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ABSTRACT 
 
This paper presents a simple three phase load flow method to solve three-phase unbalanced radial 
distribution system (RDS). It solves a simple algebraic recursive expression of voltage magnitude, and all 
the data are stored in vector form. The algorithm uses basic principles of circuit theory and can be easily 
understood. Mutual coupling between the phases has been included in the mathematical model. The 
proposed algorithm has been tested with several unbalanced distribution networks and the result of an 
unbalanced RDS is presented in the article. The application of the proposed method is also extended to find 
optimum location for reactive power compensation and network reconfiguration for planning and day-to-
day operation of distribution networks. 

 
Index Terms: Radial Distribution Networks, Load Flow, Circuit Model, Three-Phase Four-Wire, 

Unbalance. 
 
NOMENCLATURE 
 
The three phases, neutral and ground are referred to with the superscripts a, b, c, n, and g, respectively. 
p and q The subscripts p and q in the paper denotes the buses of three phase system. 

a
p

ag
p VV =    Voltage of phase a at bus p with respect to ground. 

ab
pVΔ    Voltage drop between two phases a and b at bus p. 
a
pqVΔ    Voltage drop between buses p and q in phase a. 

aa
pqze    Self-impedance between buses p and q in phase a. 
ab
pqze    Mutual impedance between phases a and b between buses p and q 

a
q

a
q

a
q SLandQLPL ,  Real, reactive and complex power loads at phase a at qth bus. 

phase
qIL    Complex load current at phase (a, b, and c) at qth bus. 
phase

qIC    Charging current at phase (a, b, and c) at qth bus. 
phase
pqI    Complex current at phase (a, b, and c) between buses p and q. 

phase
pqLP  Real power loss in the line between bus p and q in phase (a, b, and c). 
phase
pqLQ  Reactive power loss in the line between bus p and q in phase (a, b, and c). 
phase
pqLS  equals phase

pq
phase

pq jQLLP +  

N  Total number of buses vector beyond the line between bus p and q 
IE  Receiving end bus corresponding to the N vector 
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INTRODUCTION 
 

Load flow technique is very important 
tool for analysis of power systems and used in 
operational as well as planning stages. Certain 
applications, particularly in distribution 
automation and optimization require repeated 
load flow solutions. As the power distribution 
networks become more and more complex, there 
is a higher demand for efficient and reliable 
system operation. Consequently, the most 
important system analysis tool, load flow studies, 
must have the capability to handle various 
system configurations with adequate accuracy 
and speed. 

In many cases, it is observed that the 
radial distribution systems are unbalanced 
because of single-phase, two-phase and three-
phase loads. Thus, load flow solution for 
unbalanced case and, hence special treatment is 
required for solving such networks. 

Due to the high R/X ratios and 
unbalanced operation in distribution systems, the 
Newton-Raphson and ordinary Fast Decoupled 
Load Flow method may provide inaccurate 
results and may not be converged. Therefore, 
conventional load flow methods cannot be 
directly applied to distribution systems. In many 
cases, the radial distribution systems include 
untransposed lines which are unbalanced because 
of single phase, two phase and three phase loads. 
Thus, load flow analysis of balanced radial 
distribution systems [1-3] will be inefficient to 
solve the unbalanced cases and the distribution 
systems need to be analyzed on a three phase 
basis instead of single phase basis. 

There have been a lot of interests in the 
area of three phase distribution load flows. A fast 
decoupled power flow method has been 
proposed in [4]. This method orders the laterals 
instead of buses into layers, thus reducing the 
problem size to the number of laterals. Using of 
lateral variables instead of bus variables makes 
this method more efficient for a given system 
topology, but it may add some difficulties if the 
network topology is changed regularly, which is 
common in distribution systems because of 
switching operations. In [5], a method for 
solving unbalanced radial distribution systems 
based on the Newton-Raphson method has been 
proposed. Thukaram et al. [6] have proposed a 
method for solving three-phase radial 
distribution networks. This method uses the 
forward and backward propagation to calculate 
branch currents and bus voltages. A three-phase 
fast decoupled power flow method has been 

proposed in [6]. This method uses traditional 
Newton-Raphson algorithm in a rectangular 
coordinate system.  

In recent years the three-phase current 
injection method (TCIM) has been proposed [8]. 
TCIM is based on the current injection equations 
written in rectangular coordinates and is a full 
Newton method. As such, it presents quadratic 
convergence properties and convergence is 
obtained for all but some extremely ill-
conditioned cases. Further TCIM developments 
led to the representation of control devices [9], 
[10]. Miu et al., [11] have also proposed method 
for solving three-phase radial distribution 
networks. However, methods proposed by 
researchers reviewed above are very 
cumbersome and large computation time is 
required. 

A fast decoupled G-matrix method for 
power flow, based on equivalent current 
injections, has been proposed in [12] .This 
method uses a constant Jacobian matrix which 
needs to be inverted only once. However, the 
Jacobian matrix is formed by omitting the 
reactance of the distribution lines with the 
assumption that R>>X; and fails if X>R. In [14], 
a method has been suggested for three phase 
power flow analysis in distribution networks by 
combining the implicit Z-bus method [13] and 
the Gauss-Seidel method. This method uses 
fractional factorization of Y-bus matrix. Thus, 
large computational time is necessary for this 
method. The Network Topology method uses 
two matrices, viz. bus injection to branch current 
(BIBC) and branch-current to bus-voltage 
(BCBV) matrices, to find out the solution [15]. 
The Forward-Backward Substitution [16] and 
Ladder Network theory [17] based on 
approaches trace the network to and fro from its 
load end to source end. 

In this article, a simple algorithm is 
developed which is based on basic systems 
analysis method and circuit theory. The purpose 
of this paper is to develop a new computation 
model for radial distribution network, which 
requires lesser computer memory and is 
computationally fast. The proposed method 
involves only recursive algebraic equations to be 
solved to get the following information: 

• Status of the feeder line, and 
overloading of the conductor and feeder 
line currents. 

• Whether the system can maintain 
adequate voltage level for the remote 
loads.  
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• The line losses in each segment. 
• It can also suggest the necessity of re-

routing or network reconfiguration for 
the existing distribution network. 
The algorithm has been developed 

considering that all loads draw constant power. 
However, the algorithm can easily accommodate 
composite load modeling, if the composition of 
load is known. The algorithm has good 
convergence property for practical radial 
distribution networks. 
 
SOLUTION METHODOLOGY 
 
For the analysis of power transmission line, two 
fundamental assumptions are made, namely: 

• Three-phase currents are balanced. 
• Transposition of the conductors to 

achieve balanced line parameters. 
However, distribution systems do not 

lend themselves to either of the two assumptions. 
Because of the dominance of single-phase loads, 
the assumption of balanced three-phase currents 

is not applicable. Distribution lines are seldom 
transposed, nor can it be assumed that the 
conductor configuration is an equilateral triangle. 
When these two assumptions are invalid, it is 
necessary to introduce a more accurate method 
of calculating the line impedance. 

A general representation of a 
distribution system with N conductors can be 
formulated by resorting to the Carson’s 
equations [18], leading to a N×N primitive 
impedance matrix. For most application, the 
primitive impedance matrices containing the self 
and mutual impedance of the each branch need 
to be reduced to the same dimension. A 
convenient representation can be formulated as a 
3×3 matrix in the phase frame, consisting of the 
self and mutual equivalent impedances for the 
three phases. The standard method used to form 
this matrix is the Kron reduction, based on the 
Kirchoff’s laws. For instance a four-wire 
grounded wye overhead distribution line shown 
in fig. 1 results in a 4×4 impedance matrix. The 
corresponding equations are   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Fig. 1 Model of the three-phase four-wire distribution line 
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If the neutral is grounded, the voltage n
pV and n

qV can be considered to be equal. In case, from the lst row 
of eqn. 2, it is possible to obtain 

abc
pq

Tnn
pq

n
pq IzI n

pqz1−
−=          (3) 

and substituting eqn. 3 into eqn. 2, the final form corresponding to the Kron’s reduction becomes 
 abc

pq
abc
pq

abc
q

abc
p IZeVV +=        (4) 
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abc
pqI  is the Current vector through line 

between bus p and q, can be equal to, the sum of 
the load currents of all the buses beyond line 
between bus p and q plus the sum of the charging 
currents of all the buses beyond line between bus 
p and q, of each phase. 

There fore the bus q voltage can be 
computed when we know the bus p voltage, 
mathematically, by rewriting eqn. (4) 
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 (6)     

MODELING OF LOADS 
 
 The loads are generally available in the 
three phase unbalanced distribution systems as 
spot and distributed loads.  
 
SPOT LOADS 
 All the loads are assumed to draw 
complex power ( )qqq jQLPLSL += . It is further 
assumed that all three-phase loads are star and 
delta connected and all double- and single-phase 
loads are connected between line and neutral and 
line to line respectively. 

  
 
 
 
 
 
 
 
 
 
 
Fig. 2 Star Load Model   Fig. 3 Delta Load Model 
                                
 
The Fig. 2 and 3 show the three phase 

unbalanced spot load model. In Fig. 2 and 3 
show the star and delta three-phase loads may 
not be balanced. That is considering bus q, a

qSL , 
b
qSL and c

qSL can be of different values or even 
zeroes. In fact, double-phase and single-phase 

loads are modeled by setting the values of the 
complex power of the non-existing phases to 
zero. 

In the case of three phase loads 
connected in start or single phase loads 
connected line to neutral, the load current 
injections at the qth bus can be given by: 
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The current injections at the qth bus for three phase loads connected in delta or single phase loads 

connected line to line can be expressed by: 
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Eqn. (7) and (8) represents a generalized model for star and delta load models. Where the n is defined as 
follows: 

n=0  constant power  
n=1  constant current 
n=2  constant impedance 

 
 
DISTRIBUTED LOADS 
 

In the unbalanced distribution system, 
loads can be uniformly distributed long a line. 
When the loads are uniformly distributed, it is 
not necessary to model each and every load in 
order to determine the voltage drop from the 
source end to the last loads. 

From D. Shirmohammadi [19], the total 
distributed load on each phase of a line section is 
lumped half-half at the line section's of two end 
buses. So now the load is at bus p and bus q can 
be model as spot loads shown in the Fig. 4. 
Depending on the spot load type use the eqns. (7) 
and (8) to calculate the load current at respective 
p and q buses.  
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   Fig. 4 Distributed load model  
 

 
Line Shunt Charging Model 
 
 
 
 
 
 
 
 
 
 
    

Fig. 5 Shunt capacitance of line sections 
The previous line section model can e improved 
by the inclusion of line charging representation. 
The shunt capacitances phase to phase and phase 
to ground, depicted in Fig. 5, can be taken into 
account through additional current injections. 

 These current injections for 
representing line charging, which should be 
added to the respective compensation current 
injections at buses p and q, are given by 
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LINE CURRENT CALCULATION 
 

A bus in a radial system is connected to 
several other buses. However, owing to the 
structure, in a radial system, it is obvious that a 
bus is connected to the substation through only 
one line that feeds the bus. All the other lines 

connecting the bus to other buses draw load 
current from the bus. Fig. 6 shows phase a of a 
three-phase system where lines between buses p 
and q feed the bus q and all the other lines 
connecting bus q draw current from line  
between bus p and q.  
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Fig. 6 Single phase line section with load connected at bus q between to phase a and neutral n. 

 
 
 
 
 
 
 
 
 
 
         

 
Fig. 7 An eight bus system 

 
 
This is explained using an example. 

Consider the eight bus three-phase radial 
distribution system shown in Fig. 7. The total 
line current supplied through the phase a of the 
line between buses 1 and 2 at bus 2 side is equal 
to the following: 
 

aaaaa IshIshIlIlI 323212 +++=   (10) 
 
Thus, in general, the line current at any phase of 
line between buses p and q may be expressed as 
below: 
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POWER LOSS CALCULATION 
 
Eqn. 11 provides a method to compute the 
currents through the three phase of the branch 
between buses p and q. 
Power fed into the phase a of line between bus p 

and q at bus p is ( )∗⋅ a
pq

a
p IV  

Power fed into the phase a of line between bus p 

and q at bus q is ( )∗⋅ a
qp

a
q IV  

Therefore real and reactive power losses in the 
line between bus p and q may be written as: 
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ALGORITHM 
 

The complete algorithm is presented in 
the flow chart given in Fig. 8 and 9. Fig. 8 shows 
the algorithm to find the number of buses belong 
one particular branch. Fig. 9 shows the algorithm 

Bus 8 
Bus 7 

Bus 6 

Bus 5 

Bus 4 

Bus 3 

Bus 2 

5b 

3a 

4c 

4b 

2c 

2b 

2a 

Substation 

8c 
7c 

6c 

1c 

1b 

1a  ■  
 ■  
 ■  

a
qIL  

a
pqIa

pqI
●
●p 

a
qV  

●● aa
pqze  

●

a
qS  

q

a
qIsh  

●



 Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
47 

 

V
ol

6.
 N

o1
. (

pp
  0

40
 - 

05
1)

 

for load flow solution. In every iteration, the 
following steps are followed. Each bus p in the 
system is considered. As explained in the Load 
Model section using Fig. 6, only one line 
connecting the bus q to the substation feeds the 
bus q. The total line current supplied through this 
line to bus q is determined using eqn. (9).  

With the knowledge of current flowing 
between buses p and q from eqn. (9) at the qth 

bus, using eqn. (4), the algorithm computes the 
voltage at receiving end bus q for the line 
between buses p and q. In this method, the 
algorithm computes the voltages at all the buses 
of the system starting from the substation to all 
the buses downstream. The algorithm stops if the 
changes in the computed bus voltage magnitudes 
are the same in two successive iterations or if IT 
≥ ITMAX. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Flow chart for identify the buses and branches beyond a particular bus 
 
 
 

yes 

no 

yes 

no 
no 

yes 

no 

Start 

Enter the line 
data of RDS 

k = 1

if  
i ≤ count

count = 1 
IE(k, count) = re(k) 

i = 1

num = IE(k, i) 
j = 1

if  
num = =se(j) 

count = count + 1    
IE(k, count) = re(j)

j = j + 1 

if  
j ≤ br 

N(k) = count 

if  
k ≤ br 

k =k + 1

stop 

i = i + 1



 Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
48 

 

V
ol

6.
 N

o1
. (

pp
  0

40
 - 

05
1)

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 9 Flow chart for Load Flow solution 
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ILLUSTRATED EXAMPLE STUDIES AND 
RESULTS 
 
 The effectiveness of the proposed 
method has been explained with two unbalanced 
radial distribution system. 
 
Example 1 
 

A sample system 14.4 kV of 8 buses 
shown in Fig. 7 has been taken from the Taiwan 
Power Corporation [14]. The base values of the 
system are 14.4 kV and 100 kVA. The 
convergence tolerance specified is 0.001 p.u. The 
converged solutions (voltage magnitudes and 
phase angles) are given in Table 1.  
 
 Table 1 Voltages and angle of the 
eight bus system 

Bus 
No 

Ladder Network 
Theory Method 

[17] 
Proposed Method 

|V| 
(p.u.) 

Angle 
(deg.) 

|V| 
(p.u.) 

Angle 
(deg.) 

1a 1.0000 0.00 1.0000 0.00 
1b 1.0000 -120.00 1.0000 -120.00 
1c 1.0000 120.00 1.0000 120.00 
2a 0.9830 0.18 0.9830 0.18 
2b 0.9714 -119.76 0.9714 -119.76 
2c 0.9745 119.97 0.9745 119.97 
3a 0.9822 0.18 0.9823 0.19 
4b 0.9655 -119.73 0.9655 -119.73 
4c 0.9716 119.93 0.9717 119.94 
5b 0.9643 -119.74 0.9644 -119.74 
6c 0.9697 119.92 0.9697 119.92 
7c 0.9731 119.96 0.9731 119.96 
8c 0.9719 119.95 0.9719 119.95 

 
The results obtained by proposed 

method are compared with those given in [17] 
which are obtained using the Ladder Network 
Theory Method are shown in Table 1. For 
proposed method, the maximum deviation from 
the Ladder Network Theory Method is 0.0001 
p.u and 0.01 deg.. Thus, the two discussed 

methods are quite accurate. The minimum 
voltages are highlight in the Table 1 

The number of iterations required for 
Ladder Network Theory Method and proposed 
method are found to be same. However, for a 
larger system, the number of iterations required 
for the Ladder Network Theory Method and 
proposed method may vary.  

The execution time is 0.048 seconds for 
the Ladder Network Theory Method and 0.016 
seconds for the proposed method on P-IV 
computer with 1.6 GHz frequency and 128 MB 
RAM. 

For both methods the load flow 
converged in 2 iterations for the tolerance of 
0.001 p.u. When the tolerance limit is set as 
0.0001, the number of iterations required for the 
convergence is 3 for Ladder Network Theory 
Method and 2 for proposed method. The 
summary of results is shown in the Table 2. 
Table 2 Summary of test result 

Load Flow Method Tolerance 
0.001 

Tolerance 
0.0001 

Ladder Network Theory 
Method [17] 

2 3 

Proposed Method 2 2 
 
From the above discuss, in the point view of the 
number of iterations for the low tolerance and 
time of execution of the Proposed Method is 
superior compared with the Ladder Network 
Theory Method [17]. 
 
Example 2 
In this paper, the standard 4.16 kV IEEE 13 Bus 
Radial Distribution System is used to evaluate 
the performance of the proposed load flow 
algorithm. The line data and load data of the 
system are given in [20]. It is assumed that the 
transformer at the substation is balanced, voltage 
regulators and capacitors at various buses is 
neglected. For the load flow, base voltage and 
base MVA are chosen as 4.16 kV and 100 MVA 
respectively. The results are presented in Table 
3.  
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Table 3 Test results of the IEEE 13 Bus RDS 

Bus |Va| ∠Va |Vb| ∠Vb |Va| ∠Va 
1 1.00000 0.000 1.00000 -120.000 1.00000 120.000 
2 0.95376 -2.123 0.97153 -122.634 0.94217 117.457 
3 0.92698 -5.237 0.97167 -122.765 0.87823 115.037 
4 0.92698 -5.237 0.97167 -122.765 0.87823 115.037 
5 0.95064 -2.198 0.96953 -122.683 0.93937 117.449 
6 0.95064 -2.198 0.96953 -122.683 0.93937 117.449 
7 - - 0.95528 -123.266 0.94730 117.420 
8 - - 0.94965 -123.615 0.94944 117.432 
9 0.92698 -5.237 0.97167 -122.765 0.87823 115.037 

10 0.91870 -5.412 0.97289 -122.858 0.87424 115.154 
11 0.92527 -5.289 - - 0.87492 115.005 
12 - - - - 0.87163 114.925 
13 0.92005 -5.215 - - - - 

 
The total system losses were found to be the following in each phase of the radial system: 
• Phase A: 34.70 kW 150.49 kVAr 
• Phase B: 18.67 kW 87.26 kVAr 
• Phase C: 95.90 kW 197.25 kVAr 
 
Application to find optimum location for 
reactive power compensation 
The application of the proposed load flow 
solution method can also be demonstrated for 
reactive power compensation in distribution 
system. The candidate location for reactive 
power compensation can be defined as the 
location where the feeder losses are minimum 
when it is considered as the feeding source. Here 
the load flow is performed for one iteration at 
each node as possible feeding node and the 
losses are calculated. Then these losses are 
arranged in ascending order. The node, which is 
at the top of the merit order, is the optimum 
feeding node and it is the best location for 
reactive power compensation. Due to some 
geographical or other reason, if the first node in 
merit order is not suitable, the next node in the 
list is selected. 
 
Application to network reconfiguration 
The proposed load flow technique can be 
extended for network reconfiguration, as it is 
efficient and robust for analysing larger 
distribution system with higher number of nodes. 
First we can define the switching option with the 
available switches and total system losses can be 
calculated for each switching option. These loss 
values are arranged in merit order to obtain the 
optimum configuration. 
CONCLUSIONS 
In this paper, a simple and efficient computer 
algorithm has been presented to solve 

unbalanced radial distribution networks. The 
proposed method has good convergence property 
for any practical distribution networks with 
practical R/X ratio. Computationally, this method 
is extremely efficient, as it solves simple 
algebraic recursive equations for voltage 
phasors. Another advantage of the proposed 
method is all the data is stored in vector form, 
thus saving enormous amount of computer 
memory. The proposed algorithm can be used 
effectively with Supervisory Control and Data 
Acquisition (SCADA) and Distribution 
Automation and Control (DAC) as the algorithm 
quickly gets the voltage solution and can be used 
to suggest rerouting or network reconfiguration 
for efficient operation of the system. 
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