www.jatit.org

OPTIMAL CAPACITOR PLACEMENT IN UNBALANCED RADIAL DISTRIBUTION NETWORKS

¹J. B. V. SUBRAHMANYAM

¹Department of Electrical & Electronics Engg, HITS, Hyderabad, AP, India

Email: jbvsjnm@gmail.com

ABSTRACT

This paper presents a novel method to determine the best locations for capacitor placement in unbalanced radial distribution networks and simple GA is used to find the optimal sizing of the capacitor bank. The objective function formulated includes the energy cost, capacitor installation cost and purchase cost, so that the fitness function is to be maximized for the net saving.

Key words: radial distribution networks, capacitor placement, unbalanced, energy cost

1.0 INTRODUCTION

Reactive currents in an electrical utility distribution system produce losses and result in increased ratings for distribution components. Shunt capacitors are commonly used in distribution systems for several reasons, in particular in order to reduce power losses, to improve the voltage profile along the feeders and to increase the maximum flow through cables and transformers. These benefits depend greatly on how capacitors are placed in the system. The general capacitor placement problem is how to optimally determine the locations to install capacitor and sizes of capacitors to be installed in the buses of radial distribution systems [1-3]. Numerous researches were done on optimal capacitor placement in balanced distribution feeders [4-10]. These solutions mainly utilize the positive sequence network model and the associated power flows in formulating the problem. Hence, the results do not directly apply for systems containing feeders with missing phases, unevenly loaded feeders or shunt capacitors on single or double phase feeders. Chiang et. al [11] has used the method of simulated annealing to obtain the optimum values of shunt capacitors for radial distribution networks. H. Kim and S.K You [12] have used genetic algorithm for obtaining the optimum values of shunt capacitor bank. They have treated the capacitors as constant reactive power loads and no method is used to reduce the cpu time. Genetic algorithm based solution is capable of determining a near global solution with lesser computational burden than the simulated annealing method.

In this paper a novel method to determine the best locations for capacitor placement in unbalanced radial distribution networks and simple GA is used to find the optimal sizing of the capacitor bank. The objective function formulated includes the energy cost, capacitor installation cost and purchase cost, so that the fitness function is to be maximized for the net saving.

2

2.0 MATHEMATICAL FORMULATION

The objective function of the present work is to determine the optimal sizes of the capacitors. The problem may be stated as,

Where

KE = Energy Cost (3.0 Rs./kwh)

T = Time Period (8760 hrs)

P = Active power loss before capacitor placement

 $P^{|}$ = Active power loss after capacitor placement

 α = Depreciation factor is 0.2

KI = Installation cost (Rs.50,000 /each location)

KC = Cost of the capacitor (Rs.200/kVAR)

www.jatit.org

u(j) = Capacitor bank rating

Unbalanced three phase power flow

In a three phase unbalanced load flow of distribution system the following components are modeled by their equivalent circuits in terms of inductance, capacitance, resistance and injected current.

Conductors – Individual phase representation for both primary and secondary with capacitive line charging on primary conductor only.

Transformers – A general approach is recommended where by all transformer connections, including the common core transformer, are represented as individual transformers.

Capacitors – Capacitors are represented by their equivalent injected currents.

Loads – The unbalanced loads are basically considered because of single phase, two phase and unequal three phase loads which exist in different types viz. constant power, constant Impedance and constant current.

Shunt admittance and series impedance are represented by the actual phase quantities

3.0 ALGORITHM FOR CANDIDATE NODE IDENTIFICATION

Following algorithm is used to identify the candidate nodes, which are more suitable for capacitor placement.

- Step 1: Read the given data for unbalanced radial distribution system.
- Step 2: Perform the load flows and calculate the base case total active power loss.
- Step 3: By compensating the reactive power injections (Q_c) at each node (except source node) in all the phases, run the load flows and calculate the active power losses in each case.
- Step 4: Calculate the power loss reduction and power loss indices using the following equation

$$PLI(t) = \frac{(X(t) - Y)}{(Z - Y)} \forall t = 2,3, \dots n.$$

Whereas X = Loss reduction; Y = Minimum reduction; Z = Maximum reduction;

Step 5: Select the candidate node whose PLI > Tolerance.

Step 6: Stop.

3. 1 Candidate node identification

Example: 1 25 bus system

The proposed candidate node identification method for capacitor placement is explained with 25- bus system whose line and load data are given in ref [10]. After performing the load flows, the base case total active power loss obtained is **150.1225** KW.

After compensating the reactive power injection at each node in all the phases equal to local reactive load at that particular node, the load flow is performed and the total active power loss and loss reduction in each case are recoreded.table-1 shows the results for 25- bus system.

Table-1 power loss reductions for 25-bus URDS

Node no.	Total Active Power loss after compensating Qc	Loss reduction(KW)
	at each node (in	
	all the	
	phases)(KW)	
2	150.1225	0
3	147.8025	2.3200
4	146.6871	3.4354
5	147.4755	2.6470
6	146.8649	3.2576
7	150.1225	0
8	146.6567	3.4658
9	143.3385	6.7839
10	144.7280	5.3945
11	144.5633	5.5592
12	142.4946	7.6279
13	144.5035	5.6189
14	143.3311	6.7914
15	134.1132	16.0093
16	145.4619	4.6606
17	145.0712	5.0512
18	147.2179	2.9046
19	145.9406	4.1818
20	147.1387	2.9837
21	147.0366	3.0859
22	145.8084	4.3141

www.jatit.org

23	146.3854	3.7370	
24	147.2501	2.8724	
25 146.4120 3.7104			
The manual transformation (DI I) and a local transformation of the second secon			

The power loss indices (PLI) are calculated as

$$PLI[t] = \frac{(Loss \, reduction \, [t] - Min \, reduction)}{(Max \, reduction - Min \, reduction)}$$
....(1)

The power loss indices (PLI) for 25-node system are given in table-2

Table-2 power loss indices for 25-bus URDS

Node no. Power loss Index(PLI			LI)				
		2	0				
		3	0.1449				
		4		0.2146			
	Tole	Node		Total	Net Saving		
	ranc	numbe	rs	capacitor	(R s)		
	e			size			
				(kVar)			
0.9 15			550	634786			
	0.4	9,12,14	,15	1400	10,53,346		
	0.3	9,10,11	,12,1	2000	830751		
		3,14,15	,17				
		5		0.1653			
		6		0.2035			
		7		0			
		8	0.2165				
	9		0.4238				
		10	0.3370				
	11			0.3472			
12			0.4765				
	13			0.3510			
		14		0.4242			
		15		1.0000			
	16			0.2911			
	17			0.3155			
	18		0.1814				
	19		0.2612				
		20		0.1864			
		21 0.1928					
		22 0.2695					
		23		0.2334			
		24		0.1794			
		25		0.2318			

The most suitable nodes for the capacitor placement are chosen based on the condition PLI greater than a PLI tolerance value between '0' and '1'. The tolerance value is selected by experimenting with different values in descending order of the PLI limits. The best value of the tolerance value gives the highest profit, satisfying the system constraints

Fig.1 plot between nodes and PLI For the above case 0.4 is set as the tolerance. From above plot and table-3, it is concluded that nodes **9,12,14,15** are the best candidate nodes for the capacitor placement.

Table-3 Selection of candidate nodes in 25-bus URDS for capacitor placement

Example: 2 - IEEE 37-node system

Node no.	Total Active Power loss after compensating Qc at each node (in all the phases)(KW)	Loss Reductio n (KW)	PLI
2	80.1108	5.5638	1.0000
3	85.6746	0	0
4	85.6746	0	0
5	83.6361	2.0385	0.3664
6	85.6746	0	0
7	85.6746	0	0
8	82.7652	2.9094	0.5229
9	84.5301	1.1445	0.2057
10	80.3769	5.2977	0.9522
11	80.6849	4.9896	0.8968
12	85.6746	0	0

Vol6. Nol. (pp 106 - 115)

www.jatit.org

Table-4 Selection of candidate nodes in IEEE

1483.80541.86920.33601583.12412.55050.45841683.12512.54940.45821785.6746001884.88500.78960.14191985.6746002084.64651.02810.18482184.71470.95990.17252284.56711.10750.19912384.56721.10740.19902485.6746002584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	13	84.5531	1.1215	0.2016
1583.12412.55050.45841683.12512.54940.45821785.6746001884.88500.78960.14191985.6746002084.64651.02810.18482184.71470.95990.17252284.56711.10750.19912384.56721.10740.19902485.6746002584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	14	83.8054	1.8692	0.3360
1683.12512.54940.45821785.6746001884.88500.78960.14191985.6746002084.64651.02810.18482184.71470.95990.17252284.56711.10750.19912384.56721.10740.19902485.6746002584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	15	83.1241	2.5505	0.4584
1785.6746001884.88500.78960.14191985.6746002084.64651.02810.18482184.71470.95990.17252284.56711.10750.19912384.56721.10740.19902485.6746002584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	16	83.1251	2.5494	0.4582
1884.88500.78960.14191985.6746002084.64651.02810.18482184.71470.95990.17252284.56711.10750.19912384.56721.10740.19902485.6746002584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	17	85.6746	0	0
1985.6746002084.64651.02810.18482184.71470.95990.17252284.56711.10750.19912384.56721.10740.19902485.6746002584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	18	84.8850	0.7896	0.1419
2084.64651.02810.18482184.71470.95990.17252284.56711.10750.19912384.56721.10740.19902485.6746002584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	19	85.6746	0	0
2184.71470.95990.17252284.56711.10750.19912384.56721.10740.19902485.6746002584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	20	84.6465	1.0281	0.1848
2284.56711.10750.19912384.56721.10740.19902485.6746002584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	21	84.7147	0.9599	0.1725
2384.56721.10740.19902485.6746002584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	22	84.5671	1.1075	0.1991
2485.6746002584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	23	84.5672	1.1074	0.1990
2584.71000.96460.17342685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	24	85.6746	0	0
2685.6746002785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	25	84.7100	0.9646	0.1734
2785.6746002883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	26	85.6746	0	0
2883.52392.15070.38652983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	27	85.6746	0	0
2983.70761.96700.35353084.97750.69710.12533184.02781.64680.29603285.6746003380.76354.91110.88273483.99171.68280.30253583.22442.45020.44043685.06830.60630.10903781.73483.93980.7081	28	83.5239	2.1507	0.3865
30 84.9775 0.6971 0.1253 31 84.0278 1.6468 0.2960 32 85.6746 0 0 33 80.7635 4.9111 0.8827 34 83.9917 1.6828 0.3025 35 83.2244 2.4502 0.4404 36 85.0683 0.6063 0.1090 37 81.7348 3.9398 0.7081	29	83.7076	1.9670	0.3535
31 84.0278 1.6468 0.2960 32 85.6746 0 0 33 80.7635 4.9111 0.8827 34 83.9917 1.6828 0.3025 35 83.2244 2.4502 0.4404 36 85.0683 0.6063 0.1090 37 81.7348 3.9398 0.7081	30	84.9775	0.6971	0.1253
32 85.6746 0 0 33 80.7635 4.9111 0.8827 34 83.9917 1.6828 0.3025 35 83.2244 2.4502 0.4404 36 85.0683 0.6063 0.1090 37 81.7348 3.9398 0.7081	31	84.0278	1.6468	0.2960
33 80.7635 4.9111 0.8827 34 83.9917 1.6828 0.3025 35 83.2244 2.4502 0.4404 36 85.0683 0.6063 0.1090 37 81.7348 3.9398 0.7081	32	85.6746	0	0
34 83.9917 1.6828 0.3025 35 83.2244 2.4502 0.4404 36 85.0683 0.6063 0.1090 37 81.7348 3.9398 0.7081	33	80.7635	4.9111	0.8827
35 83.2244 2.4502 0.4404 36 85.0683 0.6063 0.1090 37 81.7348 3.9398 0.7081	34	83.9917	1.6828	0.3025
36 85.0683 0.6063 0.1090 37 81.7348 3.9398 0.7081	35	83.2244	2.4502	0.4404
37 81.7348 3.9398 0.7081	36	85.0683	0.6063	0.1090
	37	81.7348	3.9398	0.7081

Tole ranc e	Node numbers	Total capacitor size (kVar)	Net Saving (Rs)
0.8	2 10 11 33	700	3,65,963
0.6	2 10 11 33 37	900	3,72,739
0.5	2 8 10 11 33 37	850	3,41,610

Fig.2 Plot between nodes and PLI

5. Results and Analysis Example 1: 25-bus system

The proposed algorithm is tested on 25-bus unbalanced radial distribution system shown in Fig.3.The line and load data are given in Appendix .The voltage profile with out compensation and with compensation is given in table.5.The summary of test results are given in table.6. The net saving after capacitor placement is shown in table. 3

Fig. 3 - SLD of 25-bus URDS

Example:2 IEEE 37-bus system

The proposed algorithm is tested on IEEE 37 bus test system shown in Fig.5. The load data has changed with some modifications and regulator is not included in the system. The line and load data are given in reference [14]. The capacitor bank considered here is delta connected. The voltage profile with out compensation and with

www.jatit.org

Bu	Without comp	pensation		with compensat	ion	
S						
No.	Va	Vb	Vc	Va	Vb	Vc
	(p.u)	(p.u)	(p.u)	(p.u)	(p.u)	(p.u)
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0.9702	0.9711	0.9755	0.9797	0.9808	0.9843
3	0.9632	0.9644	0.9698	0.9728	0.9742	0.9788
4	0.9598	0.9613	0.9674	0.9694	0.9711	0.9763
5	0.9587	0.9603	0.9664	0.9684	0.9700	0.9754
6	0.9550	0.9559	0.9615	0.9708	0.9722	0.9763
7	0.9419	0.9428	0.9492	0.9641	0.9658	0.9701
8	0.9529	0.9538	0.9596	0.9688	0.9701	0.9744
9	0.9359	0.9367	0.9438	0.9611	0.9640	0.9683
10	0.9315	0.9319	0.9395	0.9587	0.9611	0.9659
11	0.9294	0.9296	0.9376	0.9578	0.9599	0.9651
12	0.9284	0.9284	0.9366	0.9582	0.9601	0.9654
13	0.9287	0.9287	0.9368	0.9571	0.9590	0.9643
14	0.9359	0.9370	0.9434	0.9615	0.9624	0.9667
15	0.9338	0.9349	0.9414	0.9606	0.9609	0.9659
16	0.9408	0.9418	0.9483	0.9631	0.9648	0.9691
17	0.9347	0.9360	0.9420	0.9603	0.9613	0.9653
18	0.9573	0.9586	0.9643	0.9670	0.9684	0.9733
19	0.9524	0.9544	0.9600	0.9621	0.9643	0.9690
20	0.9548	0.9563	0.9620	0.9645	0.9662	0.9710
21	0.9537	0.9549	0.9605	0.9634	0.9647	0.9695
22	0.9518	0.9525	0.9585	0.9615	0.9623	0.9675
23	0.9565	0.9584	0.9648	0.9661	0.9682	0.9738
24	0.9544	0.9565	0.9631	0.9641	0.9663	0.9721
25	0.9520	0.9547	0.9612	0.9617	0.9645	0.9702
15	0.9338	0.9349	0.9414	0.9606	0.9609	0.9659
16	0.9408	0.9418	0.9483	0.9631	0.9648	0.9691
17	0.9347	0.9360	0.9420	0.9603	0.9613	0.9653
18	0.9573	0.9586	0.9643	0.9670	0.9684	0.9733
19	0.9524	0.9544	0.9600	0.9621	0.9643	0.9690
20	0.9548	0.9563	0.9620	0.9645	0.9662	0.9710
21	0.9537	0.9549	0.9605	0.9634	0.9647	0.9695
22	0.9518	0.9525	0.9585	0.9615	0.9623	0.9675
23	0.9565	0.9584	0.9648	0.9661	0.9682	0.9738
24	0.9544	0.9565	0.9631	0.9641	0.9663	0.9721
25	0 9520	0 9547	0.9612	0.9617	0 9645	0.9702

Table.5 Voltage profile of 25busURDS

www.jatit.org

Node No.	Without compensation			with compen	with compensation		
	Vab	Vbc	Vca	vab	Vbc	Vca	
	p.u	p.u	p.u	p.u	p.u	p.u	
799	1.0000	1.0000	1.000	1.0000	1.0000	1.0000	
701	0.9863	0.9855	0.9817	0.9900	0.9898	0.9859	
702	0.9781	0.9772	0.9719	0.9841	0.9837	0.9791	
703	0.9709	0.9715	0.9645	0.9789	0.9791	0.9738	
730	0.9652	0.9667	0.9588	0.9747	0.9746	0.9696	
709	0.9634	0.9651	0.9571	0.9733	0.9732	0.9685	
708	0.9607	0.9631	0.9547	0.9713	0.9714	0.9670	
733	0.9582	0.9621	0.9527	0.9695	0.9702	0.9654	
734	0.9547	0.9606	0.9494	0.9671	0.9685	0.9630	
737	0.9512	0.9596	0.9472	0.9648	0.9672	0.9618	

37-bus URDS for capacitor placement

			<u>.</u>			
738	0.9501	0.9592	0.9461	0.9641	0.9668	0.9609
711	0.9498	0.9590	0.9451	0.9639	0.9666	0.9600
741	0.9497	0.9589	0.9448	0.9638	0.9666	0.9596
713	0.9763	0.9749	0.9697	0.9824	0.9818	0.9773
704	0.9740	0.9718	0.9672	0.9803	0.9792	0.9754
720	0.9727	0.9683	0.9647	0.9793	0.9766	0.9738
706	0.9726	0.9679	0.9646	0.9792	0.9761	0.9737
725	0.9725	0.9675	0.9645	0.9791	0.9758	0.9736
705	0.9761	0.9746	0.9701	0.9823	0.9819	0.9776
742	0.9757	0.9738	0.9699	0.9820	0.9810	0.9774
727	0.9697	0.9709	0.9635	0.9778	0.9785	0.9728
744	0.9690	0.9705	0.9631	0.9771	0.9781	0.9724
729	0.9686	0.9704	0.9630	0.9767	0.9780	0.9723
775	0.9634	0.9651	0.9571	0.9733	0.9732	0.9685
731	0.9632	0.9642	0.9569	0.9731	0.9723	0.9683
732	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
710	0.9542	0.9595	0.9478	0.9666	0.9674	0.9614
735	0.9541	0.9593	0.9473	0.9664	0.9672	0.9609
740	0.9497	0.9588	0.9445	0.9637	0.9665	0.9594
714	0.9737	0.9717	0.9671	0.9800	0.9791	0.9753
718	0.9723	0.9714	0.9667	0.9786	0.9789	0.9749
707	0.9709	0.9629	0.9631	0.9776	0.9725	0.9733
722	0.9707	0.9624	0.9629	0.9774	0.9721	0.9732
724	0.9705	0.9619	0.9629	0.9773	0.9715	0.9731
728	0.9686	0.9701	0.9627	0.9767	0.9777	0.9720
736	0.9536	0.9578	0.9475	0.9660	0.9657	0.9611
712	0.9751	0.9737	0.9691	0.9816	0.9814	0.9768

Table.6 Summary of test results for 25 bus URDS

Vol6. Nol. (pp 106 - 115)

LATT

Fig. 5 - single line diagram of 37-bus URDS

737

compensation is given in table.7.The summary of test results are given in table .8. The net saving after capacitor placement is shown in table.4

738

741

711

Description	25 Node system				
Description	Without			with	
	compensa	ation		compensation	
Total Q_C required (kVAR)	800			1400	
Total reactive power Demand (kVAR)	2560.30			2512.17	
Total reactive power release (kVAR)				48.13	
Min. voltage (p.u)	0.9311			0.9566	
Voltage regulation (%)	7.3			4.53	
Improvement of voltage regulation (%)				2.77	
Total losses (kW)	150.1225			106.3117	
Total Loss reduction (%)				29.18	
Total Demand (kW)	3390			3346.2117	
Total Released demand (kW)				43.8108	
Total Feeder demand (kVA)	4248.2			4184.0	
Total Released feeder demand (kVA)				64.2	
	•	Best		Rs 10,53,346	
Net savings (Rs)		Worst		Rs 10,29,789	
		Avera		Rs 10,52,603	

Table -7 Voltage profile of 37 bus URDS

www.jatit.org

Table -8 Summary of test results for 37 bus

Description	Description		37 Node system			
_		Without	with			
		comp.	comp.			
Total Q _C required (kVA	AR)	800	900			
Total reactive power Do (kVAR)	1419.227	1405.59				
Total Release reactive p		13.63				
Average Min.voltage (p	u)	0.9506	0.9629			
Average Voltage regula	Average Voltage regulation (%)					
Improvement of voltag (%)	e regulation		1.34			
Total losses (kW)		85.6746	68.2187			
Total Loss reduction (%	6)		20.37			
Total Demand (kW)		2838.67	2821.22			
Total Released deman	d(kW)		17.45			
Total Feeder capacity (l	xVA)	3173.7	3152.0			
Total Released feeder ca	apacity (kVA)		21.7			
Net savings (Rs)	Best		Rs 3,72,739			
	Worst		Rs 3,44,237			
	Average		Rs 3,69,621			

URDS

6.0 CONCLUSIONS

In this paper a simple and efficient candidate node identification method algorithm has been presented for the optimal placement of capacitors in unbalanced radial distribution networks and simple GA is used to find the optimal sizing of the capacitor bank. The objective function formulated includes the energy cost, capacitor installation cost and purchase cost, so that the fitness function is to be maximized for the net saving. The effectiveness of the proposed method has been demonstrated through the 25bus unbalanced radial distribution system and the IEEE 37-bus system examples

REFERENCES

 J. J. Grainger and S. H. Lee, "Optimum size and location of shunt capacitors for reduction of losses on distribution feeders", *IEEE Trans. on Power Apparatus and Systems*, Vol. PAS-100, pp.1105-1116, March, 1981.

- [2] M. Baran, F. Wu, "Optimal capacitor placement on radial distribution system", *IEEE Trans. on Power Delivery*, Vol. 4, No. 1, pp.725-734, January, 1989.
- [3] H. Chiang, "Optimal capacitor placements in distribution system: Part I, Part II", *IEEE Trans. on Power Delivery*, Vol. 5, No. 2, pp.634-649, January, 1990.
- [4] J.J.Grainger and S.H.Lee, "Capacity release by shunt capacitor placement on distribution feeders: A new voltage dependent model", *IEEE Trans. on Power Apparatus and Systems*, Vol.100, pp.1236-1244, May 1982.
- [5] J.J.Grainger, S.Civanlar and S.H.Lee, "Optimal design and control scheme for capacitive compensation of distribution feeders: A new voltage dependent model", *IEEE Trans. on Power Apparatus and Systems*, Vol.102, pp.3271-3278, October 1983.
- [6] H.D.Chiang, J.C.Wang, O.Cockings and H.D.Shin, "Optimal capacitor placements in distribution systems", Part-I and Part-II, *IEEE Trans. on Power Delivery*, Vol.5, pp. 634-649, January 1990.
- [7] S.Sundharrajan and A.Pahwa, "Optimal selection of capacitors for radial distribution systems using a genetic algorithm", IEEE Trans. on Power Systems. Vol.9, pp.1499-1507, August 1994.
- [8] S. Sivanagaraju, M.S.Giridhar, E.Jagadeesh Babu, and Y.Srikanth, "A novel load flow technique for radial distribution system", National Power System Conference, NPSC-2, 2004, IIT, Chennai, India, pp. 140-144.
- [9] D. Das, et.al, "Novel method for solving redial distribution Networks", IEE Proc.-C, Vol.141, No. 4, pp. 291-298, July 1994.

www.jatit.org

- [10] M.E. Baran and F.F. Wu, "Optimal sizing of capacitor placed on a radial distribution system", IEEE Trans. on Power Delivery, 1989, PWRD-2, pp. 735-743.
- [11] H-D. Chiang, J-C. Wang, J. Tong and G. Darling, "Optimal Capacitor placement in Large-Scale Unbalanced Distribution System: System Modeling and A new Formulation," *IEEE Trans.* on Power systems, vol.10, No. 1, Feb 1995, pp.355-362.
- [12] H. Kim, S-K. You, "Voltage Profile Improvement by capacitor Placement and control in unbalanced distribution Systems using GA", IEEE power Engineering SocietySummer Meeting, 1999, Vol. 2, pp. 18-22.
- [13] Goldberg, D.E., 1989, "Genetic algorithm in search, optimization, and machine learning", Addison-Wesley Publishing Company, Inc., Reading, MA.
- [14] Radial Distribution test feeders, http://www.ewh.ieee.org/soc/pes/dsacom /testfeeders.html.

ATTT

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

APPENDIX: The data for 25-bus unbalanced system:

Base kV: 4.16; Base MVA: 30

Table 9: Load data and line conductivi	ity of unbalanced system
--	--------------------------

branch	Sending End	Receiving End	Conductor type	Length, ft	Receiving end load in kW		
					A phase	B phase	C phase
1	1	2	1	1000	0	0	0
2	2	3	1	500	35 + j25	40 + j30	45 + j32
3	2	6	2	500	40 + j30	45 + j32	35 + j25
4	3	4	1	500	50 + j40	60 + j45	50 + j35
5	3	18	2	500	40 + j30	40 + j30	40 + j30
6	4	5	2	500	40 + j30	40 + j30	40 + j30
7	4	23	2	400	60 + j45	50 + j40	50 + j35
8	6	7	2	500	0	0	0
9	6	8	2	1000	40 + j30	40 + j30	40 + j30
10	7	9	2	500	60 + j45	50 + j40	50 + j35
11	7	14	2	500	50 + j35	50 + j40	60 + j45
12	7	16	2	500	40 + j30	40 + j30	40 + j30
13	9	10	2	500	35 + j25	40 + j30	45 + j32
14	10	11	2	300	45 + j32	35 + j25	40 + j30
15	11	12	3	200	50 + j35	60 + j45	50 + j40
16	11	13	3	200	35 + j25	45 + j32	40 + j30
17	14	15	2	300	133.3 + j100	133.3 + j100	133.3 + j100
18	14	17	3	300	40 + j30	35 + j25	45 + j32
19	18	20	2	500	35 + j25	40 + j30	45 + j32
20	18	21	3`	400	40 + j30	35 + j25	45 + j32
21	20	19	3	400	60 + j45	50 + j35	50 + j40
22	21	22	3	400	50 + j35	60 + j45	50 + j40
23	23	24	2	400	35 + j25	$\overline{45 + j32}$	40 + j30
24	24	25	3	400	60 + j45	$\overline{50 + j30}$	50 + j35

Table 10: Impedance for different types of conductors

Туре	Impedance in ohms/miles						
1	0.3686+0.6852i 0.0169+0.1515i 0.0155+0.1098i						
	0.0169+0.1515i 0.3757+0.6715i 0.0188+0.2072i						
	0.0155+0.1098i 0.0188+0.2072i 0.3723+0.6782i						
2	0.9775+0.8717i 0.0167+0.1697i 0.0152+0.1264i						
	0.0167+0.1697i 0.9844+0.8654i 0.0186+0.2275i						
	0.0152+0.1264i 0.0186+0.2275i 0.9810+0.8648i						
3	1.9280+1.4194i 0.0161+0.1183i 0.0161+0.1183i						
	0.0161+0.1183i 1.9308+1.4215i 0.0161+0.1183i						
	0.0161+0.1183i 0.0161+0.1183i 1.9337+1.4236i						