
Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

163

MULTI-CORE FRAMEWORKS INVESTIGATION ON A

REAL-TIME OBJECT TRACKING APPLICATION

1
MEI CHOO ANG,

2
AMIRHOSSEIN AGHAMOHAMMADI,

3
KOK WENG NG,

4
ELANKOVAN

SUNDARARAJAN,

5
MARZIEH MOGHARREBI,

6
TECK LOON LIM

1,2,5Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia

3Industrial Design Centre, Sirim Berhad, Malaysia

4Centre for Software Technology and Management, 1Center For Artificial Intelligence Technology, Faculty

of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia

6IME Solutions Sdn. Bhd., Malaysia

E-mail: 1amc@ukm.edu.my, 2aha.9362@gmail.com, 3kwng@sirim.my, 4elan@ukm.edu.my,
5mogharrebi.marzieh@gmail.com, 6jeff@imes.com.my

ABSTRACT

The current computer vision-based systems (CVS) are becoming computationally demanding due to the
improvement of their functionalities that is difficult to be achieved with single-core frameworks. Such
deficiencies of the single-core frameworks have led to the introduction multi-core frameworks to meet the
required performance of their functionalities. However, in order to obtain good performance for CVS on
multi-core frameworks, it is crucial to utilise parallelism tools efficiently. These parallelism tools need to be
utilised on hotspots (most time-consuming functions in algorithm) in order to minimise development time
and to reduce application development costs. This is a challenging task and requires an in-depth
investigation of multi-core frameworks. This research work investigates the utilisations of multi-core
frameworks capability for a real-time object tracking application problem using a parallel software tool
known as Intel© Parallel Studio XE tool. In the investigation, two established multi-core frameworks,
namely, Threading Building Blocks (TBB) and Open Multi-Processing (OpenMP) were implemented at
identified hotspot functions of the tracking algorithm. The performances of these two multi-core
frameworks were then evaluated and compared based on computed speedup, efficiency and scalability. The
results from this investigation demonstrated that the processing time of real-time object tracking was
improved by using hotspots identification. In addition to that, multi-core frameworks could make the
tracking algorithm explicitly faster when compared to single-core frameworks and OpenMP outperformed
TBB.

Keywords: Multi-core Frameworks, Parallel Programming, Image Processing, Real-time Object

Tracking, OpenMP, Threading Building Blocks (TBB), Intel® Parallel Studio XE

1. INTRODUCTION

During the last few years, multi-core processors

have become available and popular in personal
computers as well as in portable devices like cell
phones and notebooks [1]. This is because modern
CPUs, on both desktop computers and portable
devices are employing multi-core to meet the
growing demands for computational power. In
multi-core-based systems, multi-core frameworks
and parallel programming models are employed to
fully achieve the potential of parallelism
functionalities. Currently, parallel programming

models such as Pthreads often permit flexible
parallel programming but this model relies on low-
level techniques without explicitly considering
factors such as processor communication,
synchronization, and threads, rendering parallel
programming more error-prone and tedious. Hence,
it is crucial for the software developer to consider
these factors for parallelization methods using
suitable instruments and compilers [2]. At the same
time, high level multi-core frameworks such as
Open Multi-Processing (OpenMP) have emerged to
help programmers to avert low-level
implementation details of parallel programming [1].

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

164

OpenMP offers an industry standard for parallel
computing API related to shared memory that
involves multi-core processors [1]. Intel also
enhanced a C++ template library as Threading
Building Blocks (TBB) under Intel® Parallel
Studio to use multi-core processors to avoid
complications of using Pthreads [3].

Real-time object tracking is a vital and
challenging task in computer vision community [4].
Object tracking aims to ascertain the location of a
target of interest every moment in time [5]. The
application of object tracking is found in various
fields including automated surveillance, vehicle
navigation and human-computer interaction [6]. In
order to track objects in a scene, a tracking method
is needed with an object detection mechanism that
utilise information in a single frame or computed
from a sequence of frames [7]. The tracking method
is primarily focus on identifying the object of
interest and on the detecting that object in frames
[8]. Hence, current object tracking methods are
exhaustive and time-consuming [9]. Vision sensors
are used for object tracking by capturing images
from surrounding environments in real-time.
Higher frame rate allow better tracking of rapid
object movements but requires higher
computational power [10]. However, advanced
real-time vision systems rarely exceed the standard
10-60Hz range [10].

Recent real-time object tracking algorithms are
increasingly considering multi-core frameworks to
improve their performance [11-13]. However, it is a
challenging task to obtain good object tracking
performance on multi-core frameworks by using
parallelism tools. This is because these parallelism
tools need to be exploited to reduce the time spent
to find hotspots (most time-consuming functions in
algorithm), minimise development time and address
performance bottlenecks to achieve good
performance. Thus, the performance of an image
processing algorithm need to be boosted using
multi-core frameworks to recognize and track the
marked objects in high frame rate video processing
better [13].

One of the parallelism tools that is considered
comprehensive and can offer developers to enhance
their productivity is the Intel® Parallel Studio XE
[14]. This tool enables programs to use multi-core
processors from Intel along with different
parallelism frameworks. This tool also helps to
generate, debug, develop, and track threaded as
well as non-threaded applications using C++/C and
Fortran programming language in Windows and
Linux operating systems. Intel® Parallel Studio XE

is composed of parallel software development
instruments such as, parallel programming models
(Intel® Threading Building Blocks (Intel® TBB)
and Intel® Cilk™ Plus), advanced threading and
performance profiler (Intel® VTune™ Amplifier
XE), memory and threading debugger (Intel®
Inspector XE), and threading prototyping Tool
(Intel® Advisor XE).

Intel® Parallel Studio is used to improve the
performance of a real-time object tracking
algorithm by providing the following contributions:

(1) Analysing image processing algorithms to
determine hotspot sections.

(2) Apply multi-threading method to improve
processing time of moving object detection.
This will reduce processing time as well as to
meet the growing demands for computational
power of object tracking algorithms.

This research work presents a novel approach to
analyse a real-time object tracking algorithm using
Intel® Parallel Studio XE package. The real time
object tracking algorithm was implemented on two
frameworks, namely OpenMP, and Threading
Building Blocks (TBB) for parallelization on multi-
core architectures. These two frameworks are
selected for this research because they are
frequently utilised in the literature [11-13].

The next section of this paper, Section 2
presents a literature review on the research work
related to applications on multi-core architectures
such as object tracking and image processing.
Section 3 introduces parallelization frameworks,
namely, OpenMP and TBB. Section 4 elaborates on
the experiments and findings from the experiments.
Finally, Section 6 concludes this paper.

2. RELATED WORKS

Most of the image processing applications have

intensive computation operations and need large
memory to achieve good performance and thus,
parallelised implementation give an attractive
solution [11]. There are a number of works related
to the parallelisation frameworks on image
processing and object tracking methods in the
literature.

Bera et al. [12] reported a real time algorithm
based on mean-shift and particle trackers to track
pedestrians in crowded scenes at real time rates on
a multi-core desktop. Their algorithm was tested
with a multi-core processor (4 Cores) and compared

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

165

with six different algorithms and their findings
were promising.

Membarth et al. [15] evaluated five different
multi-core frameworks, namely OpenMP, Cilk++,
Threading Building Blocks, RapidMind, and
OpenCL for 2D/3D image registration. The five
frameworks were carried out on a real medical
imaging application based on two parallelization
strategies and all these frameworks were evaluated
on various aspects, namely performance, usability,
and overhead. They found that there was no a
single best framework that was able to obtain the
best results and at the same time fulfil usability
criteria and has minimal overheads.

Zhang [16] proposed a particle filter parallel to
improve the traditional particle filter algorithm
based on OpenMP where stages in the algorithm
were run simultaneously in parallel. The simulation
results indicated that the proposed algorithm had
improved performance, was able to make full use of
the computing power and improve the filtering
accuracy.

Saha [11] implemented a 3D facial pose
tracking system based on OpenMP platform. They
showed how dataflow modeling techniques can be
used to exploit parallelism effectively in a simple
way. The parallelised implementation improved the
system performance and met the required target
frame rate.

Kwak [13] implemented a real-time object
recognition and tracking algorithm based on
integration of ORB and optical flow. The results of
their implementation showed that parallelization
using OpenMP improved the processing speed.

There are many parallelisation frameworks being
investigated to improve the performance of the
image processing and object tracking applications;
however, very few studies compared the
performance of different parallelisation frameworks
and to recommend the best parallelisation
frameworks to be used in object tracking problem.
Thus, researchers face difficulties to select the best
parallelization framework for their work.
Additionally, there are many usability issues being
identified in [2] and their findings indicate that
there is a need of software tools to support
programmers better in the implementation of the
parallelization frameworks. In this work, we have
implemented and compared two different
parallelisation frameworks, namely OpenMP and
BB for a real time object tracking algorithm. The
parallelization frameworks were implemented with

the support of Intel® Parallel Studio XE tool to

minimise usability issues such as the development
time and application development cost.

3. PARALLELIZATION FRAMEWORKS

This section introduces a brief background of the

parallelization frameworks, namely, Open Multi-
Processing (OpenMP) and Threading Building
Blocks (TBB) that were implemented in this paper.

3.1 Open Multi-Processing (OpenMP)

Open Multi-Processing (OpenMP) was released

by the OpenMP Architecture Review Board (ARB)
in 1997. It is an Application Programming Interface
that supports shared memory parallelism in C, C++,
and FORTRAN programs. OpenMP has a set of
compiler directives to extend C/C++ and
FORTRAN compilers capabilities. Such directives,
indicated with “#pragma omp”, help users
explicitly build parallelism using constructs such
as: single program multiple data (SPMD), tasking,
work-sharing and synchronization constructs.
OpenMP requires specific compiler support and
these directives need to be recognised and
interpreted by compilers. OpenMP has several
features including library functions to control and
query the runtime environment [17]. OpenMP was
initially designed to parallelise loop-based
sequential programs based on a fork-join model.
The model allows one master thread to perform
tasks throughout the whole program and forks off
threads to process parts of the program that needed
to run in parallel [1]. Newer version of OpenMP
has considered irregular constructs such as while
loops and recursive structures.

3.2 Threading Building Blocks (TBB)

Threading Building Blocks (TBB) was first

released in 2006 by Intel. It is a C++ template
library for scalable data-parallel programming that
can be used with any operating system and any C++
compiler. Data-parallel programming scales to the
number of cores being used and parallel program
performance scales up (increases) when more core
added. TBB performs load balancing on processor
resources using “task stealing” scheduler strategy
and tasks are moved to less-loaded processors from
busy processors [18]. In programming, tasks are
much lighter weight than raw threads and thus
operating on tasks are faster than operating on
thread. TBB makes use of this idea and a program
in TBB is described in terms of fine-grained tasks.
TBB library maps the user-specified tasks onto
threads and users are able to avoid tedious low level
threading work [19].

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

166

4. EXPERIMENT AND RESULTS

The real time object tracking algorithm is

implemented with the support of the Intel® Parallel
Studio XE software tool. Specifically, this tool
helped us to generate, debug and develop the
implementation in C++. The real time object
tracking algorithm was implemented on two
frameworks, namely OpenMP, and Threading
Building Blocks (TBB) for parallelization on multi-
core architectures with the aim to reduce processing
time and improve computing power for object
tracking algorithm. This section is further divided
into two smaller sections to describe Intel® Parallel
Studio Implementation and the Performance
Evaluation.

4.1 Intel® Parallel Studio Support Tools

The Intel® Parallel Studio includes Microsoft

Visual Studio 2013 (VC++), OpenCV 2.4.8 and
Parallel Studio XE 2013. OpenCV is a computer
vision library and it is employed to access the
image processing algorithms. Parallel Studio XE
2013 is a package developed by Intel which
includes Intel® Threading Building Blocks, Intel®
VTune™ Amplifier XE, Intel® Inspector XE and
Intel® Advisor XE. The workflow of Intel®
Parallel Studio XE is shown in Figure 1 [20]. A
Dell XPS 17 L702X-6237 notebook with the Intel
Core i7 2670QM (4 Cores) CPU and 8GB RAM
was used in the implementations. The Intel Core i7
is a high-end quad-core processor and it allows
hyper threading. In hyper threading or simultaneous
multi-core, these four cores can handle up to eight
threads.

Figure 1: The Intel® Parallel Studio Workflow

The analysis tools and compiler in Intel Parallel
Studio is supporting both TBB and OpenMP

platforms. As shown in Figure 1, there are four
basic steps to make parallel programs in Parallel
Studio.

1. To trace where to start parallelizing by
determining the time-consuming sections in the
algorithm, such as tracing the hotspot, or most
time-consuming function.

2. To introduce parallelism into the application by
introducing a threading approach to the
application such as OpenMP or TBB.

3. To debug the parallel program for correctness
by finding and getting rid of common threading
and memory errors.

4. To tune the program to ensure good thread and
CPU utilization by tuning the threaded
application for multi-core performance
scalability, and finding the poor concurrency.

Following workflow in Figure 1, the experiments
are conducted in the similar steps. First, Intel®
Advisor was employed to explore top hotspot
which is the most time consuming process in our
algorithm. Then, Intel® VTune Amplifier was
used to investigate the detail of the hotspots. As an
example, when we run the object tracking
algorithm with 2000 frames in serial codes (no
multi-threading), we will reach to hotspots as
shown in Figure 2. These functions are the more
active functions in our application. Thus, tuning
these hot spots functions will improve the overall
application performance. Figure 2 shows the CPU
time of each hotspot functions.

Figure 2: Top Hotspots

Intel® Advisor also help us to choose possible
code regions. In our application, the “loop” to
capture the image frame and object segmentation
sections is the most time-consuming procedure as
shown in the analysis in Figure 3. Thus, the loops
in Figure 3 are recommended to be paralleled.
Double click on the “main.cpp:83” as displayed in
Figure 3, more detail of this time-consuming loop is
appeared as shown in Figure 4.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

167

In the second step, we implement the multi-core
frameworks, namely OpenMP and TBB
frameworks to parallelise the hotspot functions. The
pseudo codes for the TBB and OpenMP multi-core
frameworks are as below:

• TBB
parallel_for (blocked_range<int>(0, k),
 [=](const blocked_range<int>& r) {
 for (int i=r.begin(); i<=r.end() ; i++){
 …
 …

}
});

• OpenMP

For implementing the OpenMP in Microsoft
Visual Studio, a file name as, #include <omp.h>
should be included to access OpenMP functions
and capabilities. An OpenMP multi-core directive
is shown below:

#pragma omp parallel for
 for (int i=0; i<= k ; i++){

 …
…
}

In TBB and OpenMP, k, and r variables are
numbers of frames and i is a loop counter.

In the third step, Intel Inspector was used to verify
the application reliability and detect the challenging
threads and memory errors. Figure 5 shows the
thread errors generated by the Intel Inspector.

In the last step, Intel Amplifier was used to
analyse thread performance in our application.
Error! Reference source not found.6 shows the
application tuning through Intel Amplifier. Figure 6
displays the list of functions sorted via time spent in
CPU. It represents the time consumed for each
function and thread.

The results for each multi-core frameworks were
collected and their performance in terms of
execution time was computed via tick_count
function. The tick_count is used as a timestamp and
it returns wall-clock timestamp [19].

Figure 3: Top time-consuming loop in our application based on Intel® Advisor

Figure 4: Detail of time-consuming loop in our application based on Intel® Advisor

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

168

Figure 5: Intel Inspector threading validation

Figure 6: Application Tuning using Intel® Amplifier

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

169

 4.2 Performance Evaluation

This section presents the performance assessment

of the implementations using two multi-core
frameworks, namely TBB and OpenMP and a
sequential program. In this paper, speedup,
efficiency and scalability are applied to evaluate the
two multi-core frameworks.

4.2.1 Speedup and efficiency

In parallel computing, it is ideal to divide equal
work among the available cores. This means if a
parallel program with n threads/processes is to be
executed with n cores, then each core is assigned
with one thread or process, the parallel program can
be executed n times faster than a serial program.
This ideal relation is named as linear speedup. If
Tserial is the serial program runtime, and Tparallel is the
parallel program runtime, then Tparallel =Tserial/n. In
this context, the ratio Tserial/Tparallel is the speedup
parameter [18] and it is define as

However, in practice, it is rarely possible to
obtain linear speedup in parallel program. In fact,
overheads increases when the number of processes
or threads increases. In parallel implementation,
more threads usually imply more threads need to
access critical parts in a parallel program and more
data need to be communicated between cores [18].
Parallel efficiency, E, which is used to describe the
efficiency of the processors is defined in equation
(2) where p is the number of threads.

� � 	 �� � 	
� �����������������

	 	� 	 �������
	. ���������

(2)

4.2.2 Scalability

The term “scalable” is widely used for

performance evaluation in multi-core systems. A
parallel program is scalable when it is able to
manage the increasing problem sizes. For scalability
evaluation, the multi-core frameworks should be
tested in different problem sizes by testing the
frameworks using different frames.

In this paper, the same object tracking algorithm
was considered for 100, 200, 400 and 800 frames.
The processing times were recorded for similar
frames based on serial computation as well as multi-
core frameworks.

4.2.1 Results and Discussions

Table 1 shows the processing times for various

number of frames based on OpenMP framework.
The processing times for single threads are the
results for the serial computation. The speedup as
well as efficiency was determined based on
Equation 1 and 2. Error! Reference source not

found. andError! Reference source not found.
show the speed up and efficiency of the object
tracking algorithm for various number of frames
according OpenMP and TBB with respect to the
serial computation. The speedups and efficiency of
the object tracking framework based on OpenMP are
plotted and illustrated in Figure 7 and 8.

Table 1: Processing time based on OpenMP framework

(in seconds)

Number of frames
Number of threads to be parallelised

1 2 4 8

100
13.48 8.62 4.96 2.99

200
19.22 15.15 7.76 5.83

400
36.1 23.33 13.29 9.81

800
61.13 32.04 18.94 13.23

Table 2: Speedups (S) and efficiency (E) based on

OpenMP framework

Number

of frames

Speedups

(S) and

Efficiency

(E)

Number of threads

1 2 4 8

100
S 1.00 1.56 2.72 4.51

E 1.00 0.78 0.68 0.56

200
S 1.00 1.27 2.48 3.30

E 1.00 0.63 0.62 0.41

400
S 1.00 1.55 2.72 3.68

E 1.00 0.77 0.68 0.46

800
S 1.00 1.91 3.23 4.62

E 1.00 0.95 0.81 0.58

As shown in Error! Reference source not

found.7 and 8, S and E are dependent on the
number of threads and the number of frames (the
problem size). It was observed that when the
number of frames increased, the speedups were also
increased but the efficiencies were decreased. This
showed that the processing times of both multi-core
frameworks were improved when compared to the
serial computation. However, as the number of
threads increased, overheads of the algorithm were
also increased and the efficiency for both of the
frameworks were dropped. In all experiments, TBB

� � 	 �������
��������� (1)

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

170

and OpenMP were able to handle large number of
frames and thus both TBB and OpenMP
frameworks had good scalability.

Figure 7: Speedups of parallel program using OpenMP

Figure 8: Efficiency of parallel program using OpenMP

Table 3: Speed ups and efficiency metrics based on TBB

framework

Number

of frames

Speedups

(S) and

Efficiency

(E)

Number of threads

1 2 4 8

100
S 1.00 1.54 2.48 4.24

E 1.00 0.77 0.62 0.53

200
S 1.00 1.26 2.53 3.34

E 1.00 0.63 0.63 0.42

400
S 1.00 1.51 2.49 3.51

E 1.00 0.76 0.62 0.44

800
S 1.00 1.87 3.01 4.32

E 1.00 0.93 0.75 0.54

5. CONCLUSIONS

In this paper, we implemented a real time object
tracking algorithm using two multi-core
frameworks namely, Threading Building Blocks
(TBB) and Open Multi-Processing (OpenMP) to
compare their performance. We have analysed and

improved our implementations by using Intel®

Parallel Studio XE tool. This tool was able to
identify the hotspots and performance bottleneck in
the object tracking algorithm. The identified
hotspot functions were then parallelised using TBB
and OpenMP. In order to evaluate the performance
of multicore frameworks, the speedup and
efficiency were computed and compared in
different problems sizes. Detailed experiment
results showed that multi-core frameworks were
explicitly faster than serial computation (one core)
and OpenMP is faster than TBB in the this work.

ACKNOWLEDGMENT:

The authors would like to thank Universiti
Kebangsaan Malaysia (UKM) for sponsoring this
research by using the funding of the research
project Industri-2013-021 and
FRGS/2/2013/TK01/UKM/ 02/4.

REFRENCES:

[1] G. Slabaugh, R. Boyes, and X. Yang,
"Multicore Image Processing with Openmp",
Signal Processing Magazine, IEEE, 134-138,
2010, pp. 134-138.

[2] R. Membarth, F. Hannig, J. Teich, M. Korner,
and W. Eckert, "Frameworks for GPU
Accelerators: A Comprehensive Evaluation
Using 2D/3D Image Registration", IEEE 9th

Symposium on Application Specific Processors

(SASP), San Diego, CA, USA, June 5-6, 2011,
pp. 78-81.

[3] T. Willhalm and N. Popovici, "Putting Intel®
Threading Building Blocks to Work",
Proceedings of the 1st International Workshop

on Multicore Software Engineering, May 11,
2008, pp. 3-4.

[4] R.L.d. Carvalho, D.S.C. Carvalho, Félix Mora-
Camino, P.V.M. Lima, and F.M.G. França,
"Online Tracking of Multiple Objects Using
WiSARD", 22nd European Symposium on

Artificial Neural Networks, Computational

Intelligence And Machine Learning (ESANN

2014), Bruges, Belgium, 23-25 April, 2014.
[5] T.S. Ling, L.K. Meng, L.M. Kuan, Z. Kadim,

and A.A.B.a. Al-Deen, "Colour-based Object
Tracking in Surveillance Application",
Proceedings of the International

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8

S
p

e
e

d
u

p
 (

S
)

Number of threads (t)

100 200 400 800

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8

E
ff

ic
ie

n
cy

 (
E

)

Number of threads (t)

100 200 400 800

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

171

MultiConference of Engineers and Computer

Scientists, March 18-20, 2009.
[6] H. Yang, L. Shao, F. Zheng, L. Wang, and Z.

Song, "Recent Advances and Trends in Visual
Tracking: A Review", Neurocomputing, Vol.
74, No. 18, 2011, pp. 3823-3831.

[7] A. Yilmaz, O. Javed, and M. Shah, "Object
Tracking: A Survey", ACM Computing

Surveys, Vol. 38, No. 4, 2006.
[8] H.S. Parekh, D.G. Thakore, and U.K. Jaliya,

"A Survey on Object Detection and Tracking
Methods", International Journal of Innovative

Research in Computer and Communication

Engineering, Vol. 2, No. 2, 2014, pp. 2970-
2978.

[9] K.-Y. Eom, T.-K. Ahn, G.-J. Kim, G.-J. Jang,
and M.-h. Kim, "Fast Object Tracking in
Intelligent Surveillance System", in
Computational Science and Its Applications–

ICCSA 2009, Springer LNCS, Vol. 5593, 2009,
pp. 749-763.

[10] A. Handa, R. Newcombe, A. Angeli, and A.
Davison, "Real-Time Camera Tracking: When
is High Frame-Rate Best?", in Computer

Vision – ECCV 2012, Springer LNCS, Vol.
7578, 2012, pp. 222-235.

[11] S. Saha, C.-C. Shen, C.-J. Hsu, G. Aggarwal,
A. Veeraraghavan, A. Sussman, and S.S.
Bhattacharyya, "Model-based OpenMP
Implementation of a 3D Facial Pose Tracking
System", 2006 International Conference on

Parallel Processing Workshops, ICPP 2006,
August 14-18, 2006, pp. 66-73.

[12] A. Bera, N. Galoppo, D. Sharlet, A. Lake, and
D. Manocha, "AdaPT: Real-time Adaptive
Pedestrian Tracking for crowded scenes",
Technical Report, UNC Chapel Hill, 2013.

[13] J.C. Kwak, T.R. Park, Y.S. Koo, and K.Y. Lee,
"Implementation of Object Recognition and
Tracking Algorithm on Real-time Basis", IEEE

EUROCON, 2013, pp. 2000-2004.
[14] Intel, Intel® Parallel Studio XE 2013 SP1,

Leading Development Tools for Top
Performance, 2013. Available:
http://goo.gl/4HDWfD

[15] R. Membarth, F. Hannig, J. Teich, M. Körner,
and W. Eckert, "Frameworks for multi-core
architectures: a comprehensive evaluation
using 2D/3D image registration", in
Architecture of Computing Systems-ARCS

2011, Springer, 2011, pp. 62-73.
[16] Y. Zhang, "Particle Filter Parallel of Improved

Algorithm Based on OpenMp", in Advanced in

Computer Science and its Applications,
Springer, 2014, pp. 1279-1285.

[17] P. Kegel, M. Schellmann, and S. Gorlatch,
"Using OpenMP vs. Threading Building
Blocks for Medical Imaging on Multi-cores",
in Euro-Par 2009 Parallel Processing,
Springer, 2009, pp. 654-665.

[18] P. Pacheco, An Introduction to Parallel

Programming, Burlington, USA: Elsevier,
2011.

[19] J. Reinders. Intel Threading Building Blocks:

Outfitting C++ for Multi-Core Processor

Parallelism, O'Reilly Media, Inc., 2007.
[20] Intel, Getting Started with the Intel® Parallel

Studio 2009. Available:
https://www.microway.com.au/catalog/intel/get
ting_started_parallel_studio.pdf

