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ABSTRACT

Facets of computer science, information theory, quantum mechanics combines to form Quantum
computing. The repression architectural of Von Neumann computers with computational complexity of
classical Algorithms which often deigh down, it makes to identity a better way to handle with skill for
visual information. In classical computer the storage done in hardware is of bits. The bits are Independent
to each other. The connectivity for those Independent bits is given by the software components. Inter
connectivity between the bits in the memory leads to information to be lost. Each independent bit will
represent some property of the associated image, like spatial, light strength. Retrieval of Image is done by
the fetching the binary data from hardware if memory, by the way of independent property of bits. The
reciprocal relationship between the bits of the image which is needed to understand properly about the
Image is left out due to the Von Neumann architecture. An attempt has been made to improve visual
information using QFT transform in the remote sensing data’s for linear feature identification. Here the
images are recorded using the Qubit Lattice and algorithms for an image in qubit have been done in serial
methods.
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1. INTRODUCTION

develop the quantum Fourier transform, which is
The most spectacular discover in quantum the key ingredient for quantum factoring and many
computing to date is that quantum computers can  other interesting quantum algorithms. The quantum
efficiently perform some tasks which are not Fourier transforms is an efficient quantum
feasible on a classical computer. For example, algorithm for performing a Fourier transforms of
finding the prime factorization of n-bit integer is  classical data. But one important task which it does
thought to require exp ((nl/3log2/3n)) operations enable is phase estimation, the approximation of the
using the best classical algorithm known at the time  eigen values of a unitary operator under certain
of writing, the so-called number field sieve(M.A. circumstances. = (M.A. Nielsen and LL.
Nielsen and I.L. Chuang,2000). Chuang,2000). This allows us to solve several other
This is exponential in the size of the number being interesting problems, including the order-finding
factored, so factoring is generally considered to be  problem and the factoring problem. Phase
an intractable problem on a classical computer: it  estimation can also be combined with the quantum
quickly becomes impossible to factor even modest  search algorithm to solve the problem of counting
numbers. In contrast, a quantum algorithm can solutions to a search problems of how the quantum
accomplish the same task using O(n”logn log log  Fourier transform maybe used to solve the hidden
n)operations. (M.A. Nielsen and I.L. Chuang, subgroup problem, a generalization of the phase
2000).That is, a quantum computer can factor a  estimation and order-finding problems that has
number exponentially faster than the best known among its special cases an efficient quantum
classical algorithms. This result is important in its  algorithm for the discrete logarithm problem,
own right, but perhaps the most exciting aspect is  another problem thought to be intractable on a
the question it raises: what other problems can be classical computer.
done efficiently on quantum computers which are
infeasible on a classical computer. In this paper we
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2. METHODOLOGY

An Alternative approach to avoid information in the
Image which is carried out by Von Neumann
architecture is quantum algorithm with associative
memories (Feynman, 1982). By implementing
quantum algorithms in the image processing leads
for faster algorithms with reduced component size.
The images are stored in Qubit with non-entangled
array of qubits. In Quantum algorithms the pixels
which are represented by the correct values of the
frequency values rather than linear combination of
RGB which is followed in the Von Neumann
computers. A System, which is capable of detecting
EM, waves for different frequencies. When an EM
wave has an impact on the system it generates
portionate qubits. The system works as an infective
function. A: F — ¥ where F is the set of
monochromatic electromagnetic waves whose
frequencies can be detected by A and Y is the set of
quantum states of the form ()

¥> = cos 0/2 |0> + sin 6/2 |1>,

where 0/2 € [0, /2] 1)

¥ >=cos 0/2[,'] +sin6/2["],
For each frequency value of EM wave, it is possible
to find a value of theta in Equation 2. The system
can generate the different states of qubits for
different frequency wave. The system consists of
frequency detector and storeded, and for which a
magnetic field equal to the stored EM waves to spin
up or spin down state. By this way quantum state is
generated with real parameter @ equal to the stored
frequency (Simon, 1997).

Recording an Image in a Qubit Lattice

Q= {|h>ij} i=€ {1,2,....1’11 } ,J € {1,2,...112}

@ is a lattice of qubits,

0 =2 dimensional qubit array
M={0},k€{1,2,...n3}

M = 3D of qubit lattice

M = {|h>j} is of n; * n, * n3 qubits

Algorithm for an Image in qubit

1. Set i=0 and j=0

2.The frequency u; for which EM impact on
System will generates qubit |h>1j K € {1,2,...n}
3.Update ij values for visual interpretation which
is in system.

Preceded the algorithm for all frequency which has
impact on the system.

This is of serial methods, and it can be done for
parallel methods also.

The image stored in M

P = ay|o><o| + op|1><1|

P (0y) =cos” @2 p (ay) = sin’ @2

0= color information in every qubit in M
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3. HIVING IMAGES IN ENTANGLED
QUANTUM SYSTEMS.

Entangled Quantum System which measure and
manipulate the systems as a whole, rather than
independent  basis(Feynman,1982).  Entangled
quantum plays a vital role in quantum Computing
and @/p for building Algorithms.

Entangle states

[P>= |01>-[10>
2

|GHZ>= |000>-|111>
N2

One of the most useful ways of solving a problem
in mathematics (or) computer science is to
transform it into some other problem for which a
solution is known. There are a few transformations
of this type that appear so often and in so many
different contexts that the transformations are
studied for their own sake. A great discovery of
quantum computation has been that some such
transformations can be computed much faster on a
quantum computer than on a classical computer, a
discovery which has enabled the construction of
fast  algorithms for quantum  computers
(Feynman,1982).0One such transformation is the
discrete  Fourier transform. In the usual
mathematical notation, the discrete Fourier
transform takes a input vector of complex numbers
where the length N of the vector is a
fixed parameter. It outputs the transformed data, a
vector of complex numbers y....... yn.1 defined by

X0y« .+« - XN-1

N-1 ,
Yi- 1AN X eIV
2

The quantum Fourier transform is exactly the same
transformation, although the conventional notation
for the quantum Fourier transform is somewhat
different. The quantum Fourier transform on
orthonormal basis |0> ....N-1> is defined to be a
linear operator with following action on the basis
states (shor, 1994),

N-1 N
|i> =1AN Jgggj AN K>

Equivalently, the action on an arbitrary state may
be written
N-1

2 Xi[>
=)

N-1
—— Iy

Where the amplitudes y, are the discrete Fourier
transform of the amplitudes x;, it not obvious from
the definition, but this transformation is a unitary
transformation ,and thus can be implemented as the
dynamics for a quantum computer. We shall
demonstrate the unitarily of the Fourier Transform
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by a constructing a manifestly unitary quantum
circuit computing the Fourier transform. It is also
easy to prove directly that the Fourier transform in
unitary. In the following we taken =2", where n is
some integer, and the basis |0>....|]2"-1> is the
computational basis for an n qubit quantum
computer(shor,1994). It is helpful to write the state
|j> using the binary representation j = ji, j2, .-...jn.
More formally, j =j;2"" +j,2"% + ....j.2°. It is also
convenient to adopt the notation O.j;, ji+1 -...jm tO
represent the binary fraction jp + jer14 + Jm /
2™ With a little algebra the quantum Fourier
transform can be given the following useful product
representation (simon,1997).

|j1«njn> N (|0> + eznio.jn|1>) (|O> + eZninn-l _]n|1>)

(|0>+ eZnio,jljZ....jn|l>)

2n/2

This product representation is so useful that you
may even wish to consider this to be the definition
of the QFT. As we explain shortly this
representation allows us to construct an efficient
quantum circuit computing the Fourier transform, a
proof that the quantum Fourier transform is unitary,
and provides insight into algorithms based upon the
quantum Fourier Transform (shor,1994). As an
incidental bonus we obtain the classical fast Fourier
Transform, The equivalence of the product
representation (1) and the definition 2 follows from
some elementary algebra

2n-1

)

k=0

|j> 1/2[1/2 62njik [2n k>
and equal to o
(j0> + ™o 1>)  (j0> + ™M) L (0> +
e27uog 1J2M.Jn| 1>)
qn/2

The product representation (1) makes it easy to
derive an efficient circuit for the quantum Fourier
transforms. Such a circuit is 2 the gate Ry denotes
the unitary transformation

0

eZni/Z k

Ry=| 1

0

To see that|the pictured Circuit computer the

quantum Fourier transform, consider what happens

when the state [j;....Jo> is input. Applying the
Hadamard gate to the first bit produces the state

12" (jo>+ e | 1>)/ jo.oiju>,

Since ¢! =_1 when j,_ 1 and is +1 otherwise,

applying the controlled —R, Rate produces the state.

1/ 21/2 (|0> + eZnioAjljZAmjn|1>) |j2 ...... _] >
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We continue applying the controlled —R; . Ry
thought R,, gates, each of which adds an extra bit to
the phase of the co-efficient of the first [1>,1/ 2
(0> + M-I 1>) >

4. SHOR'S ALGORITHM

Shor's algorithm for factoring a given integer T¢
can be broken into some simple steps.

1.Determine if the number Ttis a prime, a even
number, or an integer power of a prime number. If
it is we will not use Shor's algorithm. There are
efficient classical methods for determining if a
integer T belongs to one of the above groups, and
providing factors for it if it does. This step would
be performed on a classical computer.

q
2.Pick a integer  that is the power of 2 such that

n? < g < 2n?
. This step would be done on a
classical computer (Feynman,1982).
3.Pick a random integer &that is co prime to 7.
When two numbers are co prime it means that their
greatest common divisor is 1. There are efficient
classical methods for picking such an &. This step
would be done on a classical computer.
4. Create a quantum register and partition it into
two sets, register one and register two. Thus the
state of our quantum computer can be given by:
left| )
regl, reg2 . Register one must have enough
g-—1
qubits to represent integers as large as .
Register two must have enough qubits to represent
n—1
integers as large as .
5. Load register one with an equally weighted
g—1
superposition of all integers from 0 to
Load register two with the O state. Our quantum
computer would perform this operation. The total
state of the quantum memory register at this point
is:

15
= z |ﬂ'1 D:‘
ﬁ a=0
6.Apply the transformation &% mod mto for
each number stored in register one and store the

result in register two. Due to quantum parallelism
this will take only one step, as the quantum

computer will only calculate zl® mod n , where

|}

is the superposition of states created in step 5.
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This step is performed on the quantum computer.
The state of the quantum memory register at this
point is:

JZM ™ mod n}

7.Measure the second register, and observe some

value k. This has the side effect of collapsing

register one into a equal superposition of each value
-1

a between 0 and such that

" modn =k
8. The quantum computer performs this operation.
The state of the quantum memory register after this

step is: (shor, 1994)

m

m'—m'EA
Where Ais the set of @'s such that
|| Al
*modn ==k, and is the number of

elements in that set. Compute the discrete Fourier

transform on register one. The discrete Fourier
la)

transform when applied to a state changes it in

the following manner:

1= cae/
- |c}_*E21nmr_'q
i

This step is performed by the quantum computer in
one step through quantum parallelism. After the
discrete Fourier transform our register is in the
state:

g—1

v‘llTZ leﬂ kj 2/
i'cA

9.Measure the state of register one, call this value

TE, this integer TMhas a very high probability of
/r

being a multiple of , where T is the desired

period. The quantum computer performs this step.

10. Take the value M, and on a classical

computer do some post processing which calculates

T based on knowledge of Ttand . There are
many ways to do this post processing, they are
complex are are omitted for clarity in presentation
of the quantum core of Shor's Algorithm. This post
processing is done on a classical computer.
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11. Once you have attained T, a factor of T8can

ged(z™/? + 1,n)

be determined by taking and

ged(z™2 — 1, n)

. If you have found a factor of
., then stop, if not go to step 4. This final step is
done on a classical computer (shor,1994)
Step 11 contains a provision for Shor's algorithm
failing to produce the factors of . Shor's
algorithm can fail for multiple reasons, for example
the discrete Fourier transform could be measured to
be 0 in step 9, making the post processing in step
10 impossible. At other times the algorithm will
sometimes find factors of 1 and @, which is
correct but not useful.

5. CONCLUSION

The above equations can be programmed
using Matlab to convert the bit to qubit and QFT
functions for images are been applied. Still the
study is been continued for the application of the
gft transforms for the remote sensing sensors for
various feature identification.
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