself-
reconfiguration”, Symposium on Integrated
Circuits and SystemsDesign, ACM, pp. 28–32,
2004.

[18] K. Vipin and S. A. Fahmy, “Efficient region
allocation for adaptive partial
reconfiguration”, in Proceedings of the
International Conferenceon Field
Programmable Technology (FPT), 2011.

