
 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

390

A MIDDLEWARE AND POLICY-BASED ADAPTATION

FRAMEWORK TO SIMPLIFY SOFTWARE EVOLUTION: AN

IMPLEMENTATION ON UNIT TRUST ENTERPRISE

SYSTEM

1
N.H AWANG,

 2
S. SHAHIBUDDIN,

3
W.M.N WAN KADIR

1HeiTech Padu Berhad, Kuala Lumpur Malaysia

2Professor, Advanced Informatics School, Universiti Teknologi Malaysia, Johor Baharu,Malaysia

3Assoc. Prof., Faculty of Computing, Universiti Teknologi Malaysia, Johor Baharu,Malaysia

E-mail:
1
hazila@heitech.com.my,

2
shamsul@utm.my,

3
wnasir@utm.my

ABSTRACT

Software evolution needs to be properly controlled to avoid huge problems during maintenance phase.
Software needs to evolve to ensure it meets its development purpose. One of promising ways to address the
issue of software evolution is via software adaptation. There are 4 main approaches to software adaptation
i.e. architecture-based, component-based, agent-oriented and middleware-based. This research is adopting
middleware-based approach to software adaptation. An adaptation framework called MiPAF, which uses
middleware and policy-based concept is proposed to simplify software evolution. MiPAF comprises 6
components namely Service Manager, Adaptation Manager, Service Infrastructure, Device Controller,
Policy Repository and Context Monitor. The use of MiPAF will affect 4 software development phases i.e.
requirement, analysis, design, and development. MiPAF runtime is developed to enable adaptation of the
device layer of a Unit Trust Enterprise System (UTES). A simple, XML-based policy language is
developed to specify what action to be taken when certain condition happens. The adaptation requirements
of this system is specified and an adaptation policy is developed according to the requirements. In this
implementation, MiPAF runtime is developed using C language and it is installed on workstations together
with UTES client. There are 2 adaptation requirements for this implementation. The first requirement is
when a passbook printer fail, the system can proceed with printing using another passbook printer without
interruption. The second requirement is that when the type of passbook printer is changed, the system
should not be impacted. The evaluation is done against 6 evaluation criteria; scalability, context-awareness,
performance, usability, heterogeneity, and dynamic-evolveability. MiPAF meets all the mentioned criteria.

Keywords: Software Evolution, Software Adaptation, Middleware, Policy, Framework

1. INTRODUCTION

The term “software evolution” can be

briefly defined as all changes that happen to
software during its entire lifetime (1). Software
needs to evolve to cater for various changes that
happen both to its operating environment and its
business requirements. Thus, software evolution is
a process, which is inevitable so that software can
continuously supports its development purposes (2).
Lehman argued in (3) that the quality of software
will degrade when it evolves. When the quality of
software degrade during evolution process, it
becomes less reliable and operational risks will
increase. In his research, Reiss mentioned that
evolution is one of the reason for high coupling and

low cohesion for software, hence becoming a major
source of problems in the maintenance phase of
software life-cycle (1).

Study on software evolution are classified

into two main categories, namely, the research on
tools and methods to enable software to evolve in a
more controlled manner and the study on the nature
of software evolution (4, 5). This research is taking
the path of the first category, i.e. looking into
approaches to minimize the impact caused by
software evolution. Within the first category, there
are a number of approaches that can be found in the
literatures.

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

391

The first approach is called “context-based
approach”. In context-based approach, the
researcher identified twenty-four context of change
(6). All changes subjected to software are analyzed
to map its context and evolution technique suitable
to address the change. The second approach is
called “semantic-changed” approach. In this
approach, a technique is proposed to enable precise
recording of semantic change of software during
evolution. Based on the precise semantic
information gathered, it is argued that a better
analysis can be done to control software evolution
(7). The third approach is called “story-driven
approach”. The aim of story-driven approach is to
provide methods to enable explicit and implicit
knowledge about the software during its lifecycle to
be formally represented (8). The knowledge
repository will provide useful information for
software maintainers to perform evolution activities
in a more controlled manner. The fourth approach,
“requirement engineering approach” deals with
improving requirement gathering process in order
to properly control software evolution. In (9),
Ferreira et al propose a framework based on
organizational semiotic to enable requirements
change to be predicted in advance. Souza et al
proposed the study of requirements evolution to
enable the development of methods to address the
negative impact of software evolution (10). The
fifth approach is “software adaptation approach”.
The aim of software adaptation approach is to
provide adaptation methods so that software can
adjust its behavior to suit the changes subjected to
it. There are a wide range of research works
addressing software adaptation topics. Example of
such works can be found in (11-15)

This research is adopting software adaptation
approach in finding a novel approach for
controlling negative effects of software evolution in
the domain of enterprise system. An adaptation
framework called MiPAF, which uses the concept
of middleware and policy is proposed to enable
software adaptation, hence simplifying software
evolution process. The organization of this paper is
as follows: Section 2 will give background
information and related work with respect to this
research. In Section 3, MiPAF is described in
detail. Section 4 will describe the implementation
of MiPAF on an enterprise system. The last section
will conclude this paper and future works will be

briefly explained.

2. RELATED WORK

Researchers in software engineering field have
proposed various approaches to software adaptation
in recent years. The research works range from the
effort to develop generic architecture framework to
specific technique in particular domain. McKinley
mentioned that software adaptation can be
categorized into two; namely compositional
adaptation and parameterized adaptation (16).
Compositional adaptation enable software to be
reconfigured during runtime, whereas parameterize
adaptation involves reconfiguration of software
before execution. In our earlier work (17), based
on exhaustive literature review, we categorized the
approaches to software adaptation into four
categories; architecture-based approach, agent-
oriented approach, component-based approach and
middleware-based approach. The following
subsection described each approach briefly.

2.1 Approaches to Software Adaptation

As mentioned earlier, there are four type of
approaches to software adaptation. Each approach
is discussed separately in the following subsections.

2.1.1 Architecture-based approach

In architecture-based approach, architecture
model is used to enable dynamic adaptation of
software at runtime. Composition of components
and their relationship are reconfigured during
execution time based on the changes that occurs to
the software. Technique in implementing
architecture-based adaptation includes using a
formal specification language as in Darwin (18).
Other approach includes the use of Aspect Oriented
Modelling. In architecture-based approach, more
focus is given at the design phase and no
specification given on how adaptable software is
going to be constructed. This situation may result
in the loss of architecture knowledge and software
construction may become more complicated, thus
maintenance will become difficult.

2.1.2 Component-based approach

In component-based approach, software
components are treated as a set of black-boxes that
is reusable. The focus of component-based
approach is during the construction of the software.
During the runtime of the software, when changes
happen, different variance of the components will
be executed. Without proper component
management, communication between newly
loaded variants and the rest of the component may
pose problems. In most implementation, existing
component frameworks are used to manage the
components. Popular frameworks include CORBA,

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

392

EJB, COM and DCOM. These frameworks are
language specific and in the case of COM and
DCOM, they are proprietary frameworks. Example
of works that uses component-based approach are
(13, 19).

2.1.3 Agent-based approach

In agent-based approach, software agents are
developed to enable self-adaptation. Related works
for agent-based approach can be found in (20, 21).
Software agents provide external adaptation
mechanism and communication between agents are
using asynchronous messaging. There are two
major drawbacks in using agent-based approach.
The first drawback is that since agent-based
approach uses higher abstraction level than object-
oriented approach, novice developers may find it
hard to use. The second drawback is that since
asynchronous messaging is used as communication
method, communication latency may affect
software performance in a large software
implementation.

2.1.4 Middleware-based approach

In middleware approach, software
implementation is segregated into different layers
thus changes to one layer will not affect another
layers. It was argued that traditional middleware
has limited capabilities in supporting the needs of
software adaptation. However, traditional
middleware concept can be enhanced to enable
software adaptation. One of benefits in
middleware-based approach is that no
implementation technique is specified. Various
technique can be incorporated in middleware
approach including web services, aspect oriented
programming and component based programming.
Middleware-based approach offers scalability and
heterogeneity which are very important for an
enterprise system.

Comparative evaluation was performed on the

approaches based on six defined criteria. The
criteria are scalability, context-awareness,
performance, usability, heterogeneity, and
dynamic-evolveability. The result of comparative
evaluation has shown that middleware-based
approach scored more points as to compare with
three other approaches.

3 THE PROPOSED FRAMEWORK

The framework proposed in this paper is called

MiPAF (Middleware and Policy-based Adaptation
Framework). MiPAF main aim is to enable the

compositional and parameterized software
adaptation in order to simplify software evolution.
MiPAF is developed based on a number of
concepts namely middleware-based approach, close
loop feedback system, web services and policy.

3.1 MiPAF Building Block

MiPAF comprises of six main components
namely Service Manager, Adaptation Manager,
Service Infrastructure, Policy Repository, Context
Monitor and Device Controller. MiPAF building
block is specified using class diagram in the
following figure.

Figure 1: MiPAF Class Diagram

In the following subsections, MiPAF components are

described in more detailed. Formal specification for each

components are described using Z Notation. Z Notation
is used since Z is already a matured language and

sufficiently expressive to describe MiPAF.

3.2 Service Manager

Service Manager is the first point of contact
between MiPAF and enterprise application that
uses MiPAF runtime. In designing a service
manager, five considerations need to be
highlighted:-

a. Communication protocol between Service
Manager and enterprise applications

b. Common message format for request and
reply

c. Ability to handle multiple requests from
enterprise systems

d. Internal communication with Adaptation
Manager

e. Ability to parse XML message

The high level specification for Service
Manager is as follows:-

ServiceManager ≙ Listener | DataHandler

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

393

There are two main components of Service
Manager, namely Listener and DataHandler. The
role of Listener is to accept request from enterprise
applications and pass the data to the DataHandler
for processing the XML messages. The
reformatted data will be sent to Adaptation
Manager.

3.3 Adaptation Manager

Adaptation Manager is the component of
MiPAF that need to make adaptation decisions
whenever changes occur. Prior to making
adaptation decisions, Adaptation Manager must
have a mechanism to detect changes that will
impact an enterprise software. Adaptation Manager
is the central component of MiPAF since it requires
direct communication with Service Manager,
Service Infrastructure, Device Controller and
Policy Repository.

Adaptation Manager can be formally described

in Z Notation as follows:-

AdaptationManager ≙ Initialize | PolicyHandler |
AdaptationEngine | InterfaceToDevController |
InterfaceToSvcManager

From the above specification, Adaptation
Manager comprises of five components; Initialize,
PolicyHandler, AdaptationEngine,
InterfaceToDevController and
InterfaceToSvcManager. Each component has its
own responsibilities to enable Adaptation Manager
to perform adaptation requirements. Initialize is an
internal components to initialize all data used
internally by Adaptation Manager. PolicyHandler
has the role to load the right policy that will dictate
the adaptation process. AdaptationEngine is the
component that will translate the loaded policy into
adaptation actions. Specific adaptation algorithm is
developed for AdaptationEngine.
InterfaceToDevController will handle all
interactions with implemented Device Controller.
InterfaceToSvcManager receives data from either
Service Manager or Service Infrastructure.

3.4 Service Infrastructure

Service Infrastructure provides web server’s
capability to MiPAF since MiPAF supports web
service communication. Web-based enterprise
applications will communicate to MiPAF via
Service Infrastructure. First level formal
specification for Service Infrastructure is as
follows:-

ServiceInfrastructure ≙ Listener |
HTTPDataHandler

ServiceInfrastructure will continuously listen to
the requests from enterprise application and process
the HTTP command and strip the SOAP envelop
from the incoming request. The data will be sent to
Adaptation Manager.

3.5 Policy Repository

Policy Repository is where application policy is
stored. MiPAF does not specify how the
application policy to be stored. However, MiPAF
specify that an application policy must be prepared
in XML using a set of pre-defined keywords. The
specification for Policy Repository is as follows:-

PolicyRepository ≙ PolicyName |

RegisterPolicy

All policies must have a unique name and

registered with Policy Repository.

3.6 Device Controller

Device Controller abstracts out the technical
complexity of device communication. The problem
that Device Controller is addressing is lack of
standard interface on how to communicate with
devices. Device Controller allows devices to be
access using standard APIs. The specification for
Device Controller is as follows:-

DeviceController ≙ SendReceiveAM |

InterfaceToCM | InterfaceToDev

Device Controller communicates with
Adaptation Manager via SendReceiveAM function.
It will update the device’s status to Context
Monitor and it will issue device specific command
in order to find out the status of the device.

3.7 Context Monitor

Context Monitor has the role to monitor devices
of interest to the enterprise system. Context
Monitor will alert Adaptation Manager when a
device cease to functions. When there is a problem
with a device, there are two possibilities; whether
the actual device is problematic or the Device
Controller has stopped. Context Monitor has the
capability to restart the Device Controller.
Specification for Device Controller is as follows:-

ContextMonitor ≙ MonitorResource |

RegisterResource | UpdateStatus |
RestartResource

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

394

MiPAF is meant to be used by both enterprise
application in maintenance mode and newly
developed application. For a newly developed
application, there are a number of processes that is
specified during Requirement. Further details can
be found in the following subsections.

3.8 MiPAF Process

Using MiPAF during new application
development involves some new processes to be
included in requirement, analysis, design, and
development phase.

3.8.1 Requirement phase

During requirement gathering activity, apart
from gathering functional and non-functional
requirements, adaptation requirements must also be
captured. Analyst should have a set of adaptation
requirement questions in order to elicit adaptation
requirement.

3.8.2 Analysis phase

During the Analysis Phase, two important
process must be carried out. The processes are
analysis of adaptation requirements and analyzing
architectural needs. In this phase, the adaptation
requirements will be analysed and the conceptual
architecture that will support the required
adaptation requirements will be decided.

3.8.3 Design phase

During the Design Phase, apart from traditional
design process, two added activies are required, i.e.
design of Device Controllers and the design of
adaptation policy. The work product for this phase
is Device Controller design and policy design
which will be incorporated into Software Design
Document.

3.8.4 Development phase

During the Development phase, the Device
Controller for each device will be developed. In
the development of Device Controller, Application
Programming Interface (API) from device vendors
will be encapsulated in a standard API specified by
MiPAF. The adaptation policy can be developed
using MiPAF Policy Editor. In the following
subsection, MiPAF Policy Language (MPL) will be
discussed.

3.9 MiPAF Policy Language

MPL is used to drive the adaptation mechanism
in MiPAF. MPL uses action-based rules in making
adaptation decision when changes occur.
Adaptation rules will provide instructions to be
followed by Adaptation Manager in response to

each change. One of the benefits of policy based
adaptation is the ability to totally decouple
adaptation mechanism from the component that
control the adaptation behavior. Therefore, changes
in adaptation policy will not affect the Adaptation
Manager and other components of MiPAF.

There is a number of existing policy language
developed other researches such as PONDER and
REI. However, both PONDER and REI are biased
towards security. Other multipurpose policy
language such as Esterel and Jess require
developers to learn new languages. MiPAF
requires less complex policy language,
implementation independent but should be able to
expand when required. Therefore, a simpler but
extendable policy language, MPL, was developed.
XML is used for MPL since it is expandable and
most developers are familiar with XML.

The ontology for MPL is described in the
following section.

3.9.1 MPL ontology

MPL Ontology is depicted in Figure 2.

Figure 2: MPL Ontology

Each adaptation policy file will have Policy ID,
Policy Type, Application ID, and Keyword. Policy
ID is a unique identification of a policy file. Policy
can be of two types, Default and Reactive. Each
application need both type pf policy. Default
policy is the normal flow of an application when
using devices. Reactive policy will specify
adaptation required in the event of change.
Reactive policy comprises three categories namely
error, warning and information. For each category,
a message and alternate action must be specified.
Message is an information to be communicate to
users in the event of change and alternate action is
the adaptation behavior that need to be executed in
response to the changes.

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

395

Currently, three keywords are supported by
MPL namely ACTION, CONDITION and GOTO.
Since MPL is XML based, an existing XML Parser,
expat, is used to parse the policy file. Expat XML
parser allows “handler” to be registered as
ACTION whenever the CONDITION is triggered.
GOTO keyword allows more flexibility to be
incorporated in the policy file.

4. IMPLEMENTATION OF FRAMEWORK

ON ENTERPRISE SYSTEM

4.1 Overview of Unit Trust Enterprise System

The implementation of MiPAF is done on
existing enterprise system called Unit Trust
Enterprise System (UTES). UTES is a client-server
enterprise system which is currently implemented
in Malaysia. UTES consists of two layers of
application; front-end application and backend
application. MiPAF implementation concerns only
the front-end part of UTES since the scope is to
manage changes at the device layer of an enterprise
system. In the context of UTES, device layer is
located at the front-end application. UTES front-
end is a counter-based system used by tellers.

The purpose of UTES is to manage transactions

and operations of unit trust transactions for an
organization. UTES has been implemented for
many years. Over the years, changes are introduced
to its device layer due to changes in business
requirements and to improve operational efficiency.
For the purpose of this research, the main focus is
only on one device used by UTES, passbook
printer. Passbook printers are specialized printer
used to print investors’ passbook after transaction
such as additional investment transaction or
withdrawal transactions. The objective of MiPAF
implementation in UTES is to control the impact of
change due to evolution that occurs at the device
layer of UTES. For a better perspective, the
relationship between MiPAF and UTES can be
found in the following diagram.

Figure 2: MiPAF Context Diagram

MiPAF sits in between UTES and the printer
driver used by the passbook printer. Interface to
UTES is via Service Manager and Interface to the
printer driver is via Device Controller. Context
Monitor will detect changes occurs at device layer.

4.2 Overview of the Implementation

Environment

Testing environment for implementation of
UTS using MiPAF is depicted as follows:-

Figure 3: Implementation Environment

Four workstations are used for this purpose,
PC01 to PC04. Printers are attached to PC01 and
PC04. PC02 will share printer with PC01 and
PC03 will share printer with PC04. MiPAF
runtime environment is installed on PC01 and
PC04. Adaptation requirements will be described
based on the above configuration. For the test of
scalability, initially, the evaluation was conducted
on single workstation.

4.3 Adaptation Requirements

There are a number of possible change that can
happen to the configuration specified in subsection
4.2. These changes bring about the adaptation
requirements for UTES. The adaptation
requirements for UTES are as follows:-

Requirement 1: Device Failure

During daily operation of UTES, there is a
probability of printer failure due to mechanical
problems. In the case of printer failure, UTES
front-end should be able to perform printing using
other printer within the same location.

Requirement 2: Change of Device Type

It is quite common for an organization to
change the type or brand of printer. Device driver
for each passbook printer is different. Therefore,
changing printer type require change of application.

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

396

This type of change should not be affecting
application system.

These two requirements will be simulated for
the implementation using implementation
environment specified in Figure 3.

4.4 Design of Adaptation Policy

To design the adaptation policy, adaptation
requirements and rules need to be understood. The
rules for adaptation for this implementation is as
follows:-

• IF PRINTER01 fail, PC02 should be
able to print using PC04 without the
need to introduce any change and
without recompilation of UTES
required.

• Changes of PRINTER02 with different
type of printer should not affect
operations of UTES. For example,
PRINTER02 will be changed from
IBM9068 to TALLY GENICOM
printer.

The default policy will specify the basic flow
printing for UTSE. Part of the default policy will
look as in the following:-

In the default flow, dev_name is PRT_9068 which
specify the printer type and the ip_address of the
printer for basic flow is used. The reactive policy
will specify conditions for adaptation and
adaptation actions that will be executed by the
Adaptation Manager. MPL Policy Editor is
provided to generate MPL for ease of writing
adaptation policy.

4.5 MiPAF Implementation

Each MiPAF components described in Section 3
need to be implemented to create a runtime
environment so that it can be used by UTES. All
MiPAF runtime components are developed using C
programming language. Brief description on the
runtime components of MiPAF is as follows.

4.5.1 Service manager

Since UTES is a client-server based enterprise
application, Service Manager is implemented
instead of Service Infrastructure. 2 components are
implemented namely Listener and Data Handler.
Listener is implemented using a common socket-
based programming. Listener will continuously
waiting for request from UTES and upon receiving
the request, it will execute bind and accept
command. During this time, UTES is in a waiting
state. Data Handler will process the XML
formatted request and pass the data to the
Adaptation manager.

4.5.2 Adaptation manager

Adaptation Manager execute adaptation
behavior for UTES. The algorithm for Adaptation
Manager is lengthy to be included here. In
summary, the Adaptation Engine is implemented
using multithreaded and event based program. It
uses shared memory for internal communication
with the Context Manager. Adaptation Manager
will execute Default Policy first and at specific
interval, it will check a shared memory space that
store printer status. If status change is detected,
Adaptation Manager will execute Reactive Policy.

4.5.3 Policy repository

MiPAF Policy Repository is implemented using
shared memory concept. A shared memory space is
defined and can be accessed by all components.
The structure the shared memory is as follows:-

char strApplicationName[20]

int strPolicyID

char* ptrStrData;

4.5.4 Device controller

For this implementation, the Device Controller
is implemented using existing printer server
program that is used by UTES. The printer server
program is triggered by Adaptation Manager using
event. Upon being triggered, it will get the data to
be printed and send the data to the printer. It will
return the status of printing to the Adaptation
Manager.

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

397

4.5.5 Context monitor

For this implementation, Context Monitor is
implemented using an existing program called
“Health Checker”. Health Checker is a socket
based program that continuously send connection
request to each Device Controller. .Health Checker
will update the status of each Device Controller in a
shared memory. This status will be read by
Adaptation manager at specific intervals.

5. CONCLUSION AND FUTURE WORKS

The evaluation of MiPAF using UTES was
carried out based on the six evaluation criteria
mentioned earlier, i.e. scalability, context-
awareness, performance, usability, heterogeneity,
and dynamic-evolveability. MiPAF meet all the
criteria mentioned. In terms of scalability, it
support both downward and upward capability.
This is evidence when evaluation was done using
one workstation and 4 workstations subsequently.
Implementation of Context Monitor ensure context
awareness criteria is met. Since MiPAF is installed
on each workstation, there is no issue of
performance. MiPAF is easy to be used since it
uses open standard such as TCP-IP and XML. The
adaptation policy is very simple and policy editor is
provided. MiPAF is heterogeneous as it does not
specify the language or platform for
implementation. It meet dynamic-evolveability by
means of using policy to specify adaptation that can
be executed at runtime.

There are a number of future works that can be

spin-off from this research:-

• The focus of this research is only on the
change of devices in an enterprise system.
Other changes that can be extended from
this research is in terms of change in the
database type and change in communication
protocol.

• This research uses two type of
communication to cater for different
architecture type. Client-server applications
use socket-based communication while web-
based enterprise applications use web
services to access the device. For future
works, it is better to standardize the
application interface so that changes in
application architecture will not affect
MiPAF execution

• There are other works in standardizing
interface to devices such as works in Service
Oriented Device Architecture (SODA). In

future, when SODA is matured, Device
Controller can be improved to incorporate
SODA so that Device Controller can be
standardized.

REFRENCES:

[1] Reiss SP, Editor. Evolving Evolution [Software
Evolution]. Principles Of Software Evolution,
Eighth International Workshop On; 2005

[2] Canfora G, Editor. Software Evolution In The
Era Of Software Services. Software Evolution,
2004 Proceedings 7th International Workshop
On Principles Of; 2004

[3] Lehman MM. Laws of Software Evolution
Revisited. Proceedings of the 5th European
Workshop on Software Process Technology:
Springer-Verlag; 1996. p. 108-24

[4] Lehman MM, Ramil JF. An Approach to a
Theory of Software Evolution. Proceedings of
the 4th International Workshop on Principles of
Software Evolution; Vienna, Austria: ACM;
2001

[5] Madhavji NH, Ramil JF, Perry DE. Software
Evolution and Feedback: Theory and Practice:
John wiley and Sons; 2006

[6] Ciraci S, van den Broek P, Aksit M. A
Taxonomy for a Constructive Approach to
Software Evolution. Journal of Software.
2007;2(2):84-97.

[7].Robbes R, Lanza M, Lungu M. An Approach to
Software Evolution Based on Semantic Change.
Fundamental Approaches to Software
Engineering: Springer Berlin / Heidelberg; 2007.
p. 27-41

[8].Riling J, Meng WJ, Witte R, Charland P. Story-
driven Approach to Software Evolution.
Software, IET. 2008;2(4):304 - 20.

[9].Ferreira MG, do Prado Leite JCS. Requirements
Engineering with a Perspective of Software
Evolution. 2011.

[10].Souza VS, Lapouchnian A, Angelopoulos K,
Mylopoulos J. Requirements-driven software
evolution. Comput Sci Res Dev. 2013;28(4):311-
29.

[11].Zhang H, Ben K, Zhang Z, editors. A
Reflective Architecture-Aware Framework to
Support Software Evolution. Young Computer
Scientists,2008 ICYCS 2008 The 9th
International Conference for; 2008.

[12].Oreizy P, Medvidovic, N., Taylor, R.N.,
Gorlick, M.M., Heimbigner, D., Johnson, G.,
Quilici, A., Rosenblum, D.S., Wolf, A.L. An

 Journal of Theoretical and Applied Information Technology
 31

st
 December 2014. Vol.70 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

398

Architecture Based Approach to Self-Adaptive
Software. IEEE Intelligent System. 1999:54 - 62.

[13].Holger K, Dirk N, Andreas R. A component
model for dynamic adaptive systems.
International workshop on Engineering of
software services for pervasive environments: in
conjunction with the 6th ESEC/FSE joint
meeting; Dubrovnik, Croatia: ACM; 2007.

[14].Garlan D, Cheng WC, Huang AC, Schmerl B,
Steenkiste P. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. IEEE
Computer Society. 2004:46 - 54.

[15].Lundesgaard SA, Arnor S, Oldevik J, France R,
Aagedal JO, Eliassen F. Constriction and
Execution of Adaptable Applications Using an
aspect-Oriented and Model Driven Approach.
Lecture Notes in Computer Science: Springer
Berlin/Heidelberg; 2007. p. 76-89.

[16].McKinley PK, Sadjadi SM, Kasten EP, Cheng
BHC. Composing adaptive software. Computer.
2004;37(7):56-64.

[17].Awang NH, Wan Kadir WMN, Shahibuddin S,
editors. Comparative Evaluation of the State-of-
the Art on Approaches to Software Adaptation.
Fourth International Conference on Software
Engineering Advances; 2009; Porto.

[18].Jeff M, Jeff K, editors. Dynamic structure in
software architectures. Proceedings of the 4th
ACM SIGSOFT symposium on Foundations of
software engineering; 1996; San Francisco,
California, United States: ACM.

[19].Kurt G, Mohammad Ullah K, Roland R, Arnor
S, Svein H, Simon M. Modeling of component-
based adaptive distributed applications.
Proceedings of the 2006 ACM symposium on
Applied computing; Dijon, France: ACM; 2006.

[20].Seungwok H, Sung Keun S, Hee Yong Y,
editors. Dynamic Software Adaptation with
Dependence Analysis for Multi-Agent Platform.
Computational Science and its Applications,
2007 ICCSA 2007 International Conference on;
2007.

[21.]Qureshi NA, Perini A, editors. An Agent-Based
Middleware for Adaptive Systems. Quality
Software, 2008 QSIC '08 The Eighth
International Conference on; 2008.

