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ABSTRACT 

 
In the past decades, electricity markets have significantly restructured in both developed and developing 
countries. In it, Optimal Power Flow (OPF) is emerging as the main function of power generation, 
operation and control. OPF is an optimization problem, in which the utility strives to minimize its 
generation costs while satisfying all its equality and inequality constraints, while the system is operating 
within its security limits. In recent years, the incorporation of subsets of transmission High Voltage 
Direct Current (HVDC) in AC transmission networks brought significant techno-commercial changes in 
the transmission of the electric power in developing countries. This paper aims at (1) presenting Genetic 
Algorithm approach to solve OPF, (2) problem formulation with incorporation of HVDC link in a AC 
transmission system, (3) demonstrating the proposed methodology for IEEE test system and a complex  
and real power system of India and (4) to assess the performance of GAOPF with the traditional OPF 
method. The paper concludes that the proposed scheme is effective for the real network situation in 
developing countries.  
 
Keywords – Optimal Power Flow, Genetic Algorithms, HVDC transmission. 
 
1. INTRODUCTION 
 

In electrical power systems, Optimal 
Power Flow (OPF) is a nonlinear programming 
problem, used to determine generation outputs, 
bus voltages and transformer tap with an 
objective to minimize total generation cost [1]. 
Presently, application of OPF is of much 
importance for power system operation and 
analysis. In a deregulated environment of 
electricity industry, OPF recently been used to 
assess the spatial variation of electricity prices 
and transmission congestion study etc [2].  

In most of its general formulation, the 
OPF is a nonlinear, non-convex, large-scale, 
static optimization problem with both 
continuous and discrete control variables [3]. It 
is due to the presence of nonlinear power flow 
equality constraints. The presence of discrete 
control variables, such as switchable shunt 
devices, transformer tap positions, and phase 
shifters etc., complicates the solution [2]. 
However, they are not assured to converge to 
the global optimum of the general nonconvex 
OPF problem, although there exists some 
empirical evidence on the uniqueness of the 

OPF solution within the domain of interest [4]. 
Effective OPF is limited by the high 

dimensionality of power systems and the incomplete 
domain dependent knowledge of power system 
engineers. Numerical optimization procedures 
addressed the former one based on successive 
linearization using the first and the second 
derivatives of objective functions and their 
constraints as the search directions or by linear 
programming solutions to imprecise models [5-9]. 
The advantages of such methods are in their 
mathematical underpinnings, but disadvantages exist 
also in the sensitivity to problem formulation, 
algorithm selection and usually converge to a local 
minimum. The lateral one precludes also the reliable 
use of expert systems where rule completeness is 
not possible. 

Since OPF was introduced in 1968 [10], 
several methods have been employed to solve this 
problem, e.g. Gradient base, Linear programming 
method [11] and Quadratic programming [12]. 
However, all these methods suffer from problems. 
First, they may not be able to provide optimal 
solution and usually get stuck at a local optimal. 
Some methods, instead of solving the original 
problem, solve the problem’s Karush–Kuhn–Tucker 
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(KKT) optimality conditions. For equality-
constrained optimization problems, the KKT 
conditions are a set of nonlinear equations, 
which can be solved using a Newton-type 
algorithm. In Newton OPF [13], the inequality 
constraints have been added as quadratic 
penalty terms in the problem objective, 
multiplied by appropriate penalty multipliers. 
Interior Point (IP) method [14-16], converts 
the inequality constraints to equalities by the 
introduction of nonnegative slack variables. A 
logarithmic barrier function of the slack 
variables is added to the objective function, 
multiplied by a barrier parameter, which is 
gradually reduced to zero during the solution 
process. The unlimited point algorithm [17] 
uses a transformation of the slack and dual 
variables of the inequality constraints, converts 
the OPF problem KKT conditions to a set of 
nonlinear equations, thus avoiding the heuristic 
rules for barrier parameter reduction required 
by IP method. Recent attempts to overcome 
the limitations of these mathematical 
programming approaches include the 
application of simulated annealing-type 
methods [18-19], and genetic algorithms 
(GAs) etc., [20-21].  

GAs are essentially search algorithm 
based on mechanics of nature and natural 
genetics [22]. They combine solution 
evaluation with randomized, structured 
exchanges of information between solutions to 
obtain optimality. GAs are a robust method 
because restrictions on solution space are not 
made during the process. The power of GAs 
stem from its ability to exploit historical 
information structures from previous solution 
guesses in an attempt to increase performance 
of future solutions [23].  GAs have recently 
found extensive applications in solving global 
optimization searching problem when the 
closed form optimization technique cannot be 
applied. GAs are parallel and global search 
techniques that emulate natural genetic 
operators. The GA is more likely to converge 
toward the global solution because it, 
simultaneously, evaluates many points in the 
parameter space. It does not need to assume 
that the search space is differentiable or 
continuous [24]. In [25], the Genetic 
Algorithm Optimal Power Flow (GAOPF) 
problem is solved based on the use of a genetic 
algorithm load flow, and to accelerate the 
concepts, it is proposed to use the gradient 
information by the steepest decent method. 
The method is not sensitive to the starting 

points and capable to determining the global 
optimum solution to the OPF for a range of 
constraints and objective functions. In Genetic 
Algorithm approach, the control variables modeled 
are generator active power outputs and voltages, 
shunt devices, and transformer taps. Branch flow, 
reactive generation, and voltage magnitude 
constraints have treated as quadratic penalty terms 
in the GA Fitness Function (FF). In [21], GA is used 
to solve the optimal power dispatch problem for a 
multi-node auction market. The GA maximizes the 
total participants’ welfare, subject to network flow 
and transport limitation constraints. The nodal real 
and reactive power injections that clear the market 
are selected as the problem control variables.  

The GAOPF approach overcomes the 
limitations of the conventional approaches in the 
modeling of non-convex cost functions, discrete 
control variables, and prohibited unit-operating 
zones. However, they do not scale easily to larger 
problems, since the solution deteriorates with the 
increase of the chromosome length, i.e., the number 
of control variables.  

In the coming years, power consumption in 
developing and transition countries is expected to 
more than double, whereas in developed countries, it 
will increase only for about 35-40%. In addition, 
many developing and transition countries are facing 
the problems of infrastructure investment especially 
in transmission and distribution segment due to 
fewer investments made in the past. To reduce the 
gap between transmission capacity and power 
demand, the trend is to adopt HVDC transmission 
system in the existing AC networks to gain techno-
economical advantages of the investment. In such 
scenario, it is obvious to address this trend to design 
optimal power flow scheme for a real network 
system. In this paper full ac-dc based GAOPF is 
developed. This methodology also discussed the 
redesign of fitness function by refining penalty 
scheme for system constraints to get faster 
convergence. This avoids the necessity to perform 
early load flows as reported in several literatures [1-
3, 9, 22]. 

After this introduction, section II presents 
the ac-dc based optimal power flow formulation. 
The Genetic Algorithm methodology is explained in 
section III.  The efficiency of the methodology 
applied to the optimal power flow problem 
demonstrated by the IEEE- 14, IEEE -30-bus test 
systems and to a complex and real network power 
system (i.e. 400 kV, MSETCL, India) in section IV. 
Finally, the conclusions are presented  in section V. 
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2.  AC-DC OPTIMAL POWER FLOW 
FORMULATION  
Problem Formulation: 
 

As has been discussed, the objective function 
considered in this paper is to minimize the 
total generation cost. OPF formulation consists 
of three main components: objective function, 
equality constraints, and inequality constraints. 
The methodology is as follows, 
 

AC System Equations 
 

Let P = (p1,…..,pn) and Q = (q1,…..,qn) for a n 
buses system, where pi and qi be active and 
reactive power demands of bus-i, respectively. 
The variables in power system operation to be 
X = (x1,….,xm), such as real and imaginary 
parts of each bus voltage. So the operational 
problem of a power system for given load (P, 
Q) can be formulated as OPF problem [26]  

 

Minimize  ƒ (X, P, Q)          for 
X                (1) 

 

Subject to  S (X, P, Q)   =  0 
           (2) 
  

      T (X, P, Q)   ≤  0 
           (3) 
 

Where S (X) = (s1(X, P, Q),…….,sn1 (X, P, 
Q))T and T (X) = (t1(X, P, Q),……., tn2(X, P, 
Q))T have n1 and  n2  equations respectively, 
and are column vectors. Here AT represents the 
transpose of vector A.   
ƒ (X, P, Q) is a scalar, short term operating 
cost, such as fuel cost. The generator cost 
function )(PGiif in $/MWh is considered to 
have cost characteristics represented by, 

 

∑
=

++=
GN

i
GiGi icibiaf PP

1

2  

           (4) 
Where, PGi  is the real power output; ia , 

ib  and ic  represents the cost coefficient of 
the ith generator,  NG represents the generation 
buses, 
The various constraints to be satisfied during 
optimization are as follows, 
(1) Vector of equality constraint such as power 
flow balance (i.e. Kirchoff’s laws) is to be 
represented as: 

 
 

S (X, P, Q)   = 0   or    
 

PPPP LDCDG ++= and 
QQQQ LDCDG ++=  (5) 

 

Where suffix D represents the demand, G is the 
generation, DC represents dc terminal and L  is the 
transmission loss.  
 

(2) The vector, inequality constraints  including 
limits of all variables i.e. all variables limits and 
function limits, such as upper and lower bounds of 
transmission lines, generation outputs, stability and 
security limits may be represented as, 

 

T (X, P, Q)   ≤ 0 or   
           (6) 
 

(i) The maximum and minimum real and reactive 
power outputs of the generating sources are given 
by, 

 

PPP GiGiGi
maxmin ≤≤  and  QQQ GiGiGi

maxmin ≤≤    (

GBi∈ )    (7) 
 

Where, PP GiGi
maxmin ,  are the minimum and 

maximum real power outputs of the generating 
sources and QQ GiGi

maxmin ,  are the minimum and 
maximum reactive power outputs. 
 

(ii) Voltage limits (Min/Max) signals the system bus 
voltages to remain within a narrow range. These 
limits may be denoted by the following constraints, 

 

VVV iii
maxmin ≤≤    (i= 1,……,NB)           

(8)   
Where, NB represents number of buses. 
 

(iii) Power flow limits refer to the transmission 
line’s thermal or stability limits capable of 
transmitting maximum power represented in terms 
of maximum MVA flow through the lines and it is 
expressed by the following constraints, 

 

PPP fff
maxmin ≤≤     (f= 1,…, Noele )            

(9)   
Where, Noele  represents number of transmission 
lines connected to grid. 
Thus, the operating condition of a combined ac-dc 
electric power system is described by the vector, 

 

tVX xx dc ],,,[δ=                 
(10) 
 

Where, δ  and V are the vectors of the phases and 
magnitude of the phasor bus voltages; xc  is the 
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vector of control variables and xd   is the 
vector of dc variables. 
 
 

DC System Equations 
 

The following relationship is for the dc 
variables. Using the per unit system [27], the 
average value of the dc voltage of a converter 
connected to bus ‘i’ is 

 

IrVaV diciiiidi −= αcos                
(11) 
 

Where, α i is the gating delay angle for 
rectifier operation or the extinction advance 
angle for inverter operation; rci is the 
commutation resistance, and ai  is the 
converter transformer tap setting.  
By assuming a lossless converter, the equation 
of the dc voltage is given by, 

 

ϕ iiidi VaV cos=   
 (12) 
Where, ϕi  = δi-ξi, and ϕ is the angle by 
which the fundamental line current lags the 
line-to-neutral source voltage. 
The real power flowing in or out of the dc 
network at terminal ‘i’ can be expressed as, 

 

ϕ iiidi IVP cos=    or   IVP dididi =            
(13) 
 

The reactive power flow into the dc terminal is  
 

ϕ iiidi IVQ sin=    or   

ϕiiidi IVQ a sin=   (14) 
The equations (13) - (14) can be substituted 
into the equation (5) to form part of the 
equality constraints. 
Based on these relationships, the operating 
condition of the dc system can be described by 
the vector, 

 

taIVX ddd ],cos,,,[ ϕα=                
(15) 
 

The dc currents and voltages are related by the 
dc network equations. As in the ac case, a 
reference bus is specified for each separate dc 
system; usually the bus of the voltage 
controlling dc terminal operating under 
constant voltage (or constant angle) control is 
chosen as the reference bus for that dc network 
equation. 
 

Here (1) – (3) are an OPF problem for the 
demand (P, Q). There are many efficient 
approaches which can be used to get an 

optimal solution such as linear programming, 
Newton method, quadratic programming, nonlinear 
programming, interior point method, artificial 
intelligence (i.e. artificial neural network, fuzzy 
logic, genetic algorithm, evolutionary programming, 
ant colony optimization and particle swarn 
optimization etc.) methods [26, 28]. 
 
3. GENETIC ALGORITHM IN OPF 
PROBLEM 
 

GAs operate on a population of candidate 
solutions encoded to finite bit string called 
chromosome. To attain optimality, each 
chromosome exchanges the information using 
operators borrowed from natural genetics to produce 
the better solution. GAs differ from other 
optimization and search procedures in four ways 
[24]: firstly, it works with a coding of the parameter 
set, not the parameters themselves. Therefore, GAs 
can easily handle integer or discrete variables. 
Secondly, it searches within a population of points, 
not a single point. Therefore, GAs can provide a 
globally optimal solution. Thirdly, GAs use only 
objective function information, not derivatives or 
other auxiliary knowledge. Therefore, it can deal 
with the non-smooth, non-continuous and non-
differentiable functions that actually exist in a 
practical optimization problem. Finally, GAs use 
probabilistic transition rules, not deterministic rules, 
Although GAs seem to be a good method to solve 
optimization problems, sometimes the solution 
obtained from GAs is only a near global optimum 
solution. 
 
3.2 GA applied to Optimal Power Flow 
 

A simple Genetic Algorithm is an iterative 
procedure, which maintains a constant size 
population of candidate solutions. During each 
iteration step, (generation) three genetic operators 
(reproduction, crossover, and mutation) are 
performing to generate new populations (offspring), 
and the chromosomes of the new populations have 
evaluated via the value of the fitness, which is 
related to cost function. Based on these genetic 
operators and the evaluations, the better new 
populations of candidate solution are formed. If the 
search goal has not been achieved, again GA creates 
offspring strings through above three operators and 
the process is continued until the search goal is 
achieved. This paper now describes the details in 
employing the simple GA to solve the optimal 
power flow problem. 
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3.2.1 Coding and Decoding of Chromosome  
 

GAs perform with a population of 
binary string instead the parameters 
themselves. This study used binary coding. 
Here the active generation power set of n-bus 
system (PG1, PG2, PG3, ….PGn ) would be 
coded as binary string (0 and 1) with length L1, 
L2, ……,Ln. Each parameter PGi has upper 
bound )( maxpb iGi and lower bound )( minpa iGi . 
The choice of L1, L2, ……,Ln  for the 
parameters is concerned with the resolution 
specified by the designer in the search space. 
In this method, the bit length Bi and the 
corresponding resolution Ri is associated by, 

12 −
−

= Li
ii

i
ab

R             

         (16) 
This transforms the PGi set into a 

binary string called chromosome with length 
ΣLi and then the search space has to be 
explored. The first step of any GA is to 
generate the initial population. A binary string 
of length L is associated to each member 
(individual) of the population. This string 
usually represents a solution of the problem. A 
sampling of this initial population creates an 
intermediate population.  
 
3.2.2 Genetic Operator: Crossover 
 

It is the primary genetic operator, 
which explores new regions in the search 
space. Crossover is responsible for the 
structure recombination (information exchange 
between mating chromosomes) and the 
convergence speed of the GA and is usually 
applied with high probability (0.5 – 0.9). The 
chromosomes of the two parents selected have 
combined to form new chromosomes that 
inherit segments of information stored in 
parent chromosomes. The strings to be crossed 
have been selected according to their scores 
using the roulette wheel [24]. Thus, the strings 
with larger scores have more chances to be 
mixed with other strings because all the copies 
in the roulette have the same probability to 
select. Many crossover schemes, such as single 
point, multipoint, or uniform crossover have 
been proposed in the literature. A single point 
crossover [1] has been used in our study. 
 
3.2.3 Genetic Operator: Mutation 
 

Mutation is used both to avoid 
premature convergence of the population 

(which may cause convergence to a local, rather 
than global, optimum) and to fine-tune the solutions. 
The mutation operator has defined by a random bit 
value change in a chosen string with a low 
probability of such change. In this study, the 
mutation operator has been applied with a relatively 
small probability (0.0001-0.001) to every bit of the 
chromosome. A sample mutation process has shown 
as below. 

{{{{{{{
PPPPPPP GGGGGGG 7654321

1110001111000100011001010110  

mutation
After→  

{{{{{{{
PPPPPPP GGGGGGG 7654321

1110001111100100011001010110  

 

3.2.4 Genetic Operator: Reproduction 
 

Reproduction is based on the principle of 
survival of the fittest. It is an operator that obtains a 
fixed number of copies of solutions according to 
their fitness value. If the score increases, then the 
number of copies increases too. A score value is 
associated with a given solution according to its 
distance from the optimal solution (closer distances 
to the optimal solution mean higher scores). 
 
3.2.5 Fitness of Candidate Solutions and Cost 
Function 
 

The cost function has defined as: 
 

∑
=

++=
GN

i
GiGi icibiaf PP

1

2 ;  PPP GiGiGi
maxmin ≤≤        

(17) 
To minimize F(x) is equivalent to getting a 

maximum fitness value in the searching process. A 
chromosome that has lower cost function should be 
assigned a larger fitness value. The objective of OPF 
has to be changed to the maximization of fitness to 
be used in the simulated roulette wheel. The fitness 
function is used [3] as follows: 
 

∑ ∗∑ +
=

==

Nc

i
j

NG

i
Gii jPenaltywPF

CFFctionFitnessFun

11
)(

)(

       (18) 
 
  )),((.|),( txhHtxhjPenalty jj=

         (19) 
Where C is the constant; )(PF Gii is cost 

characteristics of the generator i; jw is weighting 

factor of equality and inequality constraints j; 
jPenalty is the penalty function for equality and 
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inequality constraints j; ),( txh j is the 
violation of the equality and inequality 
constraints if positive; H (.) is the Heaviside 
(step) function; Nc is the number of  equality 
and inequality constraints.  

The fitness function has been 
programmed in Matlab 7.1 in such a way that 
it should firstly satisfy all inequality 
constraints by heavily penalizing if they have 
been violated. Then the equality constraints are 
satisfied by less heavily penalizing for any 
violation. Here this penalty weight is not the 
price of power. Instead, the weight is a 
coefficient set large enough to prevent the 
algorithm from converging to an illegal 
solution. Then the GA tries to generate better 
offspring to improve the fitness.  

Using the above components, a 
standard GA procedure for solving the OPF 
problem is shown in figure 1.  

 
 

 
 
 

Figure 1: Flowchart of a Simple Genetic Algorithm 
for OPF 

 
4. EXAMPLE, SIMULATION AND 
RESULTS 
 
4.1 IEEE-14 Bus System 

 
The performance of the proposed 

methodology has been assessed through the 
results obtained with the well-known IEEE-14 
Bus as shown in figure 2 (See Appendix) with 
18 circuits and 4 generators. The generator and 
circuit data have been given in Table A1 (See 
Appendix). A dc link is connected between bus 
1 and bus 14. The ratings of the converter at 
buses 1 and 14 were 1.0 p.u.  The voltage 
values for all buses have been bounded 
between 0.95 and 1.05. The fuel cost function 

for generators is expressed as 
)( 2

icibiaif PP GiGi ++=  in ($/MWh) and demand 
at buses are shown in   Table A2 (See Appendix). 
All the values have been indicated by p.u. The 
results obtained with given methodology are shown 
in Table 1. 

 

Table 1: GAOPF results and Comparison with 
Traditional OPF Method 

No. 

Voltage (PU) Generator Cost 
($/MWh) 

GAOPF Newton 
OPF 

GAOPF Newton 
OPF Best Worst Best Worst 

1 0.98 1.02 0.99    
2 0.99 1.00 0.98 68.47 120.01 90.94 
3 1.01 0.97 0.97 60.34 180.20 90.46 
4 0.96 0.96 0.96    
5 0.97 0.99 0.96    
6 0.99 0.99 1.02 102.6 85.51 89.87 
7 1.02 0.98 0.97    
8 0.99 1.01 1.02 118.6 120.91 88.40 
9 0.98 0.98 0.95    

10 0.97 0.95 0.96    
11 1.01 1.01 0.99    
12 0.98 0.95 1.00    
13 1.03 0.99 0.99    
14 0.97 1.02 0.95    

 
The voltage at several buses obtained by 

GAOPF best solution has shown improvement as 
compared to the Newton method. In addition, total 
cost of generation obtained by GAOPF best solution 
is low.  
 
4.2 Modified IEEE-30 Bus System 
 

This system consists of 6 generators and 43 
transmission lines as shown in figure 2 (See 
Appendix). A dc link connected between bus 1 and 
bus 28. The ratings of the converter at buses 1 and 
28 were 1.0 p.u.  The upper and lower bounds (real 
power) for all generators have shown in Table B1. 
In addition, the upper and lower bounds (reactive 
power) for all generators are 4.04.0 ≤≤− QGi . The 
voltage values for all buses have bounded between 
0.95 and 1.05. The fuel cost function for generators 
is expressed as )( 2 icibiaif PP GiGi ++=  in 
($/MWh) and demand at various buses are shown in 
Table C1. All the values have been indicated in p.u. 
For this system there are 2 × 24 equality constraints 
of S corresponding with their respective real and 
reactive power balances of the buses without a 
generator, and about 72 inequality constraints of T 
corresponding to 30 pairs of voltage, 2 × 6 pairs of 
generation output and one pair of line flow upper 
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and lower bounds respectively. Table 2 
indicates the results for GAOPF and for 
Newton method.  
 

Table 2: OPF Result: GA and Newton Method 
 

Bus  
No. 

Voltage (PU) Generator Cost 
($/MWh)

GAOPF Newton 
OPF 

GAOPF Newton 
OPF Best Worst Best Worst 

1 1.00 0.99 1.00 9.77 1.67 10.55 
2 0.99 1.00 0.99 7.97 1.06 6.53 
3 0.96 0.98 0.99    
4 0.98 0.96 0.98    
5 1.01 1.02 0.99 8.13 1.40 6.52 
6 0.99 1.00 0.97    
7 0.98 0.95 0.98    
8 0.96 0.99 1.03 8.15 0.57 6.93 
9 0.96 1.01 0.99    

10 1.01 1.02 1.02    
11 0.99 1.00 1.01 8.40 0.54 11.87 
12 1.01 0.95 1.00    
13 0.99 1.01 1.01 6.12 0.56 6.90 
14 0.97 0.96 0.99    
15 1.00 1.00 0.99    
16 0.98 0.97 1.00    
17 0.99 0.96 1.00    
18 0.99 1.01 0.99    
19 1.01 0.98 0.99    
20 0.97 1.01 1.03    
21 0.98 0.97 0.99    
22 0.99 0.99 0.98    
23 0.99 1.01 0.99    
24 1.01 1.01 1.02    
25 0.98 0.97 1.03    
26 0.99 1.01 1.02    
27 0.98 0.97 1.05    
28 0.99 0.95 0.99    
29 1.01 0.98 1.05    
30 0.99 0.98. 1.05    

 
 
 

Again, results indicates that the 
voltage profile at few buses have improved for 
best GAOPF solution as compared to 
Newton’s OPF method. In addition, total cost 
of generation by best GAOPF is marginally 
low as compared to Newton’s OPF method.  
 
4.3 Real 400 kV network of Maharashtra 
State Electricity Transmission Company 
Limited (MSETCL), India 
 

India's electricity sector has grown 
from 1,362 MW in 1947 to 143,061 MW till 
30th March 2008. This sector has been 
characterized by shortage of supply vis-à-vis 
demand. To improve the techno-financial 
performances of this sector, Ministry of Power 

Government of India enacted Electricity Act 2003 
and subsequent policy initiatives to outline the 
counters of a suitable enabling framework for the 
overall development of wholesale electricity market.  

On the electricity transmission front, the 
Indian grid has been divided into five sub regional 
grids.  Each has number of constituent sub grids 
formed by state and private utility networks. All 
these sub grids and networks have been connected 
to form a 400 kV national grid.  

Maharashtra State utility has the largest 
installed capacity of 15,580 MW in India. In 2005, it 
was unbundled into Generation, Transmission and 
Distribution Company. At present transmission 
sector is feeling the strain due to low investment 
made in the past. The transmission infrastructure 
consists of ±500 kV HVDC, 400 kV, 220 kV, 132 
kV, 110 kV, 100 kV, 66 kV lines, 486 EHV sub-
stations, and 35626 ckt-km lines with total 
transformation capacity of 22,168 MVA.  

This study considers a real network of 400 
kV Maharashtra State Electricity Transmission 
Company Limited shown in figure 4 (See 
Appendix). It consists of 19 intra-state and 7 inter-
state buses (BHILY, KHANDWA, SDSRV, 
BDRVT, TARAPUR, BOISR and SATPR) through 
which power is purchased to fulfill demand. The 
real demand and generator data have shown in Table 
C1 and C2 (See Appendix). The voltage values for 
all buses have been bounded between 0.96 and 1.04. 
The active power flow constraints of intra-state 
transmission line lie between -0.5 and 0.5, and that 
for inter-state lines is -1.0 and 1.0. The data for 
±500 kV HVDC link that has connected between 
CHDPUR to PADGE have been given in Table C3. 
All the values are indicated in p.u. CHDPUR has 
been taken as a reference bus. There are 2 × 16 
equality constraints corresponding with their 
respective real and reactive power balances of the 
buses without a generator, and 48 inequality 
constraints of 27 pairs of voltage, 2 × 11 pairs of 
generation output and one pair of line flow upper 
and lower bounds respectively. The result obtained 
with given methodology has been shown in Table 3. 
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Table 3: 400 kV, MSETCL, India:  GAOPF 
results and comparison with traditional OPF 

method 
 

Bus  
Name 

Voltage (PU) Generator Cost 
($/MWh) 

GAOPF Newton 
OPF 

GAOPF Newton 
OPF Best Worst Best Worst 

CHDPUR 1.01 0.97 1.02 55.52 43.3 58.27 
KORDY 0.99 1.01 1.05 31.02 25.1 32.38 
BHSWL2 0.97 1.01 1.03    
ARGBD4 1.02 0.98 1.02    
BBLSR2 1.00 0.96 1.03    
DHULE 0.97 0.99 1.05    
PADGE 1.00 1.00 1.01    
KALWA 1.00 0.97 1.00    
KARGAR 1.00 0.97 1.00    
LONKAND 1.02 0.98 1.01    
NGOTNE 1.00 1.00 0.99    
DABHOL 0.96 1.02 0.99 25.72 141.2 21.91 
KOYNA-N 0.96 0.97 0.99    
KOYNA-4 0.98 0.97 0.99 35.51 28.4 34.33 
KLHPR3 0.99 1.00 1.03    
JEJURY 0.97 1.02 0.99    
KARAD2 0.97 1.01 1.01    
SOLPR3 0.99 0.98 1.03    
PARLY2 1.03 0.96 1.05    
BHILY 0.97 1.01 1.05 2.86 26.1 2.87 
KHNDWA 1.00 0.97 1.03 12.04 34.3 12.11 
SDSRV 0.96 0.96 1.03 11.02 87.2 10.67 
BOISR 0.96 1.02 1.04 10.82 162.3 10.75 
MAPUSA 0.98 0.95 1.05    
BDRVT 1.00 0.97 1.02 28.98 46.1 27.71 
TARAPR 1.00 0.98 1.03 13.06 34.5 12.87 
SATPR 1.01 0.99 1.05 10.82 81.0 14.34 

 
The voltage profile at few buses by 

the best GAOPF solution has improved as 
compared to traditional OPF method. In 
addition, generation cost is marginally low as 
compared to Newton’s OPF method.  
 
5. PERFORMANCE EVALUATION 

 
The performance evaluation of AC-

DC based GAOPF and traditional OPF method 
has been tested with reference to parameters 
given in Table 4 and in Table 5. Newton’s 
method takes less iterations to perform the 
OPF for the test system and real network of 
MSETCL. The program execution time 
depends on the equality and inequality 
constraints handled by the methodology. 

The advantage of Newton’s method is that 
the OPF results are obtained in one run only. The 
performance parameters for GA based AC-DC OPF 
for various test system and real networks are shown 
in Table 8.  However, program execution time 
varies from smaller system to larger system and it 
depends on the number of iterations assigned 
initially to obtain the best OPF results.    

 

Table 4: Newton’s Parameters/performance for Best 
Optimal Power Flow 

 

SN Parameters IEEE-14 
Bus  

System 

IEEE-30 
Bus  

System 

400 kV 
MSETCL 

System 
1 No. of 

iterations 
43 58 28 

2 Execution 
Time (sec.) 

20 sec. 40 sec. 25 sec. 

3 No. of Runs 1 1 1 
 

Table 5: GA Parameters/performance for Best OPF 
 

SN Parameters 

Values 
IEEE-
14 Bus 
System

IEEE-
30 Bus 
System 

400 kV 
MSETCL 

1 Initial Population 210 520 1040 
2 No. of iterations 120 150 150 

3 Probability of 
crossover 0.5 0.5-0.9 0.5-0.9 

4 Probability of 
mutation 0.001 0.0001-

0.001 
0.0001- 
0.001 

5 
Execution Time 
(Second) 
(approx.) 

120 825  987 sec. 

6 No. of Runs (for 
best solution) 15 19 27 

 
6. CONCLUSION 
 

This study proposes an AC-DC based GA 
optimal power flow solution which may be applied 
to different size power systems. This method also 
employs its techno-commercial advantage over the 
traditional method of optimal power flow. The 
GAOPF method avoids early load flow as reported 
in other published literatures. This scheme is more 
effective for the real network situation in developing 
countries. Finally, the result obtained by this scheme 
is quite comparable with the traditional OPF 
methodology. 
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APPENDIX 
 

A) IEEE-14 Bus System 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2: Line diagram of IEEE-14 Bus System 

Bus 
Demand 

(PU) 

Real 
Generation 

(PU) 

Reactive 
Generation 

(PU) 

Generation  
Cost 

($?MWh) 
P  Q Max Min Max Min ai bi ci 

1 0.1 0.02 2.1 0.1 0.5 -0.1 0.1 15.0 5 
2 0.16 0.1 1.5 0.1 0.5 -0.1 0.1 15.3 5 
3 0.02 0.0        
4 0.08 0.0        
5 0.09 -0.06 1.5 0.1 0.5 -0.1 0.1 15.2 5 
6 0.00 0.0        
7 0.30 0.0        
8 0.30 0.30 1.5 0.1 0.5 -0.1 0.1 19.3 5 
9 0.00 0.0        
10 0.06 0.0        
11 0.0 -0.18 1.5 0.1 0.6 -0.1 0.1 15.0 5 
12 0.01 0.0        
13 0.0 -0.16 1.5 0.1 0.5 -0.1 0.1 19.0 5 
14 0.06 0.0        
15 0.08 0.0        
16 0.04 0.0        
17 0.09 0.0        
18 0.03 0.0        
19 0.10 0.0        
20 0.02 0.0        
21 0.02 0.01        
22 0.08 0.10        
23 0.03 0.0        
24 0.09 0.0        
25 0.0 0.0        
26 0.04 0.0        
27 0.08 -0.14        
28 0.0 0.0        
29 0.02 0.0        
30 0.01 0.0        
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Table A1: Bus data of Modified IEEE-14 Bus system 

 

Bus 
Demand Real  Gen. 

(PU) 
Reactive 

Gen. (PU) 
Generation  cost 

($/MWh) 
P Q Max Min Max Min ai  bi  ci  

1 0.0 0.0        
2 0.22 0.13 1.5 .01 1 -1 190 12 0.0076 
3 0.94 0.19 1.5 .01 1 -1 200 10 0.0095 
4 0.48 0.0        
5 0.08 0.16        
6 0.10 0.07 2.0 .01 1 -1 190 12 0.0075 
7 0.0 0.0        
8 0.0 0.0 1.5 .01 1 -1 200 10.8 0.0091 
9 0.25 0.17        
10 0.08 0.06        
11 0.04 0.02        
12 0.06 0.02        
13 0.14 0.06        
14 0.15 0.05        

 
B) IEEE-30 Bus System 

 

Table B1: Bus data of Modified IEEE-30 Bus system 
 

 
Figure 3: Line diagram of modified IEEE-30 Bus system 
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C) 400 kV MSETCL, India 

 
Table C1: 400 kV MSETCL: Demand Data (PU) 

Bus Name 
Demand 

(p.u.) Bus Name 
Demand 

(p.u.) 
P Q P Q 

CHDPUR 0.302 0.101 NGOTNE 0.239 0.180 
KORDY 0.393 0.097 DABHOL 0.000 0.000 
BHSWL2 0.434 0.099 KOYNA-N 0.275 0.001 
ARGBD4 0.390 0.081 KOYNA-4 0.000 0.000 
BBLSR2 0.407 0.170 KLHPR3 0.337 0.008 
DHULE 0.287 0.152 JEJURY 0.257 0.102 
PADGE 0.325 0.153 KARAD2 0.383 0.123 
KALWA 0.259 0.155 SOLPR3 0.270 0.011 
KARGAR 0.229 0.146 PARLY2 0.313 0.011 
LONKAND 0.369 0.225    

      
 
 

 
 

Figure 4: A 400 kV MSETCL, India 



 Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
39 

 

V
ol

6.
 N

o1
. (

pp
  0

27
 - 

03
9)

 
 

 
Table C2: 400 kV MSETCL: Generator Data (PU) and Demand Data 

Bus Name 
Generation 
Capacity 

Generation 
Real Power 

Generation  cost 
($/MWh) 

Max Min Max Min ai bi ci 
CHDPUR 2.30 0.2 1.72 0.2 0.20 20.41 10.21 
KORDY 1.04 0.2 0.54 0.2 0.20 21.43 10.21 
BHSWL2        
ARGBD4        
BBLSR2        
DHULE        
PADGE        
KALWA        

KARGAR        
LONKAND        
NGOTNE        
DABHOL 1.20 0.2 1.44 0.2 1.02 71.44 10.21 
KOYNA-N        
KOYNA-4 1.50 0.1 0.19 0.1 0.20 20.41 10.21 
KLHPR3        
JEJURY        

KARAD2        
SOLPR3        
PARLY2        
BHILY   0.6 0.05 0.20 36.94 10.21 

KHANDWA   0.7 0.05 1.02 36.94 10.21 
SDSRV   0.5 0.01 1.02 77.56 10.21 
BOISR   0.2 0.05 1.02 55.72 10.21 
BDRVT   1.8 0.10 0.20 21.43 10.21 

TARAPUR   0.4 0.05 1.02 58.58 10.21 
SATPR   0.2 0.01 1.02 55.72 10.21 

 
Table C3: Data: ±500kV CHDPUR-PADGE HVDC Link 

Particulars Data Particulars Data 

Nominal Continuous 
Power Flow Rating 1500 MW Thyristor Valves: 

Max. voltage 

 
7 kV 

 
Converter Xmer: 

voltage of each pole of 
DC line 

500 kV 
 

Thyristor Valves: 
Rated current 1700 A dc 

Converter Xmer:  
Rated power unit 298.6 MVA Length of the line 753 Km 

Operation: Chdpur 
Converter/Rectifier 

12.5 to 15 
degree 

 
Number of poles 2 

Operation: 
Padge- Inverter 

17  to 22 
degree 

Resistance: 
Chdpur-Padge 

7.5 Ω 
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