
Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

43

A NOVEL DATA MINING METHOD FOR MALWARE

DETECTION

1 *
HAMID REZA RANJBAR,

 2
MEHDI SADEGHZADEH,

3
AHMAD KESHAVARZ

1Department of Computer Engineering, Science and Research branch, Islamic Azad University,

Bushehr, Iran

E-mail: 1 h.r_ranjbar@yahoo.com , 2 sadegh_1999@yahoo.com, 3 ahmad_modarres81@yahoo.com

* Corresponding Author: HAMID REZA RANJBAR, h.r_ranjbar@yahoo.com

ABSTRACT

Losses caused by malware are irrecoverable. Detection of malicious activity is the most challenge in the

security of computing systems because current virulent executable are using sophisticated polymorphism

and metamorphism techniques. It make difficult for analyzers to investigate their code statically. In this

paper, we present a data mining approach to predict executable behavior. We provide an Application

Programming Interface (API) which provides sequences captured of a running process with the aim of its

predicting intention. Although API calls are commonly analyzed by existing anti-viruses and sandboxes,

our work presents for the first time that using an API and the number of iteration as a countermeasure for

malware detection in the API. The experiments have shown the effectiveness of our method on

polymorphic and metamorphic malware by achieving an accuracy of 93.5% while keeping detection rate as

high as 95%.

Keywords: Malware, Polymorphic, Metamorphic malware, Data Mining, API calls.

1. INTRODUCTION

Methods for detection of computer viruses which
are categorized as malware have been developing
since 1983[1] when Cohen introduced computer
virus term. Malwares are divided into several
groups including viruses, worms, Trojans, spyware
and a combination of these groups. It is impossible
to exactly distinguish between these groups [2].
According to reports [3], damages resulted from
viruses in more than 13 billion dollars annually.
Methods based on signature recognition and
extended approaches both might be utilized to
detect such destructive programs. Despite high
speed of signature based methods, malware
programmers exploit steganography techniques to
avoid detection by conventional algorithms. The
failure of signature based methods for detecting this
new generation of malware has caused researchers
to focus on finding more scalable methods. These
methods are supposed to be substituted for
signature recognition methods. The method
discussed in this paper is based on data mining
approach. Recently data mining has been noticed

for malware detection; in the next section the
previous methods and research works will be
presented.

2. MATERIAL AND METHOD

Malware:

Each program which is designed to damage
computer system operations is called destructive
software or malware. These programs include
viruses, worm, Trojan, backdoor, spyware,
advertisements and robot. All malwares are
sometimes referred to as virus and enterprise anti
malware software is still called anti-virus.

3. DETECTION METHOD

Data mining consists of using a complete statistical
set and machine learning algorithms in a set of
characteristics derived from malware and clean
programs [8-11, 20, 32, 36].
Characteristic type sends input data to malware
detection system. The source of this data is utilized
as a criterion for malware and intrusion detection

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

44

systems [5, 21, 26, 37, 38]. If the source is a
network, the detection is called network based
detection. Characteristics extracted from programs
are exploited in host based detection systems. There
are diverse reverse engineering methods for
extraction of byte sequences, Assembly instructions
sequences and API sequences. Network based
detection systems use network connection history
as data resource.
API is a source code interface which is provided for
computer programs by operating system or library
so that programs can announce their requests for
access to a specific service through APIs. In
operating system API means the same as system
functions. API call sequence demonstrates program
activity. In this study this sequence is utilized to
investigate destructive behavior.
The analysis might be performed either in source
code or binary level. As mentioned in [4, 12, 19,
20] accessing to the source code for each program
is not realistic. The information about execution
files can be obtained via their execution or reverse
engineering operation or both. Reverse engineering
is called static analysis while the actual execution
of the program is called dynamic analysis.
Static analysis provides information about data
stream and programs control stream and other
statistical characteristics without actual execution
of the program. Several reverse engineering
methods such as decomposition and image compile
are used for illustrating executive code. If data
format is readable for human, other methods might
be utilized as well. The major advantage of static
analysis over its dynamic counterpart is
independency of runtime overload. The major
problem of static analysis is that there is only an
approximation of real program. In each decision
point the branch must be guessed in the run time.
Dynamic analysis requires the program to be
executed and monitored in a real environment or a
virtual machine. Although in this method actual
information is achieved from data and control
stream, it suffers from execution header. When a
part of code fails in static analysis, hybrid
analysis[18] might be utilized.
Data mining have attracted great attention in recent
years for detecting unknown viruses [1, 2, 3]. A few
classifiers are designed and high precision is
achieved. The most common method where data
mining is used for virus detection is generating a set
of characteristics [15, 18]. These characteristics
might be sequence of hexadecimal bytes (N-Gram),
instruction sequence, system function sequences
and so on. Usually numerous characteristics are
extracted from files. There are methods[39] for

selecting the best characteristic. Some other
characteristics might be dynamic link libraries
information used by programs. In this section we
want to investigate research works conducted on
virus detection by data mining.

4. RELATED WORK

The first prominent work done using data mining
methods for malware detection [22-31] was
signature extraction automation for viruses. Viruses
were executed in a safe environment to infect trap
programs. Candidate signatures with variable
lengths were extracted using analysis of infected
regions in the programs. Signatures with lower fake
positive probability are chosen as the best
signature. To deal with longer signatures 3-Gram
approach used to be utilized where a sequence was
divided into three sections. Then using an
approximation formula, long sequence probability
is estimated by combining estimated iteration of
smaller sequences.

5. PROPOSED METHOD

In this section the method by which malwares are
detected in this research is presented and algorithms
of each part are introduced [6, 7, 13, 19, 33, 40].
The data mining process is explained in five stages.

• Problem definition

• Data collection

• Data preprocess

• Model estimation

• Model explanation

As it is evident, the problem is detecting malwares
using software classification. As it was mentioned
in related work section the essential part of
malware detection is data collection stage. The
major contribution of this study is extraction of
system functions from execution files during
runtime which has not been performed in previous
research works. Furthermore, in preprocess stage a
set of these functions is selected as characteristics.
The benign and destructive files are introduced as
more distinct characteristics.
The problem of detecting a program as destructive
or benign is interpreted as a classification problem.
Learning theory explicates such problems where
the procedure of learning from data is divided into
two steps:

• generating the model based on input
sample data

• predicting new data based on generated

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

45

model

The proposed method is data mining based
approach. For the first time, our suggested method
utilizes APIs during runtime and considers their
number of iterations as a parameter effective on
malware detection.
Our proposed system is divided into four steps:

• Collecting executable files and executing
them

• Registering interactions between execution
files and the system

• Extraction of API functions, selecting
them as characteristics and choosing the
number of iterations as the value of
characteristics

• Using different classifications for
detection

The two first stages are data collection stage.
Besides, two other stages are data preprocess and
system learning respectively.

6. DATA COLLECTION

When the problem is determined the corresponding
data must be collected to perform other stages.

Executable files

The main analysis units are computer files. The
files are divided into two groups based on content.
Data files are those which store the information and
executable files which are a set of instructions
leading to a particular task. A computer program
includes at least one executable file and a set of
data files as complementary. Since the malwares are
programs they include executable files as well.
Worms, Trojans and spywares all are programs
executed independently; whereas, viruses inject
themselves to other programs and infect them.
In this study the malwares of Windows operating
system are merely considered. The executable files
of windows are called Portable execution file (PE)
whose format is presented in figure2.
The PE file is simply divided into two parts; header
and body. The header consists of information about
the file such as number of sections and beginning
address while the body includes main content of the
file.
1197 PE files were collected among which 806 files
were malware and 391 files were benign programs.
Benign programs are mostly Windows xp programs
and collected viruses are mostly transformation and
polymorph viruses.

7. VIRTUALIZATION

Our approach is based on dynamic analysis. As
mentioned before, dynamic analysis means real
execution of executable files. As a consequence of
destructive property of the most of the malwares
they cannot be executed in a normal and
unprotected environment as they may cause data
theft and delete data files. Therefore, virtualization
is employed to provide a controlled environment.
Virtualization is a process which separates software
and hardware components [14, 16, 35] on which the
software is executed. One of the most popular types
of virtualization is operating system virtualization
[17, 27, 34, 39]. In this method various operating
systems can be simulated using a super layer. This
super layer is a virtual platform which is
responsible for managing access to physical
resources for virtual machines. Virtual machine is a
set of virtual hardware which have standards of x86
and x64 computers. Super layers are divided into
two groups. The first one is simple metal super
layer which is directly installed on the hardware
and host super layer which is installed on
conventional operating systems. In our study host
virtual operating systems such as VMware
Workstation are utilized which are a controlled
environment. Executing each file may influence on
the results of other files execution. Thus, after each
execution, system is refreshed using instant image
capability. It will protect virtual system from
damages as well as isolating the results of one file
execution from other executed files. Software data
contact with three elements: humans, processes and
products. Humans include programmers, testers,
project managers and users. Processes consist of
different stages of development and activities such
as requirements, design, implementation, test,
debugging, malware detection, maintenance and
installation. Products may either have structure
such as source code or may be without structure
such as documentation and error report.
Software data are divided into three groups:
A. sequence: including paths collected during
runtime, static sequences collected from source
code or binary file.
B. graph: including graphs collected during
runtime, static graphs collected from source code or
binary file.
C. text: including error report, e-mails, code
comments and dominations.

Data mining is utilized by software engineers for
modification of software quality and by executable
file analyzers for detecting abnormalities in

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

46

algorithms. For instance, some algorithms might be
employed to detect APIs called in a program while
they even do not have documentation or source
code. For maintenance expression, one may say that
some algorithms are able to determine whether a
part of code should affect the other part in case any
changes or not. Furthermore, software engineers
might exploit data mining algorithms for error
detection.
According to introduced types of data in software
engineering, this study aims to extract API
functions sequence from executable files. Finally,
the goal of our study is to prove our claim
regarding richness of this type of data and using
them for learning classification so that malwares
could be detected.

8. REGISTERING SYSTEM FUNCTIONS

Programing interface (API) is a source code
interface which is provided by operating system or
libraries for computer programs so that they could
request special services from operating system or
library. Each program requires API functions of
operating system to perform its operations such as
changing files, registry, network and so on. Hence,
when a program runs it calls a sequence of system
functions which is known as software behavior. In
order to register system functions trapping
operation or debugging might be used. There are
numerous methods [59] by which malwares could
detect debuggers and deny performing debugging
on themselves. As a result, in this study the second
method is utilized for monitoring executable files.
Hook is a region in messaging mechanism of a
system where a program can install a function and
monitor all messages of a process. To monitor an
executable file, one should access its address space.
In Windows operating system each process has its
own address space. When pointers are exploited for
access to memory, the value of pointer is
transferred to the memory address in the range of
address space associated with the same process. A
process cannot assign a pointer to an address which
belongs to another process. Hence, if the program
has errors and it wants to randomly rewrite a part of
memory which is used by another process, it would
not be able. Separate address space is considered an
advantage for both programmers and users. For
programmers it is advantageous as the system may
want to read irrelevant memories. Moreover, it is
beneficial for users as the operating system would
be more robust; because a program cannot interfere
in operating system or another program.
Nevertheless, the cost of this robustness is paid by

providing a program which is capable of contacting
other processes.
The situations where it should be possible to
change permissible range of a process to access
another process include the following.
- When it is desired to perform a window access
operation by another process- e.g. one may want to
read password field of another process which can
be done by that processor.
- When debugging is needed- for example, when
one needs to know which DLLs are utilized by
other process.
- when trapping must be done in other processes-
for instance when one wants to know which APIs
are called by one process.
For this purpose DLL injection operation might be
used [60]. DLL injection means that one may put
desired code in a DLL and inject it to the address
space of target process. When our DLL codes are
inside address space of another process, we could
completely access that process. In this circumstance
we may either monitor or even destroy that process.
There are several methods for injecting DLL to
address space of another process.

9. DATA PREPROCESS

After system functions sequence is extracted from
executable files and before applying classification
algorithms to them, they should be formed in an
appropriate manner and fed to classification
algorithms. With each API and its number of
iterations a primary database is formed. For each
sequence a tag is considered which demonstrates
whether it is benign or destructive. Despite
relational data, behavior of software which is a
sequence of APIs does not have any predefined
characteristics. Thus, in sequential database,
extracting characteristics is a prominent part of data
mining process. Here, APIs and their iterations are
considered as characteristics. It will be seen in
experiments and studied cases section that using
these characteristics as distinct ones will provide
acceptable results. Besides, proper precision for
classification might be achieved.
Using LIBSVM and random forest models diverse
models are proposed used for prediction.
The Algorithm 1 illustrates classification
framework of destructive and clean files.

10. RESULTS AND DISCUSSION

In this section the experiments conducted on
database are presented and obtained results are

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

47

discussed.
The models are tested using test data. Utilizing
achieved response, complexity matrixes are derived
for each classifier. The undergoing measures
constitute the complexity matrix.

• True positive: number of destructive
programs correctly detected.

• False positive: number of destructive
programs detected incorrectly.

• True negative: number of benign programs
detected correctly.

• False negative: number of benign
programs detected incorrectly.

The performance of each classifier is evaluated
using detection rate, false caution rate and total
precision, which are defined as follows:

• Detection rate: percentage of correct
detection of destructive programs

• False caution rate: percentage of incorrect
detection of benign programs

• Total precision: percentage of correct

detection of whole programs

The proposed method is completely implemented
as the following figure. Marvelous results were
achieved.
In the system function registration step, three
crucial DLLs of the operating system were
monitored. These include advapi32.DLL,
comct32.DLL and ws2_32.DLL which are usually
used for sockets, Graphical User Interface
components and registry. Additionally, several
classifiers are used for building the model and the
best results belong to random forest. To evaluate
our proposed method, tenfold cross validation
method was utilized. Our database includes 806
malware (which are mostly polymorph) and 391
benign programs. Database is divided into ten equal
parts out of which 9 parts are used for experiments
and one for test each time.
Obtained results revealed efficiency of our method
for detection of polymorph and transformation
malwares. The best precision is 93.5% and the best
detection rate is 95%.
Considering increasing growth of malwares and
their damages, the request for detection of
malwares has also increased. Although enterprise
antiviruses can use signature of malwares to detect
them, they are inefficient for new viruses with

polymorph and transformation capabilities.
In this thesis a novel malware detection system
based on dynamic APIs was proposed. The main
point regarding our proposed method was
extraction of derived APIs and choosing them as
characteristics which is utilized for the first time.
Furthermore, the trapping capability is exploited
which overcame debugging deficiencies.
As future work more complicated behavioral
patterns of malwares might be extracted in both
dynamic and static conditions. These extracted
patterns can also be utilized as characteristics for
classification learning.

REFRENCES:

]1[F. Cohen, "Computer Viruses," PhD thesis,
University of Southern California, 1985.

]2[P. Szor, the Art of Computer Virus
Research and Defense. New Jersey:
Addison Wesley for Symantec Press, 2005.

]3["2007 Malware Report: The Economic
Impact of Viruses, Spyware, Adware,
Botnets, and Other Malicious Code,"
computer economics, 2007.

]4[G. P.-S. W. Frawley, and C. Matheus.
(1992) Knowledge Discovery in
Databases: An Overview. AI Magazine.
213–228 .

]5[Mehdi Bahrami, Mohammad Bahrami
,"An overview to Software Architecture in
Intrusion Detection System", International
Journal of Soft Computing and Software
Engineering [JSCSE], Vol. 1, No. 1, pp. 1-
8, 2011, Doi: 10.7321/jscse.v1.n1.1

]6[R. A. a. R. Srikant, "Mining sequential
patterns," presented at the ICDE, 1995.

]7[R. A. a. R. Srikant., "Fast algorithms for
mining association rules," presented at the
VLDB, 1994.

]8[S.-C. K. D. Lo, and C. Liu, "Efficient
mining of iterative patterns for software
specification discovery," presented at the
KDD, 2007.

]9[J. a. K. Han, Micheline, Data
Mining:Concepts and Techniques, 2 ed.:
Morgan Kaufmann, 2006.

]10[I. H. a. F. Witten, Eibe, Data Mining :
Practical Machine Learning Tools and
Techniques: Morgan Kaufmann, 2005.

]11[Shah, Satish K., Pooja S. Suratia, and
Nirmalkumar S. Reshamwala.
"Comparative Performance Analysis of
ANN Based MIMO Channel Estimation
for downlink LTE-Advanced System

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

48

employing Genetic Algorithm."
proceeding of International Conference On
Soft Computing and Software Engineering
[SCSE'13]..

]12[L. Breiman, "Possible Virus Attacks
Against Integrity Programs and How to
Prevent Them," presented at the 6th
Internation Virus Bulletin Conference,
1996.

[13] Mansor, Muhammad Naufal, et al. "PCA-
Based Feature Extraction and LDA
algorithm for Preterm Birth Monitoring."
Journal of Soft Computing and Software
Engineering (2012).

[14] Choudhari, Jitender, and Ugrasen Suman.
"Code Change Approach for Maintenance
using XP practices." The International
Journal of Soft Computing and Software
Engineering [JSCSE] 3.3 (2013): 131-136.

[15] M. D. J. Bergeron, J. Desharnais, B. Ktari,
M. Salois, and N. Tawbi, "Detection of
Malicious Code in COTS Software: A
Short Survey," presented at the 1st
International Software Assurance
Certification Conference, 1999.

[16] Ranjbar, Hamid Reza. "A Review on
Software Engineering Methods for
Distributed Systems."

[17] Bahrami, Mehdi. "Cloud Template, a Big
Data Solution." arXiv preprint
arXiv:1307.4716 (2013).

[18] N. I. a. A. P. Mathur, "A Survey of
Malware Detection Techniques," 2007.

[19] V. Bontchev, "Possible Virus Attacks
Against Integrity Programs and How to
Prevent Them," presented at the 6th
Internation Virus Bulletin Conference,
1996.

[20] Lusa, Sofian, and Dana Indra Sensuse.
"Study of Socio-Technical For
Implemetation of Knowledge Management
System." International Journal of Soft
Computing and Software Engineering
[JSCSE] 2.1 (2012): 1-10.

[21] D. W. a. D. Dean, "Intrusion detection via
static analysis ",presented at the IEEE
Symposium on Security and Privacy,
2001.

[22] R. K. J. Rabek, S. Lewandowski, and R.
Cunningham, "Detection of injected,
dynamically generated, and obfuscated
malicious code.," presented at the ACM
workshop on Rapid malcode, 2003.

[23] M. D. J. Bergeron, M. M. Erhioui, and B.
Ktari, "Static Analysis of Binary Code to

Isolate Malicious Behavior," presented at
the 8th Workshop on Enabling
Technologies on Infrastructure for
Collaborative Enterprises, 1999.

[24] M. D. J. Bergeron, J. Desharnais, M. M.
Erhioui, Y. Lavoie, and N. Tawbi, "Static
Detection of Malicious Code in
Executable Programs," presented at the
Symposium on Requirements Engineering
for Information Security, 2001.

[25] J. X. A. H. Sung, P. Chavez, and S.
Mukkamala, "Static Analyzer of Vicious
Executables," presented at the 20th Annual
Computer Security Applications
Conference, 2004.

[26] S. F. S. Hofmeyr, and A. Somayaji,
"“Intrusion detection using sequences of
system calls," Journal of Computer
Security, pp. 151–180, 19 98.

[27] Mehdi Bahrami ,"Cloud Template, a Big
Data Solution", International Journal of
Soft Computing and Software Engineering
[JSCSE], Vol. 3, No. 2, pp. 13-17, 2013,
Doi: 10.7321/jscse.v3.n2.2.

[28] D. J. M. a. M. D. Smith, "Host-based
detection of worms through peer-to-peer
cooperation," presented at the ACM
workshop on Rapid malcode, 2005.

[29] Uhr, Patrick, André Klahold, and Madjid
Fathi. "Imitation of the Human Ability of
Word Association." International Journal
of Soft Computing and Software
Engineering (JSCSE) (2013).

[30] M. G. M. Debbabi, L. Poulin, M .Salois, ,
and N. Tawbi, "DynamicMonitoring of
Malicious Activity in Software Systems,"
presented at the Symposium on
Requirements Engineering for Information
Security, 2001.

[31] D. W. Yanfang Ye, Tao Li, and Dongyi Ye,
"IMDS: intelligent malware detection
system," presented at the 13th ACM
SIGKDD international conference on
Knowledge discovery and data mining,
2007.

[32] H. R. Ashkan Sami, Babak Yadegar, Naser
Peiravian, Sattar Hashemi, Ali Hamze,
"Malware Detection Based On Mining API
Calls," presented at the ACM Symposium
on Applied Computing-Data Mining
Track, Sierre, Switzerland, 2010.

[33] Bahrami, Mehdi, Peyman Arebi, and
Mohammad Bahrami. "NetQTM: Node
Configuration In Network Setup By
Quantum Turing Machine." Internation

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

49

conference ICWN. Vol. 11.
[34] L. K. Mohammad M. Masud, and Bhavani

Thuraisingham, "A scalable multilevel
feature extraction technique to detect
malicious executables," Information
Systems Frontiers, 2007.

[35] Bahrami, Mehdi, and Mohammad
Bahrami. "A Review of Software
Architecture for Collaborative
Software’s." Advanced Materials Research
433 (2012): 2372-2376.

[36] M. C. W. Muazzam Siddiqui, and Joohan
Lee, "Data Mining Methods for Malware
Detection Using Instruction Sequences,"
presented at the Artificial Intelligence and
Applications, AIA, 2008.

[37] R. G. a. J. L. J. Dai, "Efficient Virus
Detection Using Dynamic Instruction
Sequences," Journal of Computers, 2009.

[38] S.-J. H. Tzu-Yen Wang, Ming-Yang Su,
Chin-Hsiung Wu, Peng-Chu Wang, and
Wei-Zen Su, "A Surveillance Spyware
Detection System Based on Data Mining
Methods," presented at the Evolutionary
Computation, 2006.

[39] Bahrami, Mehdi, and Mukesh Singhal.
"The Role of Cloud Computing
Architecture in Big Data." Information
Granularity, Big Data, and Computational
Intelligence 8.

[40] Bahrami, Mehdi, Marziyeh Shahrazadfard,
and Tooba Kerdkar. "NSSA: A New
Enterprise Architecture for Network Setup
without Any Network Infrastructure."
Intelligent Systems, Modelling and
Simulation (ISMS), 2011 Second
International Conference on. IEEE, 2011.

[41] Asayesh, Mehrzad, et al. "A Novel Multi
Routing in Ad-Hoc Networks Based on
Maximum Node Energy." Computer
Modeling and Simulation (EMS), 2010
Fourth UKSim European Symposium on.
IEEE, 2010.

[42] N. Falliere. (2007, Windows Anti-Debug
Reference. Available:

[43] Bahrami, Mehdi, and Leila Pashaie Bonab.
"CLS QTM: New Model of Node
Configuration In Collaboration Learning
Systems By Quantum Turing Machine.",
International Journal of Advancements in
Computing Technology Volume 3,
Number 7, August 2011

[44] H. C. David Lo, Jiawei Han, Siau-Cheng
Khoo, and Chengnian Sun, "Classification
of Software Behaviors for Failure
Detection: A Discriminative Pattern
Mining Approach," presented at the
KDD'09, Paris, France, 2009.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

50

Figure 1. Proposed method

Algorithm 1 Constructing Models with classifiers

Procedure: Model construction

Inputs: PEsDB: A set of malicious and benign files
Output: Classifier: PE classification

1: for every PE in PEsDB
2: PElog = output of PE Monitoring for 2
minutes;

3: PEslogDB = PEslogDB ∪ PElog;
4: for every PElog in PEslogDB
5: PESeq = Extract Sequence of APIs from
PElog;

6: PEDataset = PEDataset ∪ PESeq;
7: for every row in PEDataset

8: F = F ∪ <Name of API, Frequency of the
API>;
9: Transform PEDataset into the feature space of F;
10: Classifier = Train a classifier on new
PEDataset;
11: return Classifier;

Classificatio Predictio

Malware

Predicted

M
o
n
iTo
r

APIs Log

<XML>

Benigns

Controlled Environment

Detection

Windows

ExtractAPIs &Their FrequencyTrain Datase

Test Dataset

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

51

Figure 2. Portable execution file

