
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

201

INTERACTIVE AUTOMATA IN XML AND CLIENT-
SERVER ENVIRONMENTS

1MIRNA EL-HAJJ BARBAR, 2KABLAN BARBAR, 3GEORGES RAHBANI

1Assoc Prof., Department of Applied Mathematics, Faculty of Economy, Lebanese University,
Achrafieh, Lebanon

2 Assoc. Prof., Department of Applied Mathematics, Faculty of Sciences 2, Lebanese University, Fanar,
Lebanon

3 Assoc. Prof., Department of Applied Mathematics, Faculty of Sciences 2, Lebanese University, Fanar,
Lebanon

E-mail: mirna_hajj@hotmail.com, kbarbar@ul.edu.lb, grahbani@ul.edu.lb

ABSTRACT

In this paper, we introduce the new concept of interactive automata by proposing that states are not
virtual elements but real objects containing useful information. They are used as models for structured
data and system architecture, and then implemented in two developing environments, the XML
environment and the client-server environment. These implementations produce, respectively, a generic
markup language called Automata Markup Language (AML) and a client-server system, which together
realize a homogeneous and uniform platform. An example is given in the E-learning domain where
AML is a questionnaire description language and the automata client-server system plays the role of an
assessment platform.

Keywords: Automata, XML, Client-Server, E-learning, Assessment.

1 INTRODUCTION

In this paper, a new concept of interactive

automata is introduced, proposing that states
contain useful information and are not virtual
elements. Interactive automata are implemented
in terms of markup languages and client-server
systems in order to build a homogeneous and
client-server platform applicable in many
domains and, in particular, the E-learning domain.

Typically, automata formalism has been

introduced to formalize rational languages in the
compilation of programming languages (see [1]).
Based on the principle of transitions over states,
automata resolve the problem of belongings of
words to rational languages. They are viewed as
abstract machines where states are virtual
elements and not related to the recognized
language; and they are implemented by simple
programs running on one computer. Many
applications of automata have been developed in
different areas as formalization model.
Pavlos Antoniou et al. in [8] present an algorithm
that uses finite automata to find the common
motifs with gaps occurring in all strings
belonging to a finite set. Constant and Maurel in

[7] describe a unified method to compile sets of
tables of linguistic constraints into Finite State
Automata. In [2], the author proposes a helicopter
flight simulator with respect to automata that
helps to train helicopter pilots. In [3], automata
serve to construct efficient algorithms for the
adaptive assessment of student knowledge.

We attempt to use automata as data models and

system architectures for client-server platforms.
Automata transition functions are, as such,
control machines on the server side to present to
clients information stored in the states’ structure.
Therefore, states are not virtual elements in
automata, but basic objects containing the input
symbols needed for making transitions between
states. When an automaton is in a current state, its
input symbol is chosen dynamically, and then
automata are interactive control machines to
ensure only the passage through states. This
process is different from the automata application
in the compiling domain while input words are
given statically and automata are recognition
machines for verifying if input words belonging
to the automata recognized languages.

From this point of view, we introduce
interactive automata by integrating an alphabet in

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

202

the states’ structure and considering them both a
data model and an interactive machine. First,
interactive automata are translated into a DTD in
XML for producing a generic markup language
called Automata Markup Language or AML.
Each AML document describes an interactive
automaton. Secondly, interactive automata are
considered as control machines and implemented
in the client-server environment. The
corresponding system runs over AML documents.
This system is split into two parts: the client part
and the server part. The client part concerns the
states’ presentation on the client side, which can
be made by XSL style sheets in the XML
environment. The server part contains two
modules: the initialization module and the
transitions module. The initialization module
extracts the initial state from an AML document
and sends it to the client; while the transitions
module implements the automata transition
function that takes an input from the client for the
current state, determines the following state and
sends it again to the client.

The advantage of interactive automata is that

states are real objects and not virtual elements.
This principle allows the integration within the
states’ structure of other characteristics of the
states’ basic objects. In particular, if the basic
objects have temporal characteristics, they must
be integrated in the states’ structure.

Throughout the paper, an application of

interactive automata in the assessment domain is
illustrated. The AML language describes
questionnaires’ structure and the client-server
assessment system implements the automata
transition function (see [4]). In the same manner,
interactive automata have been used for modeling
the learning process in [5], and an E-learning
architecture platform has been produced in which
the learning and assessment layers run as
automata client-server systems.

We have realized an assessment platform based

on automata client-server system that acts over a
directory of AML documents corresponding to
questionnaires. This platform was developed
under XML and ASP technologies.

This paper is organized in the following way.

Section II introduces interactive automata.
Section III presents the Automata Markup
Language and the client-server system associated
with interactive automata. Section IV presents the

automata based prototype for an assessment
platform. Finally, the conclusion discusses the
results obtained and the advantages of this
approach.

2 INTERACTIVE AUTOMATA

Our aim is to adapt automata formalism to the

client-server environment where automata are
considered as server systems that present states to
clients. Then, states are not virtual elements but
contain real data or useful information presented
to clients. From this point of view, an alphabet is
not only a set to define automata languages but it
is also the basic of the states.

Let Σ represent an alphabet, and D represent a

set of basic objects. The states domain is then
D×Ρ(Σ) where × is the Cartesian product and Ρ is
the power set. An interactive automaton IA over
D and Σ is a 5-uplet IA=<Σ, S, s0, St, δ> where:

Σ is the alphabet,

• S ⊆ D×Ρ(Σ), is the set of states,

• s0 is the initial state and an element of S,

• St is the set of terminal states and a

subset of S,

• δ is the transition function:

δ : S × Σ → S.

Example: We may consider the example of a

questionnaire on the comprehension of the
concept of a “pointer” in the programming
language. This is explained in [6]. Each test is
formed by a question and a list of answers. The
list of tests is presented in table 1.

We consider a walking strategy within tests that
works in the following way:

- if the learner’s answer to the test t0 is
wrong (response r3), he or she is sent into a
loop of tests (tests t2, t3 and t0),

- if the learner’s answer to the test t0 is
quite correct (response r2), he or she is
given a chance (test t1) to advance.

This strategy is represented by the graph in

figure 1 where the symbol | is the or logical
operator.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

203

Table 1. A questionnaire
Tests Questions Answers
t0 q0 : what is the best definition of a pointer ? r1 : a pointer is a variable

r2 : a pointer is an address
r3 : a pointer is a function

t1 q1 : what is the type of a pointer variable? r4 : a memory address
r5 : it depends on the
 pointed object type

t2 q2 : can we use a variable by specifying its
location in memory?

r6 : yes
r7 : no

t3 q3 : can we store one variable in another? r8 : yes
r9 : no

tf qf :

Figure 1. The graph of the questionnaire

The preceding questionnaire can be represented

by an IA. The alphabet is Σ={r0, … , r9}, the set
of answers. The set of basic objects is
D={q0,q1,q2,q3,qf}, the set of questions. Then, the
states’ domain is {q0,q1,q2,q3,qf}×Ρ({r0,…,r9}).
For example, t0 is the pair (q0,{r1,r2,r3}) and so on.
The interactive automaton corresponding to the
questionnaire above has the set of basic objects D
as a domain, which is as follows:
IA=<Σ,T,t0,Tf,δ>

 where :
- Σ = {r0, … , r9}, is the input

alphabet,
- T = {t0,t1,t2,t3,tf} is the set of states,
- t0 is the initial state,
- Tf= {tf} is the set of terminal states,
- δ is the transition function:

δ : T × Σ → T, given in table 2.

Table 2: A transition function

Function δ t0 t1 t2 t3 tf

r1 tf

r2 t1

r3 t2

r4 t2

r5 tf

r6 t3

r7 t3

r8 t1

r9 t1

Proposition: There is an equivalence between
classical automata and interactive automata.
Proof: It is obvious by the definition that an IA
is a classical automaton. On the other hand, let
A=<Σ,S,t0,St,δ> be a classical automata. Let s
be a state, and we will call Trans(s))={σ∈Σ /
δ(s,σ) is defined} the set of all elements in Σ
defining transitions over the state s. The
interactive automaton corresponding to A is
then IA=<Σ,S',t0,S't,δ'> where :

- S'={(s,Trans(s))/s∈S} and
δ'((s,Trans(s)),σ)= (δ(s,σ),Trans(s,σ))

- s'0=(s0,Trans(s0)
- S't={(s,Trans(s))/s∈St}
- δ : S' × Σ → S' is defined by :

for s'=(s,Trans(s)) ∈S' and σ∈Σ,

r6 | r7

r8 | r9

 r3

t2t3

r2

 t0 tf

t1
r4

 r5

r1

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

204

 (δ(s,σ),Trans(δ(s,σ)) if σ∈ Trans(s)
δ'(s',σ)=

 undefined otherwise.

The function b: S → S' defined by
b(s)=(s,Trans(s)) is a bijection. Moreover, for
each transition δ(s,σ)=s1, there exists a
transition δ'(b(s),σ)=b(s1) and vice versa. We
may then conclude that there exists an
interactive automaton equivalent to every
classical automaton and vice versa.

3 IMPLEMENTATION

Since interactive automata are considered at

the same time as data structure model and system
architecture, their implementation is made,
respectively, in the XML data structuring and the
client-server environments.

3.1 The Automata Markup Language

Interactive automata are built on alphabets and
basic objects. Therefore, interactive automata
represent an abstract data model that can be
implemented in terms of languages. To do this,
interactive automata are translated into a DTD in
the XML environment. Each interactive automata
component is associated with a declaration in the
DTD. This translation produces an Automata
Markup Language (AML) where a valid AML
document represents an interactive automaton.
AML is a generic language and contains a part
common to all interactive automata, and has a
variable part which depends on the alphabet and
the set of basic objects. The AML DTD is
described below:

<!-- The automaton -->
<!ELEMENT automaton(sigmas, states,
 initialState, terminalStates, delta>
<!ELEMENT sigmas(sigma*)>
<!ATTLIST sigma id ID #REQUIRED>
<!ELEMENT states (state*)>
<!ATTLIST state id ID #REQUIRED>

<!-- The initial state -->
<!ELEMENT initialState (EMPTY)>
<!ATTLIST initialState idState IDREF

 #REQUIRED>

<!-- The set of terminal states -->
<!ELEMENT terminalStates (terminalState*)>
<!ELEMENT terminalState EMPTY>

<!ATTLIST terminalState idState IDREF
#REQUIRED>

<!-- The transition function delta-->
<!ELEMENT delta (transition*)>
<!ELEMENT transition (EMPTY)>
<!ATTLIST transition originState IDREF

#REQUIRED>
<!ATTLIST transition targetState IDREF
 #REQUIRED>
<!ATTLIST transition label IDREF

#REQUIRED>.

The common part is the kernel of the AML
language. Each real application must give the
definition of the elements <sigma> and <state>
for the variable part.

Let’s take an example from the assessment
domain. A questionnaire is a list of tests that are
composed of questions and answers. To describe
a questionnaire, we add to the DTD of AML the
declaration of the variable part, which is the
following sequence:

<!ELEMENT sigma(#PCDATA)>
<!ELEMENT state(question, answers)>
<!ELEMENT question(#PCDATA)>
<!ELEMENT answers(answer*)>
<!ELEMENT answer(EMPTY)>
<!ATTLIST answer idSigma IDREF

#REQUIRED>.

The questionnaire of example1 is then translated
into the following AML document:

<!-- The interactive automaton -->
<automaton>

<--The alphabet -->
<sigmas>

<sigma id="r1"> a pointer is a
variable</sigma>

<sigma id="r2"> a pointer is an
address</sigma>

<sigma id="r3"> a pointer is a
function</sigma>

…
<sigma id="r9">false</sigma>

<sigmas>

<--The set of states -->
<states>

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

205

 <state id="t0">
 <question id="q0”> what is the best definition

for a pointer?</question>
 <answers>

<answer idSigma="r1"/>
<answer idSigma="r2"/>
<answer idSigma="r3"/>

 </answers>
 </state>
 …
 <state id="tf">
 <question id="qf”></question>
 <answers></answers>
 </state>
 </states>

<!-- The initial state-->

 <initialState idState="t1"/>

<!-- The set of terminal states -->
 <TerminalStates>
 <terminalState idState="tf"/>
 </terminalStates>

<!-- The transition function -->
 <delta>
 <transition origineState="t0" label="r1"

targetState="tf">
 <transition origineState="t0" label="r2"

targetState="t1">
 <transition originState="t0" label="r3"

targetState="t2">

 …
</delta>
</automaton>

3.2 The automata client-server system

In the client-server architecture, an automata

based platform comprises an automata client-
server system and a directory of AML documents
stored on the server disk. Then, to realize client-
server systems, interactive automata are split into
two parts where the transition function is the
kernel of the system on the server side and only
states must be presented on the client side as
shown in Figure 2. The interaction in the client-
server environment consists in two steps:

- step1 : the client sends a request, a label in
the automata alphabet, to the server

- step2 : the server responds through a state
sent to the client.

The automata client-server system has two

parts, the client part and the server one. The client
part deals with the states’ presentation. Since
states are implemented in XML, the states
presentation is realized by XSL style sheets. The
server part concerns the management of AML
documents. It extracts the initial state from an
AML document, presents it to the learner, takes
the learner's request and makes a transition from
the current state to a following one according to
the request.
It is then composed of two important server
modules, called initialization and transitions.

Figure 2. Interactive Automata in Client-Server Architecture

client

server

doument.xml

State t

Automata

system

Request r

State t

The current state t The transition function δ

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

206

.

The 'initialization' module realizes the following
operations:

o loads the AML document into the server
memory,

o extracts the initial state from the AML
document,

o presents the initial state to the client.
The 'Transitions' module conducts the following
operations:

o determines the next state in accordance with
the current one and the client request

o presents the next state to the client.

In Figure 3, all details for the two modules of
initialization and transitions are given and
distributed in the client-server architecture.

Figure 3. The Automata Client-Server System

Ta
ki

ng
 r

eq
ue

st

Client Server

Questionnaire
loadingThe AML document

is in the server
memory

Initial test
extraction

The initial state t0 is in the server memory The initial state t0
is on the client

sending initial
test

Ta
ki

ng
 re

qu
es

t

Sending request

Th

e
cu

rr
en

t
st

at
e

is
 n

ot

 t
er

m
in

al

 The current state is
 terminal

exit

The next state is
on the client

Sending the next
state

The AML
document is on the

server disk

Determining the next state
according to the current state
and the request

The 'Initialization' m
odule

The 'Transitions' m
odule

The request is on the

client

- Receiving the request
- Testing if the current state is

terminal

Formatted: Font: Bold

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

207

4 THE PROTOTYPE

We have realized an assessment platform based

on automata formalism. This platform is
comprised of a directory of AML documents on
the server disk and its kernel is an automata
client-server application developed under the ASP
technology. The AML documents represent
questionnaires based on tests for networking. The
automata client-server application loads a
questionnaire (or AML document) in the server
memory, extracts a test and presents it to a
learner. It takes the learner’s responses and
determines the next test and so on. Therefore, it
runs like an automata transition function where
the test presented to a leaner plays the role of an
automaton state.

5 CONCLUSION

In this paper, we have presented interactive
automata and their adaptability for the conception
of a client-server platform. Essentially, interactive
automata use states to store useful information
and implement them in the XML and client-server
environments. Concrete applications of
interactive automata have been given in the E-
learning domain for assessment and learning
processes.
Interactive automata allow the integration within
the states’ structure of many characteristics, like
the timing control in the assessment process when
learners have to respect a fixed duration for each
test. But, in general, we have to classify
characteristics and specify how to integrate them
in the states, with automata output function, or
with other automata extensions.

We are also working to develop a
communication language between interactive
automata based on the principle of messages. This
language simplifies the realization of modular and
automata-based platforms.

REFERENCES

[1] AHO, A., SETHI, R. & ULLMAN, J.,

"Compilers, Principles, Techniques and
Tools", ADDISON-WESLEY, 2006.

[2] Belhadj, F. "Drones: Simulateur
d’Environnement et Apprentissage", Des
Quinzièmes Journées de L'A.F.I.G.,
Université Claude Bernard, LYON 1,
December 2002.

[3] C. E. Dowling, & C. Hockmeyer.,
"Automata for the Assessment of
Knowledge", IEEE Transactions on
Knowledge and Data Engineering, vol 13, n°
3, may/june 2001.

[4] El-Hajj Barbar, M., Barbar, K., Monsef, Y.,
& Saleh, I., "A Three-level Model for
Educational Process in a Client/Server
Environment". ITHET04, Istanbul, June
2004.

[5] El-Hajj Barbar, M., Barbar, K., Monsef, Y.,
& Saleh, I., "Automata based Architecture
for Layered E-learning Platforms". ITHET05,
Sainto Domingo, July 2005.

[6] Issac, F. & Hû, O., "Formalism for
Evaluation: Feedback on Learner Knowledge
Representation", Computer Assisted
Language Learning Volume 15, Number 2,
pp 183 – 199, April 2002.

[7] Constant. M, and Maurel. D, 'Compiling
Linguistic Constraints into Finite State
Automata', Lecture Notes in Computer
Science, Vol 4094/2006, PP. 242-252, August
2006

[8] Pavlos Antoniou, Jan Holub, Costas S.
Iliopoulos, Bořivoj Melichar and
Pierre Peterlongo 'Finding Common Motifs
with Gaps Using Finite Automata', Lecture
Notes in Computer Science, Vol 4094/2006,
PP. 69-77, August 2006

[9] Mohri. M, 'On some Applications of Finite-
state Automata Theory to Natural Language
Processing', Natural Language Engineering,
Vol 2, Issue 1, PP. 61-80

[10] Sipser. M, Introduction to the Theory of
Computation, Second Edition, CENGAGE
LEARNING, 2005

