
Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
41 

 

A STUDY ON QAUANTUM FOURIER TRANSFORM AND 
IT’S APPLICATION IN REMOTE SENSING FOR 

IDENTIFICATION OF FEATURES 
 

1N.R.SHANKER, 2 DR.S.S.RAMAKRISHANAN. 
1Research Scholar, Anna University, India 

2Professor in Remote sensing, Anna University 
 

E-mail:nr_phd@yahoo.co.in 
 

 
ABSTRACT 

 
Facets of computer science, information theory, quantum mechanics combines to form Quantum 
computing. The repression architectural of Von Neumann computers with computational complexity of 
classical Algorithms which often deigh down, it makes to identity a better way to handle with skill for 
visual information. In classical computer the storage done in hardware is of bits. The bits are Independent 
to each other. The connectivity for those Independent bits is given by the software components. Inter 
connectivity between the bits in the memory leads to information to be lost. Each independent bit will 
represent some property of the associated image, like spatial, light strength. Retrieval of Image is done by 
the fetching the binary data from hardware if memory, by the way of independent property of bits. The 
reciprocal relationship between the bits of the image which is needed to understand properly about the 
Image is left out due to the Von Neumann architecture. An attempt has been made to improve visual 
information using QFT transform in the remote sensing data’s for linear feature identification. Here the 
images are recorded using the Qubit Lattice and algorithms for an image in qubit have been done in serial 
methods. 
Keywords: - QFT, Von Neumann architecture, transformations, qubit, Fourier transforms 
 
1. INTRODUCTION 
 
The most spectacular discover in quantum 
computing to date is that quantum computers can 
efficiently perform some tasks which are not 
feasible on a classical computer. For example, 
finding the prime factorization of n-bit integer is 
thought to require exp ((n1/3log2/3n)) operations 
using the best classical algorithm known at the time 
of writing, the so-called number field sieve(M.A. 
Nielsen and I.L. Chuang,2000).  
This is exponential in the size of the number being 
factored, so factoring is generally considered to be 
an intractable problem on a classical computer: it 
quickly becomes impossible to factor even modest 
numbers. In contrast, a quantum algorithm can 
accomplish the same task using O(n2llogn log log 
n)operations. (M.A. Nielsen and I.L. Chuang, 
2000).That is, a quantum computer can factor a 
number exponentially faster than the best known 
classical algorithms. This result is important in its 
own right, but perhaps the most exciting aspect is 
the question it raises: what other problems can be 
done efficiently on quantum computers which are 
infeasible on a classical computer. In this paper we 

develop the quantum Fourier transform, which is 
the key ingredient for quantum factoring and many 
other interesting quantum algorithms. The quantum 
Fourier transforms is an efficient quantum 
algorithm for performing a Fourier transforms of 
classical data. But one important task which it does 
enable is phase estimation, the approximation of the 
eigen values of a unitary operator under certain 
circumstances. (M.A. Nielsen and I.L. 
Chuang,2000). This allows us to solve several other 
interesting problems, including the order-finding 
problem and the factoring problem. Phase 
estimation can also be combined with the quantum 
search algorithm to solve the problem of counting 
solutions to a search problems of how the quantum 
Fourier transform maybe used to solve the hidden 
subgroup problem, a generalization of the phase 
estimation and order-finding problems that has 
among its special cases an efficient quantum 
algorithm for the discrete logarithm problem, 
another problem thought to be intractable on a 
classical computer. 
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2. METHODOLOGY 
 
An Alternative approach to avoid information in the 
Image which is carried out by Von Neumann 
architecture is quantum algorithm with associative 
memories (Feynman, 1982). By implementing 
quantum algorithms in the image processing leads 
for faster algorithms with reduced component size. 
The images are stored in Qubit with non-entangled 
array of qubits. In Quantum algorithms the pixels 
which are represented by the correct values of the 
frequency values rather than linear combination of 
RGB which is followed in the Von Neumann 
computers. A System, which is capable of detecting 
EM, waves for different frequencies. When an EM 
wave has an impact on the system it generates 
portionate qubits. The system works as an infective 
function. A: F → Ψ where F is the set of 
monochromatic electromagnetic waves whose 
frequencies can be detected by A and Ψ is the set of 
quantum states of the form () 
Ψ> = cos θ/2 |0> + sin θ/2 |1>,  
where θ/2 € [0 , π/2]   ----------- (1) 
Ψ > = cos θ/2 [0

1]  + sin θ/2 [0
1] , --------(2) 

For each frequency value of EM wave, it is possible 
to find a value of theta in Equation 2. The system 
can generate the different states of qubits for 
different frequency wave. The system consists of 
frequency detector and storeded, and for which a 
magnetic field equal to the stored EM waves to spin 
up or spin down state. By this way quantum state is 
generated with real parameter Ø equal to the stored 
frequency (Simon, 1997). 
Recording an Image in a Qubit Lattice 
Ø = {|h>ij}  i = € {1,2,….n1 } ; j € {1,2,…n2} 
Ø is a lattice of qubits, 
Ø = 2 dimensional qubit array 
M = { Øk} , k € {1,2,….n3} 
M = 3D of qubit lattice 
M = {|h>ijk} is of n1 * n2 * n3 qubits 
Algorithm for an Image in qubit 
1. Set i=0 and j=0 
2. The frequency ųij for which EM impact on 
System will generates qubit |h>ij  K € {1,2,…n} 
3. Update  ij  values for visual interpretation which 
is in system. 
Preceded the algorithm for all frequency which has 
impact on the system. 
This is of serial methods, and it can be done for 
parallel methods also. 
The image stored in M 
P = α1|o><o| + α2|1><1| 
P (α1) = cos2 Ø/2    p (α2) = sin2 Ø/2      
Ø= color information in every qubit in M 

 

3. HIVING IMAGES IN ENTANGLED 
QUANTUM SYSTEMS. 
 
Entangled Quantum System which measure and 
manipulate the systems as a whole, rather than 
independent basis(Feynman,1982). Entangled 
quantum plays a vital role in quantum Computing 
and Ø/p for building Algorithms. 

Entangle states 
 |Ψ>=   |01>-|10>  
                             √2 

|GHZ>= |000>-|111>  
                             √2 
One of the most useful ways of solving a problem 
in mathematics (or) computer science is to 
transform it into some other problem for which a 
solution is known. There are a few transformations 
of this type that appear so often and in so many 
different contexts that the transformations are 
studied for their own sake. A great discovery of 
quantum computation has been that some such 
transformations can be computed much faster on a 
quantum computer than on a classical computer, a 
discovery which has enabled the construction of 
fast algorithms for quantum computers 
(Feynman,1982).One such transformation is the 
discrete Fourier transform. In the usual 
mathematical notation, the discrete Fourier 
transform takes a input vector of complex numbers 
x0,…..xN-1   where the length N of the vector is a 
fixed parameter. It outputs the transformed data, a 
vector of complex numbers y0…….yN-1 defined by 
                   N-1 
YK = 1/√N ∑ xj  e2∏ j ik/N     
                    j=0 

The quantum Fourier transform is exactly the same 
transformation, although the conventional notation 
for the quantum Fourier transform is somewhat 
different. The quantum Fourier transform on 
orthonormal   basis |0> ….|N-1> is defined to be a 
linear operator with following action on the basis 
states (shor, 1994), 
                       N-1 
  | j >   = 1/√N ∑ xj  e2∏ j ik/N   |K> 
                       jk=0 

Equivalently, the action on an arbitrary state may 
be written 

 N-1                                                         N-1 
∑ xj |J>                               ∑ yk |K> 
 j=0                                                            k=0 

Where the amplitudes yk are the discrete Fourier 
transform of the amplitudes xj, it not obvious from 
the definition, but this transformation is a unitary 
transformation ,and thus can be implemented as the 
dynamics for a quantum computer. We shall 
demonstrate the unitarily of the Fourier Transform 
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