
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

165

ALGORITHM FOR MINING TIME VARYING FREQUENT
ITEMSETS

D.SUJATHA1, PROF.B.L.DEEKSHATULU2

1HOD, Department of IT, Aurora’s Technological and Research Institute, Hyderabad
2Visiting Professor, Department of C&IS, University of Hyderabad

E-Mail: sujata_dandu@yahoo.com, deekshatulu@hotmail.com

ABSTRACT

A popular subfield of data mining is the area of association mining that searches for frequently co-
occurring items in a market-basket type database. A market basket is the list of items a customer purchases
at the super market. We can analyze past transaction data to discover customer behaviors such that quality
of business decision can be improved. The Input of Association mining is large set of transactions each
consisting of a list of items a customer has purchased at a supermarket. This paper focuses on the
composition of the list of frequent itemsets that may change in time as the purchasing habits get affected by
season, fashion and introduction of new products. The output of this algorithm is to get the frequent items
which occur after a particular item or item sets.

Keywords: Data Mining, Association Mining, Algorithm, Frequent Items

1. INTRODUCTION

 This algorithm is used for mining frequent
item sets which is based on prefix tree
representation of given database of transaction
(called an FP tree), which can save considerable
amount of memory for storing the transactions. An
FP-tree is basically a prefix tree for the
transactions. That is, each path represents a set of
transactions that share the same prefix, each node
corresponds to one item. In addition, all nodes
referring to the same item are linked together in a
list, so that all transactions containing a specific
item can easily be found and counted by traversing
this list. The list can be accessed through a head
element, which also states the total number of
occurrences of the item in the database.

 In my implementation the initial FP-tree
is built from a main memory representation of the
(preprocessed) transaction database as a simple list
of integer arrays. This list is sorted
lexicographically (thus respecting the order of the
items in the transactions, which reflects their
frequency). The sorted list can easily be turned into
an FP-tree with a straightforward recursive
procedure: at recursion depth k, the k-th item in
each transaction is used to split the database into

sections, one for each item. For each section a node
of the FP-tree is created and labeled with the item
corresponding to the section. Each section is then
processed recursively, split into subsections, a new
layer of nodes (one per subsection) is created etc.
Note that in doing so one has to take care that
transactions that are only as long as the current
recursion depth are handled appropriately, that is,
are removed from the section before going into
recursion.

2. BACKGROUND

 During the process of mining frequent
itemsets, when the minimum support is little, the
production of candidate sets is a kind of time
consuming and frequent operation in the mining
algorithm. The FP-growth algorithm does not
produce the candidate sets, the database is scanned
twice. During the first database scan the number of
occurrences of each item is determined and
infrequent ones are discarded. Then the frequent
items are ordered descending their support. During
the second database scan the transactions are read
and the frequent items of them are inserted into a so
called FP-tree structure. In this way the database is
pruned and is compressed into the memory.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

166

 In FP growth algorithm the order in which
the items are taken is considered and accordingly
the FP tree is constructed and from this FP tree
frequent items are generated. The FP growth
algorithm mines the frequent items which occur
with the particular item or set of items but this
algorithm does mining to get the frequent items
which occur after a particular item or item sets.

3. METHODOLOGY

By using this FP tree will mine the entire
time varying frequent item set. The idea of this
algorithm is to travel through the tree on the basis
of greater count there by getting the next frequent
items. The algorithm reduces the total number of
candidate itemsets by producing a compressed
version of the database in terms of FP-tree. The FP-
tree stores relevant information and allows for the
efficient discovery of frequent itemsets.

The algorithm is constructed in two steps:
1. Building of the FP-tree.
2. Mining the tree to find the frequent itemsets.

3.1. Building of the FP-Tree:

steps 1. Frequent itemsets along with the count of
transactions containing each item are computed.
The itemsets are sorted in non-decreasing order.
The root of the FP-tree is created with a “null”
label.

steps 2. For each transaction T in the database,
place the frequent itemsets in T in sorted order.
Designate T as consisting of a head and the
remaining items i.e. the tail.

steps 3. Insert itemset information recursively into
the FP-tree with an item name=head, increment the
count associated with N by 1 else create new node,
N with a count of 1, link N to its parent and link N
with the item header table. If tail is nonempty,
repeat the above step using only the tail i.e. the old
head is removed and the new head is the first item
from the tail and the remaining items become the
new tail.

Example:

FP-tree usually contains the null node as a root
node. The construction of FP-tree is shown below.
Before building the tree, the items in a transaction
are arranged in the increasing order. Each node in
the tree contains the following information: content,
count and pointers of the sub tree. Similar nodes in

different transactions are linked together using
pointers.

A. Primitive Transactional Database
 Let the transactional database have 5
transactions. We use Table 1 to illustrate the
algorithm for finding frequent item-sets.

Table 1: Sample Database

T1 D Items Bought
1 101,102,103
2 101,105
3 101,104
4 101,104,105,106
5 101,104

B. Construction of FP-Tree

 With the above observations, one may
construct the frequent-pattern tree as follows: Null
node is taken as the root node, after that we take the
first transaction. In that transaction we select the
item which is brought first, we will check if that
item is present as a child node to the root node, if it
is already present then we increase the count or else
we create a new sub tree.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

167

3.2. Mining the tree to find the frequent itemsets.

 Once the FP-tree is constructed we mine
the frequent time varying items by applying the
algorithm. The frequent items are known as the
basis of count of the particular node. For a
particular item if you want to known which item is
been frequently after that is known by comparing
the count of the child node, the child node which
has highest count is to be considered to be brought
frequently after that item.
If you want to know which three items are
purchased after a particular item, we will make the
item as the root. For Ex: if we want to know the
items that are purchased after 101

Then we will recursively search for the nodes
which has greater count, save that value and move
to that particular node.

(101)

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

168

Algorithm

Input: D, Transactions list; item or itemsets, the
count of frequent itemsets needed

Output: Constructed fp tree and frequent itemsets
in D

Method:

IP_Page();/* To display the input screen */
Insert(int Value);/* To insert into the tree */
Mining();/* perform mining on the tree */
Display();/* To show the output */

Mining Algorithm

Main
Begin

Initialize global variables;
 Initialize graphics mode;

If graphics mode is not initialized then
Display bgi error “graphics
mode is not initialized”; /*
error message */

Endif
Call IP_page(); /* to display the input
screen */
Initialize root;
Open Transaction_file(DB);
If unable to open then

Display error “cannot open
file”;

Endif
Read transaction from file
While not EOF then
Begin

If transaction contains given
IP_items then

Insert (next item);
 Endif

 Else
Continue

 End else
End
Call Mining(); /* after constructing the
tree start the mining */
Call Display(); /* display the frequent
items */
End

(101)

(101)

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

169

/*****************IP_Page**************/

Void IP_Page() /* input page display */
Begin

Display input page using graphics;
End

/*****************Insert () **************/

Int Insert (value)
Begin
I=0;
While i<no of child of root then
If root contains value as child node then

Increment count
Update root to that particular child;

End if
Else

Create new node;
Initialize variable of that particular
node;

 Add this node to the root node;
End else
End

/************Mining() *****************/
Void mining ()
Begin
 Start from root

Check the child node which contains
the greatest count
Begin
 Store that node in an array
End
Repeat the process until you get the
required frequent items

End

/*************Display()***************/
Void Display ()
Begin
 Display the tree;

Display the frequent time varying
items with count

End

4. ALGORITHM PERFORMANCE

ANALYSIS

4.1 Space complexity analysis
 The space cost of this algorithm is mainly
storing the FP-Tree and the size of the FP-Tree is

decided by the length of affair database. Initially
the FP-Tree grows as the database increases but
after reaching a particular stage the tree remains
constant but the count of node only increases. Even
if the database increases, the tree remains constant
therefore less space is required to store.

4.2 Time complexity analysis
 The time complexity of the algorithm
depends on the scanning of the database and then
mining it. As the algorithm requires only one scan
of the database which is decided by its length, So
the average time is O(n).The time complexity for
mining is similar to searching of an n-ary tree. For a
n-ary tree with height h, the upper bound for the
maximum number of leaves is nh.

5. CONCLUSION

 In this paper, we discuss the algorithm for
time varying frequent itemsets which allows using
FP-tree more effectively for mining frequent
itemsets. The results illustrate that the algorithm
can be implemented to know the item or set of
items that are purchased immediately after a
particular item.

REFERENCES:

[1] J.Han, J.Pei, and Y.Yin, “Mining Frequent

Patterns without Candidate Generation,” Proc,
ACM-SIGMOD Int’1 Conf. Management of
Data, pp. 1-12, May 2000.

[2] R.Gopalan, and Y.G.Suchayo, TreeTL-Mine:

Mining Frequent Itemsets Using Pattern
Growth, Tid Intersection and Prefix Tree, in
Proceeding of 15th Australian Joint Conference
on Artificial Intelligence, Canberra, LNAL,
2557, Springer, 2002

[3] K. Wang, L, Tang, J. Him, and J.Liu, ‘Top

Down FP-Growth for Association Rule
Mining,” Proceedings of the 6th Pac$c-Asia
Conference on Advances in Knowledge
Discovery and Data Mining, 2002

[4] R. Agarwal, C. Agarwal, and V.V.V.Prasad, “A

Tree Projection Algorithm for Generation of
Frequent Itemsets,” Journal on Puraflel and
Distributed Computing, 2000, Vol.61, pp, 350-
371

[5] S.Brin, R.Motwani, J.Ullman, and Tsur,

S.Dynamic Itemset counting and implication

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

170

rules for market basket data, In Proc. Of ACM
SIGMO, pp.225-264, 1997

[6] R.Gopalan, and Y.G.Sucahyo, mining Frequent

ItemsetsMore Efficiently, in Proceedings of
2002 International Conference of Fuzzy
Systems and Knowledge Discovery Singapore,
2002

[7] Y.G.Sucahyo, and R.Gopalan, Efficient

Frequent ItemSet Mining using a Compressed
Prefix Tree with PatternGrowth, in
Proceedings of 14th Australian Database
Conference, Adeliade, Australia, 2003

[8] S.Lu, Z, Lu, “Fast mining maximum frequent

itemsets”, Journal of Software, 2001,
12(2):293-297

[9] Y.Song, Y.Zhu, Z.Sun, “An Algorithm and Its

Updating Algorithm Based on FP-Tree for
Mining Maximum Frequent Itemsets”, Journal
of Software, 2003, 14(9): 1586-1592.

[10] D.Lin, Z.M.Kedem, “A new Algorithm for

discovering the maximum frequent set”, IEEE
Transactions on Knowledge and Data
Engineering, 2002, 14(5): 553-566

