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ABSTRACT 
 

Many advanced techniques are being developed for Power Systems Stability Assessment. We can use 
Eigen value techniques for the purpose of increasing the calculation performance of eigen-algorithms for 
Power System Small Signal Stability Analysis. 
Firstly, we introduce a bulge chasing algorithm called the BR algorithm which is a novel and efficient 
method to find all Eigen values of upper Hessenberg matrices and has never been applied to eigen-analysis 
for power system small signal stability analysis. This paper analyzes differences between the BR and the 
QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage 
requirement on the basis of Eigen –value calculation. 
Secondly, we propose a method of small-signal stability analysis of power systems with microgrids which 
is based on the development of an integrated model in quadratic form and subsequent development of the 
transition matrix of the overall system. The Eigen values of the transition matrix provide the small-signal 
stability properties of the system. 
 
Keywords:  Eigen-value calculation, Small Signal Stability Analysis, upper Hessenberg matrix, BR 

algorithm, GR algorithm, Micro Grid Model, QR algorithm. 
 
I.  INTRODUCTION 
 

Small signal stability analysis in power 
systems is aimed at determining the properties of 
operation parameter variations that are 
independent from disturbance intensity. Eigen 
value analysis is used to reveal the quantitative 
information of different stability modes for 
power system small signal stability problems. To 
find efficient algorithms with excellent 
convergence properties and appropriate 
calculation precision, while using less storage 
space and less computational time, has been one 
of major objectives of Eigen value analysis 
research for small signal stability analysis. 
Methods for Eigen value analysis in power 
system small signal stability include complete 
Eigen analysis and partial Eigen analysis.  
 

The QR algorithm is one popular 
member of a large family of bulge-chasing 

algorithms for computing eigenvalues of non-
symmetric matrices. Because of its excellent 
rounding error properties and convergence 
behavior, the QR algorithm is still the method of 
choice for calculating all Eigen values and 
eigenvectors of small or moderately large non-
symmetric matrices [1]. However, the QR 
algorithm is incapable of incorporating sparsity 
techniques, which limits its usage in small signal 
stability analysis for large-scale power systems 
[2].  
 

The BR algorithm is a novel and 
efficient method to find all Eigen values of upper 
Hessenberg matrices [14].BR algorithm has 
never been applied to the Eigen analysis for 
power system small signal stability and is one of 
the latest bulge chasing algorithms. In this paper, 
the BR algorithm is analyzed, and a comparison 
of its performance with that of the QR algorithm 
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in small signal stability Eigen value analysis is 
presented.  
 
II. PERFORMANCE COMPARISON OF BR 

AND QR ALGORITHMS 
The BR algorithm is a member of the 

family of GR algorithms. It is an implicit GR 
algorithm, which makes it a bulge-chasing 
algorithm [4]. Bulge-chasing algorithms operate 
on matrices that have been reduced to upper 
Hessenberg form (or some comparable form). 
Each iteration consists of an initial 
transformation that disturbs the upper 
Hessenberg form, followed by a sequence of 
transformations that restore the upper 
Hessenberg form. Thus algorithms that transform 
a matrix to upper Hessenberg form lie at the 
center of this subject. 
 

In this section, a comparison with regard to 
the performance of the BR and the QR 
algorithms in terms of CPU time based on 
stopping criteria and storage requirement is 
presented. Computation tasks are performed on 
randomly generated matrices of order n =10 to n 
=1000. The implementation of the BR algorithm 
is based on [14]. The BR algorithm beats the QR 
algorithm by a factor of 30–60 in computing 
time and a factor of over 100 in matrix storage 
space. The implementation of subroutine BHESS 
used for transforming general matrices into 
upper Hessenberg matrices is based on [20]. The 
implementation of the implicit double-shift QR 
algorithm is based on [21]. Numerical 
experiments were performed on a HCL core2duo 
PC with Intel P4 2.0 GHz CPU, 1 M cache, and 
512 M physical memory. Original FORTRAN 
implementations of the BR and the QR 
algorithms are compiled by Compaq Visual 
Fortran compiler v6.1. MATLAB v7.0 is used 
for the calculation and simulation. 
 

Generally, two processes are involved when 
computing all the Eigen values of a given matrix: 
first transforming the given matrix into an upper 
Hessenberg matrix and then calculating the eigen 
values of the upper Hessenberg matrix. The BR 
and the QR algorithms use different stopping 
criteria in the process of forming upper 
Hessenberg matrices and Eigen value 
computation, thereby complicating the 
performance comparison. Different values of 
stopping criteria result in variations in both the 
precision of results and CPU time. There is a 
tradeoff between precision and CPU time. If 
stringent stopping criteria are used, the algorithm 

may obtain results with high precision but at the 
cost of spending more CPU time. If 
undemanding stopping criteria are specified, 
CPU time may be saved; however, the precision 
may be sacrificed. It is important to find a 
reasonable balance between precision and CPU 
time by specifying appropriate stopping criterion 
values for different purposes of calculating tasks. 

 
The BR algorithm uses stopping criteria 

in both of the two processes. The QR algorithm 
uses stopping criteria only in the process of 
Eigen value computation but not in forming 
upper Hessenberg matrices. This section 
compares the CPU time based on different 
stopping criteria of the BR and the QR 
algorithms in forming upper Hessenberg 
matrices and calculating Eigen values of various 
orders of matrices. 
       
CPU Time for Upper Hessenberg Matrix 
Formation: 

Every n × n matrix can be transformed 
to the upper Hessenberg form by an orthogonal 
similarity transformation, which needs  
float operations. The difference lies in that the 
Hessenberg matrix fed into the QR algorithm is a 
full upper Hessenberg matrix, and the 
Hessenberg matrix needed by the BR algorithm 
is a banded, nearly tri-diagonal upper 
Hessenberg matrix, a form somewhere between 
tri-diagonal and full upper Hessenberg.  

 
In the process of forming upper 

Hessenberg matrices used by the QR algorithm, 
once all the elements below the sub diagonal 
elements of each column become 0, the 
elimination process stops. Therefore, the 
implementation of upper Hessenberg matrices 
for the QR algorithm does not explicitly use 
stopping criteria. 
 

The BR algorithm uses BHESS to form 
upper Hessenberg matrices. BHESS uses a user-
defined error tolerance т to decide whether or not 
to perform row and column elimination. The row 
elimination will be carried out if the multipliers 
that would be used for the column and row 
eliminations are not larger than the user-defined 
error tolerance т. This version of BHESS in our 
experiments does not use BLAS level 2. 
 

Defining different values for the error 
tolerance т will influence the CPU time needed 
to form Hessenberg matrices for the BR 
algorithm. Cache performance is improved by 
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performing both the row and column similarity 
transformations on a given column in one 
iteration. When the L2 norms of rows and 
columns of multipliers are equal, т corresponds 
to the maximal standard deviation of multipliers 
from zero. More generally, т is the maximal 
allowed root mean square of standard deviations 
from zero of row and column multipliers. т may 
be defined as different values for different orders 
of matrices in order to generate upper 
Hessenberg matrices with a specific bandwidth. 
For example, for 100× 100 matrices, т = 3 is 
sufficient to generate upper Hessenberg matrices 
with a bandwidth of 3, but this value may only 
generate a bandwidth of 30 for 1000 × 1000 
matrices. If a bandwidth of 3 is required for 1000 
× 1000 matrices, т needs to be set as 100. 

 
There is a tradeoff between т and CPU 

time. Defining larger т values will generate 
narrower banded upper Hessenberg matrices, 
which need more CPU time, but make the 
subsequent Eigen value calculation process more 
efficient. Smaller т values mean larger 
bandwidth of upper Hessenberg matrices, which 
need less CPU time to form, but make Eigen 
value calculation process more time-consuming. 
In our experiments, we observe that т = 100 can 
obtain the best overall performance of the BR 
algorithm for computing eigenvalues of matrices 
less than 2000 order.  

 
The differences in tolerance values 

result in different CPU time to form Hessenberg 
matrices, which should be considered into the 
overall performance of the BR and the QR 
algorithms. CPU time to form upper Hessenberg 
matrices with varying orders used by the QR and 
the BR (т =100) algorithms is shown in Fig. 1. 
We can see that forming full upper Hessenberg 
matrices used by the QR algorithm needs more 
float operations and therefore spends longer CPU 
time than forming upper Hessenberg matrices to 
feed into the BR algorithm. 
 
CPU Time for Eigen-value Calculation: 

 Both the QR and the BR algorithms use 
stopping criteria to control when the iteration 
stops once one Eigen value converges into 
satisfactory precision. For QR iterations, the 
dominant eigenvalues converge most rapidly so 
the codes test only the (j+1)st Eigen value after 
the jth one has converged. For example, if   
is  on the Kth iteration (K ≥ 0), the jth 
column of  is accepted if it satisfies  

the inequality   
where ε denotes a user-defined tolerance. The 
QR algorithm uses a stopping criterion of || 
(AXm -XmTm) j||2 < ||A|| ε (or ε). The 
advantage of using the norm of is that the 
stopping criterion is based on the backward 
error. However, it requires to be known in 
advance. 
 

 In some small signal stability analysis 
tasks, the interest is in whether the right-most 
Eigen value has a non-positive real part. Since 
high precision in the computed Eigen values may 
not be necessary.  
 

Selecting different values has an effect 
on CPU time for the QR algorithm. The 
influence of different values of the error 
tolerance ε on the CPU time for the QR 
algorithm is shown in Fig. 2. We see that more 
stringent tolerance values of result in longer 
CPU time for the QR algorithm. However, as the 
order of the matrices is increased, the proportion 
of the increased CPU time caused by increased 
tolerance values is not significant.  

 
Eigen value error tolerance Ψ of the BR 

algorithm has a different meaning from that of 
the QR algorithm. Ψ is the root mean square 
multiplier tolerance. The pivoting strategy will 
produce multipliers whose root mean square (on 
a given step) do not exceed (or at worst slightly 
exceeds) max (Ψ, 1). 
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 Figure 1  CPU time for forming upper 
Hessenberg matrices for the QR and BR 
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Figure 2   CPU time for the QR algorithm with 
different eigenvalue tolerances 
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Figure 3 CPU time for the BR algorithm with 
different eigenvalue tolerances 
 

There is a tradeoff between the stability 
and the cost of computation result from different 
choices of Ψ. Small values of Ψ mean greater 
stability at the expense of increased bandwidth, 
which needs more float operations and storage 
space. Large values of Ψ generate narrow bands 
but may compromise stability, which may cause 
the increased errors. Variations of CPU time 
corresponding to different BR Eigen value 
tolerances Ψ are shown in Fig. 3. We can see that 
there is a significant difference in CPU time 
using different values of error tolerance Ψ as the 
order of matrices is increased. The proportion of 
reduced CPU time is remarkably large when 
using larger values of the error tolerance Ψ.  

 
In our numerical experiments, we 

observed that the BR algorithm needs more CPU 
time than the QR algorithm when computing 
Eigenvalue of matrices of order less than 70. 
This is because the extra shifting and balancing 

iterations required by the QR algorithm are 
slightly less expensive than the extra iterations 
required by the BR algorithm. As the order of 
matrix is increased, the iteration time in the QR 
algorithm starts to dominate, while the total CPU 
time increases. 
 
Matrix Storage Space Requirements 

The overall Matrix storage space 
requirement of the QR algorithm is determined 
by the summation of the space to save full 
Hessenberg matrices (n×n) and the space to save 
real and imaginary parts of calculated eigen 
values (2×n) during two subroutines. Storage 
space required in the subroutine of forming 
upper Hessenberg matrices is (n×n+n×n). 
Storage space required for eigenvalue calculation 
is (n×n+2×n). Overall storage space required by 
the QR algorithm is (n×n+n×n+2×n). Therefore, 
storage requirement of the QR algorithm is 
O(n2). 

 
 The BR algorithm uses a banded 

storage scheme and significantly reduces 
required storage space. The matrix storage space 
requirement of the BR algorithm depends on the 
maximum bandwidth of banded Hessenberg 
matrices generated by BHESS. Subroutine 
BHESS generates nearly tri-diagonal matrices by 
a look-ahead Lanczos process. In the best 
situation, the bandwidth of upper Hessenberg 
matrices is 1, where the Hessenberg matrix 
becomes a tri-diagonal matrix; therefore, the 
overall storage space required by the BR 
algorithm is (n×n+3×n+2×n). In more typical 
cases, the maximum bandwidth of upper 
Hessenberg matrices does not exceed 3, and then 
the overall storage requirement is 
(n×n+5×n+2×n). If BHESS is always used 
before performing the BR iteration, and 
Hessenberg matrices are strictly banded, storage 
requirement for the subroutine of Eigen value 
calculation is O (n). Overall storage requirement 
of the BR algorithm is O (n2). The worst case is 
where the matrix is a full upper Hessenberg 
matrix, which requires (n×n+n×n+2×n) storage 
space. In this situation, the BR algorithm can be 
utilized directly without using BHESS first, and 
it requires the same size storage space as the QR 
algorithm does. Table I summarizes the storage 
requirements for the implementation codes of the 
QR and the BR algorithms in our numerical 
experiments. In Table I, is the dimension of the 
input matrices, and is the maximal bandwidth of 
the banded Hessenberg matrices. Generally, and 
satisfy for very large matrices. We observe that 
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for a given subspace dimension, the BR 
algorithm uses a much smaller amount of storage 
space than the QR algorithm. 

      Table I 
Storage Requirements for the QR and BR 

Algorithms 

 
III. EIGENVALUE CALCULATION FOR 

POWER SYSTEM SMALL SIGNAL 
STABILITY ANALYSIS 

 
In this section, numerical examples 

comparing the performance of the BR algorithm 
with that of the QR algorithm in small signal 
stability analysis are presented. The BR and the 
QR algorithms are applied to perform the Eigen 
value analysis of small signal stability on 39-, 
68-, 115-, 300-, and 600-bus systems as example 
bus systems only and they are modified from real 
world bus systems as shown below. 

 
 Data for 39-bus system (TS1) and 300-

bus system (TS4) are adopted from IEEE 39-bus 
system (New England System) and IEEE 300-
bus system, respectively. Data for 68-bus system 
(TS2) are extracted from [23]. The 115-bus 
system (TS3) is modified from IEEE 118-bus 
system by deleting three buses and adding six 
generators. The 600-bus system (TS5) is 
obtained by combining two IEEE 300-bus 
systems and adding one generator. These test 
systems are modified for Eigen value calculation 
purpose only and not for real application study.  
 

The same detailed dynamic model 
introducing six state variables 

 is used for all 
generators. Detailed excitation control systems 
and PSS are used in 39-bus system and 68-bus 
system. The effect of governors is ignored in all 
the test systems. All static loads are modeled as 
constant admittances. Table II presents the 
description of the test systems. 
 
Problem Identification and Analysis: 

An appropriate power system model 
including machine and load dynamics is required 
for small signal stability analysis [24]. Power 
system dynamic is usually described as a set of 
nonlinear differential and algebraic equations 
(DAE)  

 
 
Where  the vector of system state variables is, 
refers to system input variables, refers to system 
output variables, describes the dynamics of the 
system, and includes equality conditions such as 
power flow equations of the system.  
 

By combining all linear state equations 
of dynamic devices, we can obtain the 
augmented state equation  

 
where  is the augmented state 

matrix, which is of high sparsity. The system 
state matrix can be obtained as  

 
 Because of the reduction process in (3), 

the state matrix  is a dense matrix. The 
objectives of small signal stability analysis are to 
calculate the eigen values of augmented state 

matrix  and state matrix and to analyze 
the nature of the modes by analyzing eigen 

values and eigenvectors of  and . In our 
experiments, the BR and the QR algorithms are 
used to calculate the Eigen values of both state 
matrices and augmented state matrices   .  

 
To generate a sufficient number of 

calculation cases (state matrices and augmented 
state matrices) of the test systems, the following 
procedure is performed. First, the bus 
active/reactive 
power load data   and generator output 
active/reactive power  are specified as 
mean values. One hundred sets of normally 
distributed pseudo-random power load 

data  and   taking  and 
as the mean values and with the 

variance of 0.1 (10% of the original P/Q data) 
are generated. Thus, we can obtain 100 sets of 

Algorithms Hessenberg 
Formation 

Eigenvalue 
Calculation 

Overall 
Storage 
Requirements 

QR nxn+nxn nxn+2xn nxn+nxn+2xn 

BR nxn+mxn mxn+2xn nxn+mxn+2xn 
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system data by replacing original active/reactive 
power P/Q data with randomly generated 
normally distributed  for each test 
system. Then 100 state matrices and 100 
augmented state matrices are generated based on 
the 100 sets of system data for each test system. 
The BR and the QR algorithms are performed on 
the 100 state matrices and the 100 augmented 
state matrices of the test systems. 
 

 In order to reduce the influence of 
computational environment on measured CPU 
time of the BR and the QR algorithms as greatly 
as possible, each matrix is computed ten times. 
The average value of ten measured CPU time is 
viewed as CPU time for the matrix. For each 
system, the average values of 100 calculated 
average CPU time on state matrices and 
augmented state matrices are viewed as CPU 
time for the BR and the QR algorithms on the 
test system.  

 
The purpose of following this procedure 

is to evaluate the performance of the BR and the 
QR algorithms on state matrices and augmented 
state matrices with reasonable variations in 
entries. In our experiments, we observed that 
some of the randomly generated active/reactive 
data sets are in the convergence precision range. 
Consequently, the same state matrices or 
augmented state matrices are obtained; therefore, 
Eigenvalue results are actually unchanged. This 
kind of situation does not affect CPU time 
needed by the BR and the QR algorithm when 
performing Eigen value calculation. 
 

Seeing that MATLAB function eig is a 
well-known implementation of the QR algorithm 
adapted from LAPACK, we also apply eig 
function in numerical experiments for 
comparison purpose. 
 
Analysis of Calculated Results:  

Tolerance values of forming upper 
Hessenberg matrices and Eigen value calculation 
of the BR algorithm are specified as т =100 and 
Ψ = 20, respectively. We found that these values 
can obtain the best overall performance of the 
BR algorithm with appropriate precision. The 
tolerance value of Eigen value calculation used 
in the QR algorithm is defined as 

 This value is also the 
convergence value of the Eigen value calculation 
indicating the precision of the results. The BR 
and the QR algorithms and MATLAB eig 

function are performed on both state matrices 
and augmented state matrices of the test systems. 
Fig. 4 shows measured CPU time used by the BR 
algorithm, the QR algorithm, and eig function in 
computing all eigenvalues of state matrices of 
the test systems. Fig. 5 shows CPU time for 
computing all Eigen values of augmented state 
matrices. Table II summarizes calculation results 
of the BR, the QR algorithms, and eig function 
in computing all eigenvalues of state matrices 
and augmented state matrices of the test systems. 
For all five test systems, the BR algorithm 
spends less CPU time than both the QR 
algorithm and eig function, except calculating 
state matrices of the 39-bus system. However, 
for small systems with small state matrices and 
augmented state matrices, it does not matter 
which method we use. Both algorithms can 
calculate the eigenvalues in a small fraction of 
the time it takes to obtain complete eigenvalues 
of the test systems. As the matrix dimension 
increases, the time spent on computing 
eigenvalues increases significantly, especially if 
the QR algorithm is used.  

 
In the numerical examples, MATLAB 

eig function spends less CPU time than our 
implementation of the QR algorithm. This is 
because the eig function has been optimized for 
the purpose of obtaining optimal performance 
under all kinds of computational situations. 
When computing dense state matrices of the five 
test systems, the BR algorithm spends about half 
of the time the QR algorithm requires. 
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 Figure 4 CPU time for the state matrices of test 
systems 
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Figure 5  CPU time for the augmented state 
matrices of test systems 

 
 

Table II 
CPU Time (Seconds) of BR and QR 

Algorithm with Eig function State and 
Augmented State Matrices 

 
Matrices of Test 

Systems 
QR 

Algorithm 
BR 

Algorithm 
Eig 

Function 
39-
Bus 

State 0.021 0.020 0.014 
Augmented 0.210 0.065 0.070 

68-
Bus 

State 0.080 0.040 0.042 
Augmented 0.710 0.140 0.250 

115-
Bus 

State 0.640 0.304 0.360 
Augmented 2.490 0.680 0.970 

300-
Bus 

State 1.760 0.660 0.882 
Augmented 24.411 3.050 5.641 

600- 
Bus 

State 15.850 9.170 11.980 
Augmented -- 17.681 72.991 

 
 

When computing highly sparse small 
augmented state matrices, the BR algorithm 
outperforms the QR algorithm by the same 
percentage as it does on state matrices. However, 
for large matrices (300-bus system), the BR 
algorithm beats the QR algorithm by a factor of 
over 0.712. For the 600-bus system with 2034-
order augmented state matrices, our 
implementation of the QR algorithm blows up. 
In this situation, the eig function and the BR 
algorithm can still work well. The eig function 
spends 72.96s to finish calculation, and the BR 
algorithm needs only 17.674 s. The BR 
algorithm spends more CPU time for the 1014-
order augmented state matrices of the 300-bus 
system than that needed for the 834-order state 
matrices of the 600-bus system. This is because 
there are a large number of zero entries in the 
augmented state matrices. The sparsity of 
augmented state matrices reduces float 

operations for forming upper Hessenberg 
matrices and therefore decreases the overall CPU 
time needed by the BR algorithm.  
 

In small signal stability studies, the 
precision of Eigen value results is an important 
consideration when conducting modal analysis 
and Eigen value sensitivity analysis. We 
compare the precision of the BR and the QR 
algorithms for all the five test systems. The 
precision of the BR algorithm is mainly 
determined by the tolerance value Ψ. The 
eigenvalues of state matrices and augmented 
state matrices of the five test systems are 
calculated by the BR algorithm with various 
choices of the user specified tolerance value Ψ. 
Tables III and IV demonstrate the results for the 
300-bus system. CPU times are the average, 
standard deviation, and maximum over 100 
matrices. Each error is the maximum error over 
all 100 matrices and is obtained by specifying 
the eigenvalues generated by eig function as the 
reference. The eig function can calculate all 
eigenvalues of the matrices with a precision level 
of   10^-16. 
 
                              

Table III 
Performance of the BR Algorithm 

with varying ψ values on State 
Matrix of the 300 BUS systems 

 
 CPU Time (Seconds) Maximum 

Error Mean Maximum Std. 
Dev 

QR 
Algorithm 

1.731 2.036 0.2237 1.0x10ֿ¹º 

eig Function 0.851 0.997 0.0166 1.0x10ֿ16 
BR  ψ=1 8.860 8.980 0.0455 2.71x10ֿ9 
BR  ψ=3 1.490 1.751 0.0994 7.42x10ֿ9 
BR  ψ=10 0.790 0.943 0.1640 3.11x10ֿ7 
BR  ψ=30 0.623 0.907 0.1575 1.80x10ֿ6 
BR  ψ=100 0.583 0.860 0.1427 6.50x10ֿ3 
BR  ψ=300 0.580 0.850 0.1628 4.20x10ֿ1 
 

 
Table IV 

Performance of the BR Algorithm 
with varying ψ values on Augmented 
State Matrix of the 300 BUS systems 
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 CPU Time (Seconds) Maximum 

Error 
 
 Mean Maximum Std. 

Dev 
QR 
Algorithm 

23.86 24.34 0.2660 1.0x10ֿ¹º  

eig 
Function 

5.520 5.610 0.0400 1.0x10ֿ16  

BR  ψ=1 8.765 9.125 0.1271 8.5x10ֿ9  
BR  ψ=3 3.900 4.140 0.1030 4.4x10ֿ8  
BR  ψ=10 2.291 2.920 0.1008 1.8x10ֿ7  
BR  ψ=30 2.256 2.706 0.1780 6.3x10ֿ6  
BR  ψ=100 2.153 2.520 0.0880 3.6x10ֿ3  
BR  ψ=300 2.130 2.520 0.1290 5.7x10ֿ1  
 
IV.  Small Signal Stability Analysis of the 
Integrated Power System – Micro Grid Model 
 

With the increasing penetration of 
distributed generation resources (DERs) in 
microgrids, concern about the interactions of 
DERs with the utility power distribution system 
has been increasing. As the level of penetration 
increases these interactions may become 
important and they may dictate the design 
procedures for the systems of the future. 
Specifically, the question of system stability 
under high DER penetration has been raised. 
Since distributed energy resources must be 
interfaced with the utility system, it is important 
that these interactions be well understood. 

 
This section describes the methodology 

for performing small signal stability analysis of 
the integrated microgrid – power system model 
[37]. The procedure begins with the 
identification of the integrated system model 
components. The model typically includes a 
detailed model of all DERs including the utility 
interface controller, the distribution system 
containing the DERs, including distribution 
circuits, transformers and major loads, and a 
number of substations feeding the distribution 
system. The remaining electric power system 
beyond the included substations is represented 
by equivalent circuits. 
 
i) DER Model 
 

The interaction of the utility system and 
DERs is rather complex because DERs are 
interfaced to the grid via various types of power 
electronic converters. Furthermore, each 
manufacturer uses proprietary converter designs. 
For the purposes of this paper we used a generic 
converter model, which is illustrated in Figure 4. 

The converter consists of three PWM voltage 
sourced converters, one for each phase. It is 
connected to the utility system via a three-phase 
transformer. The secondary of the transformer 
can be wye-connected or delta-connected [25]-
[27]. 

 
For this generic model we construct a 

dynamic and a steady state model. As a matter of 
fact the steady state model is directly obtained 
from the dynamic model under the assumption of 
steady state operation. In addition, the model is 
in quadratic form. To limit the size of the paper, 
we present in detail the steady state model. 
 

The mathematical model of this 
converter depends on the manner in which the 
converter is controlled [28]. For example if the 
converter is controlled to maintain constant 
power flow, the mathematical model is: 
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Figure 6 

 
 
 

 
This model captures the operation of the 

converter and the control of the total power. Note 
that the model is quadratized, i.e. any nonlinear 
equation appearing in the model is quadratic. 
Other control modes can be similarly 
represented. 

 
 
 

 
ii) Steady State Analysis 
 

The steady state analysis is based on the 
quadratized model of the entire network. 
Specifically all components of the system are 
expressed in terms of a set of equations with 
maximum order of two. One such example is the 
converter model presented in the previous 
section. The quadratized model can be expressed 
in the following general form: 
 

 
The entire network equations are 

obtained by application of the connectivity 
constraints among the system component, i.e. 
Kirchoff’s current law at each system bus. This 
procedure yields a set of equations, which are 
combined with the component object internal 
equations resulting in the set of equations of the 
form: 

 

 
 

where   is a device k bus voltage. The above 
complex equations can be transformed into real 
equations in real unknowns by expressing the 
voltages and currents with their Cartesian 
coordinates and separating the real part of the 
equations from the imaginary part. Subsequently, 
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application of network connectivity (or 
Kirchoff’s current law at each node of the 
system) will eliminate the electric current 
variables, yielding the overall network equations. 
Note that these equations will be in the form of a 
set of quadratic equations: 
 
 

 
 
where x is the vector of all the state variables and 

are matrices with appropriate 
dimensions. The simultaneous solution of these 
equations is obtained via Newton’s method. 
Specifically, the solution is given by the 
following algorithm: 
 

 
 
where ν is the iteration step number; is the 
Jacobian matrix of the network equation. It is 
important to note that Newton’s method applied 
to a set of quadratic equations guarantees 
quadratic convergence. [Plus internal equations 
of all devices] The described procedure provides 
the simultaneous solution of all equations 
describing the mathematical models of the 
devices. 
 
iii) Stability Analysis 
 

The small-signal stability of the system 
can be evaluated by computing the eigenvalues 
of the dynamic equations around the operating 
steady state point [29], [39]. The Eigen value 
analysis is performed as follows. First, each 
power system device is described with a set of 
algebraic-differential integral equations. It is 
always possible to cast these equations in the 
following general form: 

 
Note that this form includes two sets of 
equations, which are named external equations 
and internal equations respectively. The terminal 
currents appear only in the external equations. 
Similarly, the device states consist of two sets: 
external states (i.e. terminal voltages, v(t)) and 
internal states (i.e. y(t)). The set of equations (1) 
is consistent in the sense that the number of 
external states and the number of internal 
equations equals the number of external and 
internal equations respectively [31]-[34].  
 
Examples of above modeling are:  
(a) Transmission lines, (b) converter models, (c) 
motors, (d) capacitors, etc. For any model in the 
interval [t-h, t] where h is a small time step, the 
model is described with a linear differential 
equation of the form: 
 

 
 

Above equations are integrated using a 
suitable numerical integration method. Assuming 
an integration time step h, the result of the 
integration is manipulated to be in the following 
form: 
 

 
 

Now consider the connectivity 
constraints among the devices of the system. 
Kirchoff’s current law (KCL) applies to each 
node. Application of KCL at each node will 
result in elimination of all device terminal 
currents. The overall network equation has the 
form: 
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where the superscript + indicates generalized 
inverse. Note that the above equation represents 
the state transition equation for the entire system 
from time t-h to time t. The state transition 
matrix for any time interval (for example one 
cycle of the power frequency) is computed by 
repeated application of above equation. The end 
result is that the 
State transition matrix for a given time interval is 
the product of the state transition matrix of each 
subinterval. Eigen value analysis of the state 
transition matrix provides the small signal 
stability of the system. There is a theoretical 
relationship between the eigenvalues of the state 
transition matrix and the eigenvalues of the 
physical system. We refer to the physical system 
as the analog system. Similarly we refer to the 
state transition matrix as the discrete system. It is 
relatively easy to prove that 
 

 
 
where,  are the eigenvalues of the 
transition matrix (i.e. discrete system) and state 
space matrix (i.e. continuous system) 
respectively, T is the time period for which the 
state transition matrix was computed. It is well 
known that for a system (analog system) to be 
stable, the real part of the eigenvalues must be 
negative. 
Note that: 

   
If α is negative, then r will be less than 1.0. 
Therefore, in order for the system to be stable the 
eigenvalues of the state transition matrix must be 
less than 1.0 (their absolute value). Using above 
theory, the stability of the system is described 
with the eigenvalues of the state transition 
matrix. These eigenvalues are plotted on the 
complex plane superimposed on the unit circle. 
This graph provides information about the 
stability of the system: if all the eigenvalues are 
within the unit circle, the system is stable. 

Furthermore, the magnitude r of the state 
transition matrix eigenvalues is related to the 
damping factor α and the angle θ is related to the 
angular frequency β. Therefore the eigenvalues 
of the state transition matrix 
represent a mapping of the state space matrix of 
the analog system to the unit circle. This implies 
that highly damped modes are identified with 
eigenvalues near the center of the unit circle, 
stable oscillatory modes are identified with 
eigenvalues within the unit circle and unstable 
modes are identified with eigenvalues outside the 
unit circle. This is a powerful method for 
characterizing the stability properties of the 
system. 
 
 
V. CONCLUSION 
 

The performance of the BR algorithm is 
compared with that of the QR algorithm for 
power system small signal stability Eigen value 
analysis. An improvement of 30%–60% in CPU 
time and up a factor of over 100 in matrix 
storage space in terms of required storage space 
is achieved by the BR algorithm compared with 
the QR algorithm. The calculation results from 
numerical experiments demonstrate that the BR 
algorithm is an efficient algorithm and a more 
powerful tool than the QR algorithm in eigen-
value analysis of large-scale power systems. 
 

The work presented in this paper 
address the issue of interactions of distributed 
energy resources with the utility system. Since 
distributed energy resources must be interfaced 
with the utility, it is important that these 
interactions be well understood. This 
understanding will lead to better designs of 
interfaces between the utility and the distributed 
energy resources. This presented work 
demonstrated the feasibility of constructing an 
integrated model of the utility system and DER 
installations without any approximations. This 
model is useful in studying the interaction of 
DERs with the utility system. This is found to be 
very useful in analysis of Small Signal Stability 
of Power Systems. 
 
REFERENCES 
 
[1] Y. V. Makarov and Z. Y. Dong, 

“Eigenvalues and eigen-functions,” in 
sEncyclopedia of Electrical and 
Electronics Engineering. New York: 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
192 

 

Wiley, 1998, Computational Science and 
Engineering, pp. 208–220. 

[2] G. Henry, D. Watkins, and J. Dongarra, “A 
parallel implementation of the non-
symmetric QR algorithm for distributed 
memory architectures,” SIAM J. Sci. 
Comput., vol. 24, no. 1, pp. 284–311, 
2002. 

[3] J. M. Campagnolo, N. Martins, and D. M. 
Falcão, “An efficient and robust eigen 
value method for small-signal stability 
assessment in parallel computers,” IEEE 
Trans. Power Syst., vol. 10, no. 1, pp. 
506–511, Feb. 1995. 

[4] D. S. Watkins and L. Elsner, Chasing 
algorithms for the Eigen value problem, 
SIAM J. Matrix Anal. Appl., 12 (1991), 
pp. 374–384. 

[5] A. Semlyen and L. Wang, “Sequential 
computation of the complete Eigen system 
for the study zone in small signal stability 
analysis of large power systems,” IEEE 
Trans. Power Syst., vol. 3, no. 2, pp. 715–
725, May 1988. 

[6] L.Wang and A. Semlyen, “Application of 
sparse eigenvalue techniques to the small 
signal stability analysis of large power 
system,” IEEE Trans. Power Syst., vol. 5, 
no. 2, pp. 635–642, May 1990. 

[7] D. Y. Wong, G. J. Rogers, B. Porretta, and P. 
Kundur, “Eigenvalue analysis of very 
large power systems,” IEEE Trans. Power 
Syst., vol. 3, no. 2, pp. 472–480, May 
1988. 

[8] N. Uchida and T. Nagao, “A new eigen-
analysis method of steady state Stability 
studies for large power systems: S matrix 
method,” IEEE Trans. Power Syst., vol. 3, 
no. 2, pp. 706–714, May 1988. 

[9] G. Angelidis and A. Semlyen, “Efficient 
calculation of critical eigenvalue clusters 
in the small signal stability analysis of 
large power systems,” IEEE Trans. Power 
Syst., vol. 10, no. 1, pp. 427–432, Feb. 
1995. 

[10] D. M. Lam, H. Yee, and B. Campbell, “An 
efficient improvement of the AESOPS 
algorithm for power system eigenvalue 
calculation,” IEEE Trans. Power Syst., 
vol. 9, no. 4, pp. 1880–1885, Nov. 1994. 

[11] D. J. Stadnicki and J. E. V. Ness, “Invariant 
subspace method for Eigen value 
computation,” IEEE Trans. Power Syst., 
vol. 8, no. 2, pp. 572–580, May 1993. 

[12] J. M. Campagnolo, N. Martins, and D. M. 
Falcão, “Refactored bi-iteration: A high 

performance eigen solution method for 
large power system matrices,” IEEE 
Trans. Power Syst., vol. 11, no. 3, pp. 
1228–1235, Aug. 1996. 

[13] G. Angelidis and A. Semlyen, “Improved 
methodologies for the calculation of 
critical eigen values in small signal 
stability analysis,” IEEE Trans. Power 
Syst., vol. 11, no. 3, pp. 1209–1217, Aug. 
1996. 

[14] G. A. Geist, G. W. Howell, and D. S. 
Watkins, “The BR eigen value algorithm,” 
SIAM J. Matrix Anal. Appl., vol. 20, no. 4, 
pp. 1083–1098, Jul. 1999. 

[15] P. W. Sauer, C. Raja gopalan, and M. A. 
Pai, “An explanation and generalization of 
the AESOPS and PEALS algorithms,” 
IEEE Trans. Power Syst., vol. 6, no. 1, pp. 
293–299, Feb. 1991. 

 [16] D. S. Watkins, “Bulge exchanges in 
algorithms of QR type,” SIAM J. Matrix 
Anal. Appl., vol. 19, no. 4, pp. 1074 1096, 
Oct. 1998. 

[17] D. Calvetti, S. M. Kim, and L. Reichel, 
“The restarted QR-algorithm for 
eigenvalue computation of structured 
matrices,” J. Comput. Appl. Math., vol. 
149, pp. 415–422, 2002. 

[18] D. S. Watkins, “The transmission of shifts 
and shift blurring in the QR algorithm,” 
Linear Alg. Appl., vol. 241–243, pp. 877–
896, 1996. 

[19] P. Kundur, G. J. Rogers, D. Y. Wong, L. 
Wang, and M. G. Lauby, “A 
comprehensive computer program 
package for small signal stability analysis 
of power systems,” IEEE Trans. Power 
Syst., vol. 5, no. 4, pp. 1076–1083, Nov. 
1990. 

[20] G. W. Howell and N. Diaa, “Algorithm 841: 
BHESS: Gaussian reduction to a similar 
banded Hessenberg form,” ACM Trans. 
Math. Softw., vol. 31, no. 1, pp. 166–185, 
Mar. 2005. 

[21] W. H. Press, S. A. Teukolsky, W. T. 
Vetterling, and B. P. Flannery, Numerical 
Recipes in C: The Art of Scientific 
Computing, 2nd ed. New York: 
Cambridge Univ. Press, 1992. 

[22] J. A. Scott, “An Arnoldi code for computing 
selected eigenvalues of sparse, real, 
unsymmetric matrices,” ACMTrans. 
Math. Softw., vol. 21, no. 4, pp. 432–475, 
Dec. 1995. 

[23] B. Pal and B. Chaudhuri, Robust Control in 
Power System. New York: Springer, 2005. 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
193 

 

[24] Y. V. Makarov, Z. Y. Dong, and D. J. Hill, 
“A general method for small signal 
stability analysis,” IEEE Trans. Power 
Syst., vol. 13, no. 3, pp. 979–985, Aug. 
1998. 

[25] Akira Nabae, Isao Takahashi, Hirofumi 
Akagi, “A New Neutral-Point-Clamped 
PWM Inverter”, IEEE Transaction on 
Industry Applications, Vol. 17, No. 5, 
September, 1981. 

[26] Jih-Sheng Lai, Fang Zheng Peng, 
“Multilevel Converters – A New Breed of 
Power Converters”, IEEE Transaction on 
Industry Applications, Vol. 32, No. 3, 
May/June, 1996. 

[27] Sakis Meliopoulos, Wenzhong Gao, Sasan 
Jalali, Scott Henneberry, Goerge 
Cokkinides, “Power Quality Assessment 
via Physically Based Statistical 
Simulation Method”. 

[28]Thomas Kailath, “Linear Systems”, Prentice 
Hall, 1980. 

[29]Yousin Tang, A. P. Sakis Meliopoulos, 
“Power system small signal stability 
analysis with 600 Bulk Power System 
Dynamics and Control - VI, August 22-
27, 2004, Cortina d’Ampezzo, Italy 
FACTS elements”, IEEE Trans. of power 
delivery, Vol. 12, No. 3, pp. 1352-1361, 
July 1997. 

[30] A. P. Sakis Meliopoulos, Power System 
Grounding and Transients: An 
Introduction, Marcel Dekker, 1988 
(second printing). 7. CIGRE Working 
Group WG 37-23, “Impact of increasing 
contribution of dispersed generation on 
the power system”, 1997. 

[31] R.H. Lasseter, “Control of Distributed 
Resources”, presented at Bulk Power 
System dynamics and Control IV – 
Restructuring, August 24 28, Santorini, 
Greece 

[32]N.D.Hatziargyriou, T.S.Karakatsanis, 
“Distribution System Voltage and 
Reactive Power Control Based on 
Probabilistic Load Flow Analysis”, IEE 
Proc. Generation, Transmission and 
Distribution, Vol. 144, No. 4, July 1997, 
pp. 363-369. 

[33] “Electricity Tariffs for Embedded 
Renewable Generation”, JOULE III 
Project JOR3-CT98- 0201, 1st Progress 
Report, December 1998. 

[34] “Effect of high wind power penetration on 
the reliability and security of isolated 
power systems”, E.N. Dialynas, N.D. 

Hatziargyriou, N. Koskolos, E. 
Karapidakis, paper 38-302, 37th Session, 
CIGRE, Paris, 30th August-5th September 
1998. 

[35] CIGRE TF38.01.10, “Modeling New Forms 
of Generation and Storage”, April 2001. 

[36] A. P. Sakis Meliopoulos, G. J. Cokkinides 
and Robert Lasseter, “An Advanced 
Model for Simulation and Design of 
Distributed Generation Systems”, 
Proceedings of MedPower 2002, Athens, 
Greece, Nov 3-5, 2002. 

[37] A. P. Sakis Meliopoulos, G. J. Cokkinides 
and Robert Lasseter, “A MultiPhase 
Power Flow Model for µGrid Analssis”, 
Proceedings of the 36st Annual Hawaii 
International Conference on System 
Sciences, p. 61 (pp. 1-7), Big Island, 
Hawaii, January 6-9, 2003 

[38] Wenzhong Gao, E. Solodovnik, R. Dougal, 
G. J. Cokkinides and A. P. Sakis 
Meliopoulos, “Elimination of Numerical 
Oscillations in Power System Dynamic 
Simulation”, Proceedings of APEC 2003, 
pp. 790-794, Miami, FL, Feb 9-13, 

2003. 
[39] Deok Young Kim and A. P. Sakis 

Meliopoulos, “Comparison of Small 
Signal Stability Analysis Methods in 
Complex Systems with Switching 
Elements”, Proceedings of IFAC 2003, pp 
1292-1296, Seoul, Korea, September 15-
19, 2003. 

[40] Sakis Meliopoulos, “Challenges in 
Simulation and Design of Micro Grids”, 
Proceedings of the 2002 IEEE/PES 
Winter Meeting, New York, NY, Jan 28-
31, 2002. 

[41] G. H. Golub and C. F. Van Loan, Matrix 
Computations, 3rd ed. Baltimore, MD: 
John Hopkins Univ. Press, 1996. 

 
 
 
 
 
 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
194 

 

 


