
 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

399

 AUTOMATED TEST CASE GENERATION USING UML

USE CASE DIAGRAM AND ACTIVITY DIAGRAM

1
ARUP ABHINNA ACHARYA,

 2
PRATEEVA MAHALI,

3
DURGA PRASAD MOHAPATRA

1,2
School of Computer Engineering, KIIT University, Bhubaneswar, India, 751024

3
Department of Computer Science Engineering, National Institute of Technology,Rourkela, India, 769008

E-mail:
1aacharyafcs@kiit.ac.in,

2prateevamahali@gmail.com,
3durga@nitrkl.ac.in

ABSTRACT

Testing plays a major role for improving the quality of a software product. Due to its iterative
and incremental nature it needs special attention. Test case generation is one of the complex

activities carried out during testing phase. Generating test cases in the early phases of development

life cycle works like a catalyst for model based testing and at the same time efficiently manages

time and resources. This paper describes a novel approach for test case generation from UML

Activity Diagram (AD) and Use Case Diagram (UCD). At first UCD and AD are converted into

Use Case Graph (UCG) and Activity Graph (AG) respectively. The AG and UCG are integrated to

form a combined graph called Activity Use Case Graph (AUCG). The AUCG is further traversed

to generate test cases. Test cases generated using the combined approach is capable of detecting

more number of faults as compared to individual models while keeping intact the total coverage.

The proposed approach also reveals faults like execution fault, operational fault and use case

dependency fault.

Keywords: Testing, AUCG, Test Case Generation, Dependency Fault, Operational Faults

1. INTRODUCTION

According to IEEE, “Software Testing [1] is the

process of analyzing software item to detect the

difference between existing and required

conditions (i.e bugs) and to evaluate the

feature of the software item”. For that reason

testing of software is a time consuming activity

which requires a proper planning and execution.

One of the important criteria of testing is test

case generation. A Test Case [7],[13] is defined as

a set of conditions or variables which determine

the level of correctness and quality of the

product. The main issue is twofold i.e.

generating test cases earlier in the development

life cycle and attaining maximum coverage. Test

cases are generated in two different scenarios i.e.

code based testing and model based testing [11].

In code based testing the test cases are

generated from the source code of the software

and in model based testing the test cases are

generated from models of the software. Today’s
software developers are using model based

testing due to major issues in code based

testing like non-availability of the source code

of some components, delay in testing etc. Due

to time consuming process code based testing is

not the preferred testing strategy nowadays.

Model based testing on the other hand uses

system models like Data Flow Diagram (DFD)

[9], Entity Relationship Diagram (ERD) [2],

and Unified Modelling Language (UML) [3] etc.

Most of the industries are using UML 2.4

diagrams for modelling the system as it is a

standard modeling language to visualize,

specify, design and document requirements of

the system. There are seventeen diagrams in

UML 2.4 [4] but mainly nine diagrams are used

for modelling purpose. In this paper we have

used UCD and AD for test case generation.
These diagrams can be constructed by using

some tools like IBM Rational Software

Architecture (RSA) [5], Star UML etc. This

paper represents an approach for test case

generation of use case diagram and activity

diagram. Here the author explained the

proposed methodology by using a case study of

Hospital Management System (HMS). The test

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

400

case generated with this approach found to be

detecting more number of faults due to

integration of more than one UML diagrams.

The rest of the paper is organized as follows:

Section 2 describes the related work. The

proposed methodology is elaborated with a

case study in Section 3. Section 4 discusses the

comparison with related work and Section 5

concludes the paper along with the future works.

2. RELATED WORK

Dalai et al. [8] proposed an approach for test

case generation for concurrent systems using

combination of UML diagrams i.e sequence
diagram and activity diagram. The authors have

taken combination of diagrams for better

coverage and fault detection capability. The

author’s approach can be summarized as:

(1) Construction of Sequence Diagram (SD)

and Activity Diagram (AD).

(2) Maintaining a Sequence Table (ST) with

different schema as Source Object (SO),

Destination Object (DO), Message ID (MI) and

Message Content (MC) by taking the

information from SD.

(3) Then Sequence-Activity-Graph (SAG) is
constructed by combining the features from

SD and AD.

(4) SAG is traversed to generate test cases.

The generated test cases are capable of

addressing the issues like test case explosion in

concurrent system. The approach also depicts
the dependency between the different activities

in the SAG.

Sarma et al. [15] proposed an approach for

test case generation from UML models i.e use

case diagram and sequence diagram. As per

author’s approach, it consists of following

steps.

(1) Convert the Use Case Diagram (UD) and

Sequence Diagram (SD) to Use Case Diagram

Graph (UDG) and Sequence Diagram Graph

(SDG) respectively.

(2) The two graphs i.e UDG and SDG are

integrated to form System Testing Graph

(STG).

(3) To derive test cases required information
is pre-stored into STG.

(4) Retrieve the information from the

extended use case, class diagram and data

dictionary are expressed in Object Constrained

Language (OCL).

(5) Traverse the graph for generating the test

cases. Test cases are generated by considering

coverage criteria and fault model.

In this paper the author had used a case

study of PIN Authentication of ATM System to

describe the above steps. The main advantage of

this proposal is that it describes test scenario

generation process from sequence diagram and

capable to detect operational fault.

Khandai et al. [10] presented an approach

for test case generation from combination of

UML models i.e Sequence Diagram (SD) and

Activity Diagram (AD). In this proposal, first

AD is converted into an intermediate format

known as Activity Graph (AG). After that test
sequences are generated from AG by applying

Activity Path Coverage Criteria (APCC). Then

SD is converted into Sequence Graph (SG) and

the test sequences are generated by applying All

Message Path Coverage Criterion (AMPCC).

For having better coverage and high fault

detection capability the author constructed a

Activity Sequence Graph (ASG) which has the

combine features of AG and SG. Finally the

ASG is traversed to generate the test cases.

Swain et al. [12] proposed a method for

generating test cases from combination of

UML sequence diagram and activity diagram.

The technique consists of following steps:

(1) First Message Flow Graph (MFG) is

generated from activity diagram and sequence

diagram.

(2) In the second phase test sequences from

MFG corresponding to sequence diagram and
activity diagram is generated.

(3) In third phase the MFG of the sequence

diagram and the MFG of the activity diagram is

traversed to generate the test cases.

In the first phase UML models are

transformed into Message Flow Graph (MFG).

The MFG can be represented as a quadruple

(V, E, S, T) where each node v ∈ V represents

either a message or control predicate and an

edge e ∈ E represents a transition between the

corresponding nodes. An edge (m, n) ∈ E

indicates the possible flow of control from the

node m to the node n. Node S and T are unique

nodes representing entry and exit of the

diagram D. For obtaining the MFG a table

called Object Method Association Table

(OMAT) table is created for the sequence

diagram which maintains information about

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

401

state change of an object when a message is

passed between two objects. Another table is

maintained for the activity diagram called

Method Activity Table (MAT) which maintains

the activities associated with the activity

diagram. By referring to the tables the MFG for

the activity and sequence diagram are created

by taking each node and assigning an edge

between them. The MFGs are next being
traversed individually to generate the test

cases.

Samanta et al. [14] had given a proposal for

test case generation from UML Activity

Diagram (AD). Test cases can be generated in

three steps

(1) Augmenting the AD with necessary test

information.

(2) Converting the AD into Activity Graph

(AG).

(3) Test cases are generated from activity

graph.

Here the author used Registration

Cancellation as an example to describe the above

three steps. Test cases are generated from

activity diagram on the basis of path coverage

criteria. They propose an algorithm called

Generate Activity Path to generate all activity

paths. In this algorithm Breadth-First-Search

(BFS) and Depth-First-Search (DFS) are used

for traversal of graph. The main advantages of

this approach are

(1) It is capable to detect more faults like

fault in loop and synchronization faults.

(2) It helps identify location of fault in the

implementation so that the testing effort can

be reduced.

(3) It improves design quality because the

faults are detected in the early stage.

(4) It reduces software development time.

There are different approaches proposed by

different author available for test case

generation from UML diagrams. All these

approaches are nearly similar to each other but

the only difference is that different approach

reveals different types of faults like scenario

fault, operational fault, dependency fault etc.

3. PROPOSED APPROACH

In this paper the authors have proposed an

approach for test case generation using

combination of UML 2.4 diagrams i.e Use Case

Diagram (UCD) and Activity Diagram (AD).
Here the UCD and AD are converted into an

intermediate formats called Use Case Graph

(UCG) and Activity Graph (AG) respectively.

Then AG and UCG are integrated to form

combined graph called Activity Use Case Graph
(AUCG). Finally test cases are generated by

traversing the AUCG. The result shows that,

fault detecting capability of this approach is

more than the test cases which are generated

from single UML diagram. To elaborate the

proposed approach the author has considered

the case study of a Hospital Management

System (HMS). This approach also capable of

detecting execution fault, operational fault and

use case dependency fault. The fault occurs

during the execution of system is called as

execution fault and fault occurs during the

operation time of the system is called as

operational fault. Use Case Dependency Tree

(UCDT) represented in Fig. 2 is used for

detecting use case dependency fault.

3.1 Generating Use Case Graph from Use Case

Diagram

Use Case Diagram (UCD) defines the client

or user requirements of the system in terms of

functions. The functions are represented by

using actors and use cases. Actors represent the

user or client who will use the system and

performs the tasks or functions, which is

represented as use cases. This diagram also

shows the interrelationship between the actors

and use cases. Basically it shows the overall

behavior of a complete system. Therefore it is
classified under behavioral diagram of UML. For

example, UCD of Hospital Management System

(HMS) (shown in Fig. 1) defines the complete

management process of a hospital.

According to model based testing

methodology, first the diagram is converted
into an intermediate graph. Here also UCD is

converted into an intermediate graph called Use

Case Graph (UCG). UCG is generated by using

Use Case Diagram Tree (UCDT). UCDT is

nothing but the tree representation of UCD

using linked list. Algorithms and node structures

for construction of UCDT is followed from

Acharya et al. [6]. By applying the proposed

algorithm, UCDT of HMS is shown in Fig. 2.

Due to limitation of space use case node

structure of each actor is represented in Fig. 3,
Fig. 4, Fig. 5, Fig. 6 and Fig. 7.

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

402

Figure 1: UCD of Hospital Management

System (HMS)

Figure 2: UCDT of Hospital Management

System (HMS)

Figure 3: Use case node structure of A1

Figure 4: Use case node structure of A2

Figure 5: Use case node structure of A3

Figure 6: Use case node structure of A4

Figure 7: Use case node structure of A5

• L* represents the left pointer of the node
pointing to the address of the preceding actor

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

403

or use case node in the sequence of actors or

use cases in the linked list. Its value would be

null provided L* belongs to the first actor or
use case node in the sequence.

• LA stands for Left Actor field which a pointer

pointing to the address of the node is

representing the use case invoked by the

actor.

• A represents the name of the actor.

• R* is the pointer field pointing to the address of

the next actor node in the sequence. If the node

is the last one in the sequence of the actor’s

linked list then R* field has to be assigned as

NULL.

• RC is used for Redundancy Check. In case we

have two or more actors invoking the same

use case, we need to avoid traversing the use

case node more than once i.e. the node need

not be traversed and the use case need not

be checked for each of the invoking actors

once it has been traversed for any one of the

actors out of the set of the actors invoking

the use case.

• P* contains the address of the parent use

case node which must be traversed and
executed prior to the traversal and execution

of the current child use case node.

• LS-Left Subordinate points to the child use

case node to be executed only after the

current parent node is traversed and

executed.

• U No represents the use case number.

• RS-Right Subordinate is used for checking

inter-set-use case dependency between two

different actors. Naming convention for the

RS field is denoted as:

Actor_name | U No | dec/dep[deciding or

dependent].

• Flag has value 0 or 1 depending if the use case

has been executed at least once during test

case generation.

From UCDT, we can know that A1 invokes

four use cases, A2 invokes 3 use cases, A3

invokes 5 use cases, A4 invokes 4 use cases and

A5 invokes 3 use cases. After generation of

UCDT, UCG (shown in Fig. 8) is generated by

considering use case number as node number

in the graph. As per the algorithm, use case

number of A1 in UCDT is defined as U1, U2, U3

& U4 and use cases number A2 is also defined

as U1, U1.1 & U2. But in graph use cases

number of A2 is defined as U5, U6 & U7 for
better understanding of different use cases

invoked by different actors. If we will represent

like this manner then the developer will not

face any confusion whether U1 is invoked by A1,

A2, A3, A4 or A5. Each time it doesn’t
required defining the actor name for each use

case. Hence Table 1 represents UCD and UCG

mapping table by defining the use case names

with respect to use case name and invoked actor

name.

Figure 8: UCG of Hospital Management

System (HMS)

Table 1: UCD and UCG Mapping Table
Use Case

Number

Use Case Name Actor

Name

U1 Patient Registration A1

U2 Revert to Phone Queries A1

U3 Give Appointment to Medical

Representative

A1

U4 Visitor Interaction A1

U5 Follow Doctor’s Instruction A2

U6 Get Doctor’s Appointment A2

U7 Payment of Bill A2

U8 Give Prescription to Patient A3

U9 View Past Record of Patient’s

Health

A3

U10 Change Prescription A3

U11 Change Prescription A3

U12 Update Operation information A3

U13 Check Schedule for giving Medicine

to Patient

A4

U14 Report to Doctor A4

U15 Monitor Patient’s Health A4

U16 Coordinate with Doctor in

Operation

A4

U17 Create Bill A5

U18 Create Outdoor Patient Bill A5

U19 Create Discharge Bill A5

3.2 Generating Test Cases from Activity

Diagram

Activity Diagram (AD) [4] illustrates the

dynamic nature of a system. Basically it is used

for modelling business work flow or process and

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

404

internal operation. It shows a set of activities

which are going to be executed for completion

of a given task. The activity diagram of
Hospital Management System (HMS) is shown

in Fig. 9.

Figure 9: Activity Diagram of Hospital

Management System (HMS)

In next step the AD is converted into an

intermediate format called Activity Graph

(AG). For generation of AG, the author has

proposed a node traversing structure called as

Activity Node Structure (ANS), shown in Fig.

10.

Figure 10: Activity Node Structure for

generation of AG

• N* represents the address of the current node.

To generate starting node i.e node 1, N* will
store the address of starting activity. Address

of starting activity can be found from AD.

• LN* represents the left node or predecessor

node of current node. If predecessor node is

not available the LN* will be NULL.

• CE is represented as Create Edge. If current

node has any left node then it creates an edge

between current node and left node. CE will
be NULL for generation of starting node i.e

node 1.

• SP is represented as sub-path. If the current

node has any sub-path previously available

then create an edge between sub-path and

current node.

• TN represents type of node. After generating

the node we have to check for node type.

Node type may be a decision node or fork node

or join node. It can be found from Table 2.

• DN* is represented as decision node. If the

current node is decision node then address of

node will be stored here otherwise it is

NULL.

• F* is represented as fork node. If the current

node is fork node then address of node will be

stored here otherwise it is NULL.

• J* is represented as join node. If the current

node is join node then address of node will be

stored here otherwise it is NULL.

• D represents the dependency between the

current node and left node. It may be of two

type i.e intra-set dependency or inter set

dependency. Dependency is same as use case

dependency. If dependency exists then this

field is 1, otherwise it is 0.

Table 2: Table for Node name & Node type

Name of Node Type of

Node

Initial node S

End node E

Decision node(where child nodes are the

resultant of decision node)

DN

Control node (where parent node controls the

child node i.e child node can be proceed after

completion of parent node. Parent node is

called as control node)

C

Merge node (which have single outgoing edge

& more than incoming edge)

M

Fork node (which have single incoming edge

& more than outgoing edge)

F

Normal activity & activity associated with

fork node

A

Combined activity (Combination of more

than one activity)

CA

Join node (which have single outgoing edge

& multiple incoming edge)

J

Test Case Generation - :

For generating the test cases Activity Diagram

(AD) is converted into Activity Graph (AG) by

using ANS. Here the author has proposed

algorithms (defined in Algorithm 1 & Algorithm 2)

for conversion of AD to AG and test case

generation from AG. The general framework of

working principle of Algorithm 1 & Algorithm 2 is

shown in Fig. 12. First the AD is converted into

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

405

XMI code by using IBM RSA 7.1 tool and a parser

file is generated according to ANS of AD. The

parser file i.e Algorithm 2 represents the generation
of linked list for each activity and that linked list

generates the AG (shown in Fig. 11). By traversing

that linked list, test cases are generated. In this way

we obtain the following activity paths for each test

case.

Figure 11: AG of Hospital Management
System (HMS)

Figure 12: A model for test case generation

for AD

Algorithm 1 Test case generation from

Activity Diagram

Input: Activity Diagram (AD)

Output: Activity Graph (AG), Test cases

1: Start.

2: Convert the diagram into XMI code.

// IBM RSA 7.1 tool is used convert diagram

into XMI code, shown in Fig. 13.

3: Generate_Test _Case();

// Algorithm 2 defines the generation &

working principle of this function. This function

takes the XMI code of the application as

input.

Figure 13: XMI code of HMS

Algorithm 2 Generation of Graph from

XMI Code of HMS

Input: XMI Code

Output: Activity Graph (AG), Test cases

1: Generate_Test_Case()

 {

2: Create an array N[]. // Node address of all

activities will be stored in N[].

3: Create and initialize node for all activities.

// Nodes have 9 number of data fields as specified

in Fig. 10.

4: Create a temporary pointer variable as ptr.

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

406

5: for i = 1 to m do // m represents the total
number of element in the array.

6: ptr=&nodei;

7: N[i]=ptr;

8: end for

9: Create another pointer variable for nodes i.e

struct node_address *temp.

10: if xmitype==“Start” then // xmitype is an

attribute of XMI code or file.

11: Set a pointer variable s as node type;

12: Address of “Start” is stored in s. // s represents

the start of linked list.

13: set s=node1;

14: end if

15: for i = 1 to n do // n is the total number of

nodes created for all activities.

16: // For node� N* field

17: if nodei � N*==s then // if node i is the first

node then value of other data field of first node is

given below.

18: nodei � LN*=“NULL”;

19: nodei�CE=“F”;

20: nodei�SP=“F”;

21: nodei�TN=“A”;

22: nodei�DN*=“NULL”;

23: nodei�F*=“NULL”;

24: nodei�D=0;

25: else

26: nodei� N*=nodei;

27: end if

28: temp=nodei�NEXT; // Address of next node

is stored in temp variable.

29: // For node�LN* field

30: for j = temp to noden do // noden is the last

node.

31: temp=node� N*

32: node� LN*=temp�PREV; // LN* field of
current node is equal to address of previous node.

33: temp=temp�NEXT;

34: end for

35: // For node�CE field

36: for j = temp to noden do

37: if temp�LN*==temp�PREV then

38: node�CE=“T”;

39: else

40: node�CE=“F”;

41: end if

42: end for

43: // For node�TN field

44: for j = temp to noden do

45: if xmitype==“Forknode” then

46: node�TN=“T” and node�F*=nodej;

47: else if xmitype==“Decisionnode” then

48: node�TN=“T” and node!-->DN*=nodej;

49: else if xmitype==“Joinnode” then

50: node�TN=“T” and node� J*=nodej;

51: else

52: node�TN=“A”; // A means normal activity.

53: end if

54: end for

55: // For node�SP field

56: for j = temp to noden do

57: if node�TN=“T” && (node�DN*!=“NULL”

|| node� F*!=“NULL”) then

58: node�SP=“T”;

59: else

60: node�SP=“F”;

61: end if

62: end for

63: // For node�D field

64: for j = temp to noden do

65: if node�CE=“T” && node�TN=“T” then

66: node�D==1;

67: else

68: node�D==0;

69: end if

70: end for

71: end for

72: // Traverse the generated linked list to generate

Activity Graph (AG)

73: for i = 1 to n do

74: if nodej�CE=“T” then

75: push(DN, nodei); // DN(Destination Node) is

the stack name and nodei is the element.

76: end if

77: end for

78: // Creation of Source Node(SN)

79: for i = 1 to n do

80: key=nodei� N*;

81: Create a stack named as Stemp

82: PUSH(Stemp,nodei� LN*);

83: for j = 0 to top do

84: if nodei�CE=“T”&&nodei�N*== Stemp[top]

then

85: PUSH(SN, Stemp[top]); // SN is the stack name

and Stemp[top] is the element.

86: end if

87: end for

88: end for

89: // Creation of Sub Path Node(SPN)

90: for i = 1 to n do

91: if nodei�SP=“T”&& (nodei�F !=“NULL”||

nodei�DN!=“NULL” || nodei�j != “NULL”) then

92: PUSH(SPN, nodei(F or DN or J)) // SPN is the

stack name and nodei(F or DN or J) means node

name with tag F, DN or J.

93: end if

94: end for

95: // Creation of Complete Node(CN)

96: Push node1 into stack CN.

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

407

97: for i = 1 to n do

98: if nodei� LN*==node(i+1)�N* then

99: PUSH(CN, nodei); // CN is the stack name and
nodei is the element.

100: end if

101: end for

102: //Traverse the graph to generate test cases.

103: for i = 1; i < SN.size() && i ≤ DN.size(); i + +

do
104: if(SN.contains(CN.peek())==((DN.peek()==
CN.peek()�Next)&(SPN.contains(DN.peek()))))

then

105: Create an test sequence as

Ttestcase=SN.get(i)+ “→”+ SPN.get(i); //Ttest case

is the state name of test cases.

106: Tcount=Tcount+1; //Tcount represent number
of test cases.

107: end if

108: end for

}

In this way 55 activity paths are obtained from the

activity diagram. Due to lack of space we have not

mentioned all the activity paths.

1. 1 � 2 � 6

2. 1� 3 � 6

3. 1 � 4 � 6

4. 1 � 5 � 7 � 8 � 9 � 10 � 11 � 14 �15 �

16 � 17 � 18 �19 � 20 � 37 � 38 � 39 � 40

� 42 � 43 � 44 � 6

5. 1 � 5 � 7 � 8 � 9 � 10 � 11 � 14 �15 �

16 � 17 �18�19 � 20 � 37 � 38 � 39 � 41

� 42 � 43 � 44 � 6

6. 1 � 5 � 7 � 8 � 9 � 10 � 12�21 � 22 �

23�24 � 25 � 28 � 29 � 30 � 31� 20 �

37�38 � 39 � 40 � 42 � 43 � 44 � 6

7. 1 � 5 � 7 � 8�9 � 10�12 � 21 � 22 �23
� 24�25 � 28 � 29� 30 � 31 � 20 � 37 �

38� 39� 41 � 42 � 43 � 44 � 6

After generating the activity paths we now obtain

the following test cases by obtaining the activity

names from Table 3.

1. Start � Revert to Phone Queries � End

2. Start � Give Appointment to Medical
Representative � End

3. Start � Visitor Interaction � End

4. Start � Patient Registration � Consultancy

Required <?> � Check Schedule of all Doctor �
Take Doctor’s Appointment� Follow the Doctor’s

Instruction � Immediately Admission of Patient to

Ward � Treatment Starts� Operation Required

<?> � Give Prescription to Patient � Give

Medicine to Patient � Report to Doctor about the

Condition of Patient’s Health � Treatment

Completed � Discharge of Patient � Prepare

Discharge Bill � Give the Bill to Patient � Mode

of Payment <?> � By Cash � Collect the Receipt

� Collect the Document from Reception �
Update status of Patient � End

5. Start � Patient Registration � Consultancy

Required <?> � Check Schedule of all Doctor �

Take Doctor’s Appointment � Follow the Doctor’s

Instruction �Immediately Admission of Patient to

Ward � Treatment Starts � Operation Required

<?> � Give Prescription to Patient � Give

Medicine to Patient � Report to Doctor about the
Condition of Patient’s Health �Treatment

Completed � Discharge of Patient � Prepare

Discharge Bill� Give the Bill to Patient � Mode

of Payment <?> � By Credit Card � Collect the

Receipt � Collect the Document from Reception

� Update status of Patient � End

6. Start � Patient Registration�Consultancy

Required <?> � Check Schedule of all Doctor �

Take Doctor’s Appointment � Follow the Doctor’s
Instruction � Under go Operation � Update all

Required Information for Operation � Collect al

Test Report � Do Operation of Patient �

Operation Status Updated � Sift to ICU �

Treatment Starts � Report to Doctor about the
Condition of Patient’s Health � Health Condition

<?> � Treatment Completed � Discharge of

Patient � Prepare Discharge Bill � Give the Bill

to Patient � Mode of Payment <?> � By Cash �

Collect the Receipt � Collect the Document from

Reception � Update status of Patient � End

7. Start � Patient Registration � Consultancy

Required <?> � Check Schedule of all Doctor �

Take Doctor’s Appointment � Follow the Doctor’s

Instruction � Under go Operation � Update all

Required Information for Operation � Collect al

Test Report � Do Operation of Patient �

Operation Status Updated � Shift to ICU �

Treatment Starts � Report to Doctor about the

Condition of Patient’s Health � Health Condition

<?> � Treatment Completed � Discharge of

Patient � Prepare Discharge Bill � Give the Bill

to Patient � Mode of Payment <?> � By Credit

Card � Collect the Receipt � Collect the

Document from Reception � Update status of
Patient � End

In this way the activity diagram generates 55

numbers of test cases. However we know that the

activity diagram represents the information in

abstract way. That means it represents only the

sequence of activities but not the communication

occurring between two different objects. So in the

next step the Activity Graph (AG) with the Use

Case Graph (UCG) are combined to generate a

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

408

graph called Activity Use Case Graph (AUCG)

having the combined features of both the diagrams.

Table 3. Node Details of Activity Diagram (NDAD)
Node

No.

Activity Associated Node

Type

1 Start S

2 Revert to Phone Queries A

3 Give Appointment to Medical

Representative

A

4 Visitor Interaction A

5 Patient Registration A

6 End E

7 Consultancy Required? DN

8 Check Schedule of all Doctor C

9 Take Doctor’s Appointment A

10 Follow the Doctor’s Instruction C

11 Immediately Admission of Patient

to ward

A

12 Under go Operation A

13 Update Required Test and

Report

C

14 Treatment starts A

15 Operation Required? DN

16 Give Prescription to Patient A

17 Give Medicine to Patient A

18 Report to Doctor about the

condition of Patient’s Health

A

19 Treatment Completed A

20 Discharge of Patient J

21 Update all Required information

for Operation

C

22 Collect All Test Report A

23 Do Operation of Patient A

24 Operation Status Updated F

25 Shift to ICU A

26 Shift to Ward A

27 Shift to Ward for Temporary A

28 Treatment Start J

29 Report to Doctor about the

condition of Patient’s Health

A

30 Health Condition? DN

31 Treatment Completed A

32 Appointment of Doctor A

33 Treatment starts A

34 View Past Record of Patient A

35 Change Prescription of Patient A

36 Treatment Completed A

37 Prepare Discharge Bill A

38 Give the Bill to Patient A

39 Mode of Payment? DN

40 By Cash A

41 By Credit Card A

42 Collect the Receipt A

43 Collect the document from

Reception

A

44 Update Status of Patient A

45 Go to Pathology F

46 Preform Blood Test & generate

report

A

47 Perform Urine Test & generate

report

A

48 Perform Stool Test & generate

report

A

49 Perform X-ray & generate report A

50 Perform Scanning & generate A

report

51 Perform Ultrasound & generate

report

A

52 Collect the Report J

3.3 Generating Test Cases from Activity Use

Case Graph (AUCG)

In order to generate test cases having better

coverage and high fault detection capability, in this

section we proposed an approach which combines

the Activity Graph (AG) with Use Case Graph

(UCG) and generates a graph called Activity Use

Case Graph (AUCG). AUCG is generated by

combining the features of both the diagrams. For

generating the AUCG we propose an algorithm

called Generate Activity Use Case Graph (AUCG)

as explained in Algorithm 3 which will combine

the AG and UCG and will generate a graph called

Activity Use Case Graph (AUCG).

Algorithm 3 Generate Activity Use Case Graph

(AUCG)

Input: Activity Graph (AG) and Use Case

Graph (UCG)

Output: Activity Use Case Graph (AUCG)

1: Start.

2: Activity names and use case names for

respective node can be extracted from Table 3 and

Table 1. // Input all activity names into a stack
called AN (Activity Names).

4: Create a stack AN; // AN is the stack name.

5: for i = 1 to m do // m represents the total

number of activity names present in activity
diagram.

6: push all the activity names into AN.

7: end for

8: // Input all use case names into a stack called

UCN (Use Case Names).

9: Create a stack UCN; // UCN is the stack name.

10: for j = 1 to n do // n represents the total
number of use case names present in use case

diagram.

11: push all the use case names and actor names

into UCN and use case names are defined like actor

name, use case name.

12: end for

13: // Mapping of activity names with use case
names.

14: Create a stack AUCN; // AUCN is a stack for
Activity Use Case Name. It stores the activity use

case names for combination of activities and use

cases.

15: for k = 1 to k _ size(AN)&& k _ size(UCN) do

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

409

16: key = AN[top];

17: if key == UCN[top] then

18: push(AUCN,pop(UCN)); // First UCN[top] is
deleted and then push it to AUCN stack. It means

UCN[top] is stored in AUCN.

19: end if

20: end for

21: for i = 1 to size(AUCN) do

22: // size(AUCN) represents the number of
element present in AUCN.

23: nodei = AUCN[peek];

24: peek = peek+1;

25: end for

26: Display node1;

27: for i = 2 to AUCN[top] do

28: Connect nodei with nodei-1;

29: if nodei-1 is Normal Activity then

30: Connect by single“↓” from nodei to nodei-1;

31: else if nodei-1 is Decision Node then

32: Connect by two“↓” from nodei;

33: else if nodei-1 is Fork Node then

34: Connect by multiple“↓” from nodei;

35: else

36: Do simple connection by “↓”;

37: end if

38: end for

39: Connect the corresponding nodes to decision

node and fork node. // The nodes can be obtain

from Table 3 and AD.

40: Generate the graph called as Activity Use Case
Graph (AUCG).

 The pseudocode for generating AUCG is

defined in Algorithm 3. As per the proposed

algorithm, AG and UCG are used as input. First

activities and use cases with respective activity

names and use case names are stored in stacks

named as AN and UCN. Then mapping of activities

and use cases are done. If they have relationship

with each other then combination of activity name

and use case name are stored in another stack called

AUCN (Activity Use Case Name). The

combinations are defined like Activity Name,[use
case name]. In this way all the activities with

related use cases are stored in AUCN. Then nodes

are created for each activity use case names and

they are connected to each other according to

proposed algorithm. Hence AUCG is generated by

combining the AG and UCG. Applying this

technique, the AUCG is generated for Hospital

Management System (HMS) which is shown in Fig.

14.

Figure 14: AUCG of Hospital Management

System (HMS)

Test Case generation -:

 Now the AUCG is followed for test case

generation process. Test cases are generated by

using ANS and Algorithm 2 defined in Section 3.2.

As per this algorithm, nodes are created using ANS

for activity use case names and that nodes are
traversed for generating the test cases. For

generating the test sequences from AUCG, activity

path coverage criteria are used. By applying this

technique we obtain the following activity paths.

1. 1 � 2,[A1,U2] � 6

2. 1�3,[A2,U3] � 6

3. 1 � 4,[A1,U4] � 6

4. 1�5,[A1,U1] � 7 �8 � 9,[A2,U6] �

10,[A2,U5] � 11 � 14 � 15 � 16,[A3,U8] �

17,[A4,U13] � 18,[A4,U14] � 19 −! 20 �

37,[A5,U17,U19] � 38,[A5,U18,U19] �

39,[A2,U7] � 40,[A2,U7] � 42 � 43 � 44 � 6

5. 1� 5,[A1,U1] � 7 �8 � 9,[A2,U6] �

10,[A2,U5] � 11 � 14 � 15 � 16,[A3,U8] �

17,[A4,U13] � 18,[A4,U14] � 19 � 20 �
37,[A5,U17,U19] � 38,[A5,U18,U19] �

39,[A2,U7] � 41,[A2,U7] −� 42 � 43 � 44 � 6

In this way 60 test cases are obtained from the

activity use case graph.

 After obtaining the activity sequences extract

the use case names from Table 1 and activity names

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

410

from Table 3 to obtain the test cases. The use case

and actor names are written in the square bracket to

distinguish the use cases and actors from activity
sequences. The test cases obtained from AUCG are

as follows.

1. Start � Revert to Phone Queries,[Receptionist,

Revert to Phone Queries] � End

2. Start � Give Appointment to Medical

Representative,[Receptionist, Give Appointment to

Medical Representative] � End

3. Start � Visitor Interaction,[Receptionist,

Visitor Interaction] �End

4. Start � Patient Registration,[Receptionist,

Patient Registration] � Consultancy Required <? >

� Check Schedule of all Doctor Take Doctor’s

Appointment,[Patient, Get Doctor’s Appointment]

� Follow Doctor’s Instruction,[Patient, Follow

Doctor’s Instruction] � Immediately Admission of

Patient to Ward � Treatment Starts � Operation

Required <?> � Give Prescription to

patient,[Doctor, Give Prescription to patient] �

Give Medicine to Patient, [Nurse, Give Medicine to

Patient] � Report to Doctor about Condition of

Patient’s Health,[Nurse, Report to Doctor] �

Treatment completed � Discharge of Patient �

Prepare Discharge Bill,[Accountant, Create Bill,

Create Discharge Bill] � Give the Bill to

Patient,[Accountant, Create Outdoor Patient Bill,

Create Discharge Bill] � Mode of Payment

<?>,[Patient, Payment of Bill] � By Cash,[Patient,
Payment of Bill] � Collect the Receipt � Collect

the Document from Reception � Update the status

of Patient � End

5. Start � Patient Registration,[Receptionist,
Patient Registration] � Consultancy Required <? >

� Check Schedule of all Doctor Take Doctor’s

Appointment,[Patient, Get Doctor’s Appointment]

� Follow Doctor’s Instruction,[Patient, Follow
Doctor’s Instruction] � Immediately Admission of

Patient to Ward � Treatment Starts � Operation

Required <?> � Give Prescription to

patient,[Doctor, Give Prescription to patient] �

Give Medicine to Patient, [Nurse, Give Medicine to
Patient] � Report to Doctor about Condition of

Patient’s Health,[Nurse, Report to Doctor] �

Treatment completed � Discharge of Patient �

Prepare Discharge Bill,[Accountant, Create Bill,

Create Discharge Bill] � Give the Bill to

Patient,[Accountant, Create Outdoor Patient Bill,
Create Discharge Bill] � Mode of Payment

<?>,[Patient, Payment of Bill] � By Credit

Card,[Patient, Payment of Bill] � Collect the

Receipt � Collect the Document from Reception

� Update the status of Patient � End

In this way 60 activity use case paths are
obtained from activity use case graph. The test

cases generated are capable of detecting operational

faults, use case dependency faults, execution faults.

The coverage capability of combinational diagrams

is more than the coverage capability of individual

diagram.

4. COMPARISION WITH RELATED WORK

In this paper, we have proposed a technique

for generating the test cases for object-oriented
system using use case diagram and activity

diagram. There are maximum number of papers

which describes the test case generation process

using single UML diagrams and combination of

two UML diagrams. In those papers the

authors have described about the different
techniques to generate test cases from a model

i.e any UML diagram. Table 5 describes the

comparison of our approach with related work

done by different researcher.

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

411

Table 5 : Comparison with Related Work

Paper Name UML

Diagram

Synchronization

Fault

Control

Dependency

Operational

Fault

Executional

Fault

Data

Dependency

Fault in

loop

A novel approach to

generate test cases

from uml activity

diagram [14]

Activity

diagram

Yes No No No No Yes

Automatic test case

generation from uml

models [15]

Use case

&

sequence

diagram

No No Yes No No No

Test case generation

for concurrent object-

oriented system using

combinational uml

models [8]

Sequence

&

activity

diagram

No

Yes

No

No

Yes

No

Test case generation

for use case

dependency fault

detection [6]

Use case

diagram

No Yes No No Yes No

Our proposal Use case

&
activity

diagram

No Yes Yes Yes Yes No

5. CONCLUSION AND FUTURE WORK

In this paper a detailed approach for test

case generation for an object-oriented system by

using use case diagram and activity diagram of

a system is discussed. The diagrams are

converted into an intermediate graph and then

the test cases are generated from the graphs.

This paper also presents test case generation

process by integrating both use case graph and

activity graph called as Activity Use Case Graph

(AUCG). The proposed approach also included

use case dependency fault detection and
redundancy check. This approach can detect

operational or executional fault, message

dependency and control dependency between

activities at any instance of time. By reducing

the redundancy of nodes in each test case we

can save the cost and effort required for
software testing.

In a composite graph it is very difficult to

detect errors due to redundant nodes, in each

test case execution. So we can use dynamic

slicing criteria (either forward slicing or
backward slicing) for the detection of errors and

the affected nodes due to the same error in each

test case. This approach can further be used for

optimization and prioritization of test cases in

regression testing.

REFRENCES:

[1]“IEEE Glossary.” www.ieeexplore.ieee.org/IEEE
Glossary.

[2] “The Importance of Business Understanding in

Requirements Structuring.”

http://www.umsl.edu/_cjtz4/umsl/erdiagrams.ht
ml.

[3] “Software Design Tutorials.”

www.smartdraw.com/resources/tutorials/Softwa

re Design Tutorials.

[4] “UML 2.4 Diagrams Overview.”

http://www.uml-diagrams.org/uml-24

diagrams.html.

[5] “IBM Rational Functional Tester.”

http://www.ibm.com/developerworks/download

s/r/rft/.

[6] G. Budha, N. Panda, and A. A. Acharya, “Test

case generation for use case dependency fault

detection”, 3
rd

 International Conference on

Electronics Computer Technology (ICECT),

Vol. 6, No. 6, September 2011, pp. 178–182.

[7] N. Chauhan, “Software Testing Principles &

Practices”, Oxford University Press, New Delhi,

2010.

[8] S. Dalai, A. A. Acharya, and D. P. Mohapatra,

“Test case generation for concurrent object-

oriented system using combinational uml

models”, International Journal of Advance

Computer Science and Applications, Vol. 3,

No. 5, 2011, pp. 97–102.

[9] R. Ibrahim, and S. Y. Yen, “Formalization of

the data flow diagram for consistency check”,

International Journal of Software Engineering

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

412

& Applications (IJSEA), Vol. 1, No. 4, October

2010, pp. 95–111.

[10] M. Khandai, A. A. Acharya, and D. P.

Mohapatra, “Test case generation for concurrent

system using combinational diagram”,

International Journal of Computer Science and

Information Technologies (IJCSIT), Vol. 2, No.

3, 2011, pp. 1172–1181.

[11] B. Korel, and G. Koutsogiannakis,

“Experimental comparison of code-based and

model-based test prioritization”, IEEE

International Conference on Software Testing

Verification and Validation Workshops, 2009,

pp. 77–84.

[12] S. kumar Swain, and D. P. Mohapatra, “Test
case generation from behavioural uml models”,

International Journal of Computer

Applications, Vol. 6, No. 8, September 2010,

pp. 5–11.

[13] R. Mall, “Fundamental of Software

Engineering”, PHI Learning Private Limited,

New Delhi, 2009.

[14] D. Samanta, and D. Kundu, “A novel approach

to generate test cases from uml activity

diagram”, Journal of Object Technology, Vol.

8, No. 3, May-June 2009, pp. 65–83.

[15] M. Sarma, and R. Mall, “Automatic test case

generation from uml models”, 10
th

 International

Conference on Information Technology, 2007,

pp. 196–201.

