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ABSTRACT 

 
The problem of cost estimation in software engineering has been addressed by several researchers. 
Research shows that among many factors that affect the development cost, size of the product plays an 
important role. In addition to the size, product properties like complexity, cohesion and coupling are also 
mentioned as cost factors. We focus on the relationship between complexity of a product to its development 
cost. The aim of this research is to identify the use of complexity metrics as important parameters in 
similarity matching for retrieval of cases in case based effort estimation. The objective is to estimate the 
development effort of student programs based on the values of certain attributes using case based reasoning 
model. We have developed a case based estimation model using complexity metrics and have validated it 
upon student data. Our focus is on object oriented programs.  
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1.  INTRODUCTION  
 

Software cost estimation is one of the most 
important activities for any software development 
project. Before the development of the product, 
estimation of cost is very difficult and without cost 
estimation we cannot proceed further. Developers 
in large projects use measurements to help them 
understand their progress towards completion. 
Metrics gathered from historical data provide an 
estimate of future similar projects. Estimation 
models for predicting software effort have 
motivated considerable research in recent years [1 - 
5] [7] [8] [13].  
 

Due to the nature of the software engineering 
domain, it is important that software cost estimation 
models should be able to deal with imprecision and 
uncertainty associated with such values. It is to 
serve this purpose that we propose our analogy 
based reasoning method for software cost 
estimation [6]. We feel that such models are 
particularly useful when it is difficult to define 
concrete rules about a problem domain in addition 
to this, expert advice may be used to supplement 
the existing stored knowledge. Software metrics 
gather information about a product based on its 

measurable characteristics and hence provide good 
criteria for measuring the similarity of two software 
products [11] [15 – 18] [24 - 25] [31 – 32]. In this 
paper we have proposed a complexity metric and 
used it for retrieving similar cases. The rest of the 
paper is organized as follows: Section 2 gives a 
brief overview of the various complexity metrics 
and the ones used for the study, Section 3 describes 
the related work and approach in general. In 
Section 4 we present Methodology Overview, 
Section 5 presents the Results and in Section 6 
Conclusion is presented. The Appendix provides 
the details of partial data set. 
 
2.  ROLE OF COMPLEXITY  
     METRICS IN PREDICTING  
     DEVELOPMENT EFFORT 
 

Among the most commonly known and earliest 
proposed complexity metrics is the Weighted 
Method per Class (WMC) Metric of Chidamber and 
Kemerer [31 – 32]. Consider a class C1 with 
methods M1, M2, M3,….Mn that are defined in the 
class. Let c1, c2, c3,…..cn be the complexity of the 
methods. 
Then, WMC (Weighted Method per Class) = 
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If all method complexities are considered to be 
unity, then WMC = n, the number of methods. 
Chidamber and Kemerer are of the view that the 
number of methods and the complexity of methods 
involved is a predictor of how much time and effort 
is required to develop and maintain the class. 

Another metric to be mentioned is the Class 
Method Complexity (CMC) Metric. Li’s [38] CMC 
(Class Method Complexity) is the summation of the 
internal structural complexity of all local methods, 
regardless whether they are visible outside the class 
or not (e.g. all public and private methods in C++). 
This definition is essentially the same as the first 
definition of the WMC metric in [13]. However, the 
CMC metric’s theoretical basis and viewpoints are 
significantly different from the WMC metric. The 
CMC metric is directly linked to the effort needed 
to design, implement, test, and maintain a class. 
The more complex a class methods are, the more 
effort is needed to design, implement, test, and 
maintain the methods. 
 
In defining the Class Complexity (CC) Metric 
Balasubramanian [25] states, that class complexity 
is the sum of the number of instance variables in a 
class and the sum of the weighted static complexity 
of a local method in the class. To measure the static 
complexity Balasubramanian uses McCabe’s 
Cyclomatic Complexity where the weighted result 
is the number of nodes subtracted from the sum of 
the number of edges in a program flow graph and 
the number of connected components.  The 
CMOOD metric of Rajnish and Bhattacherjee 
(Complexity Metric for Object Oriented Design) 
for measuring the complexity of class in object-
oriented design is defined as the sum of all private, 
public and protected variables, sum of the formal 
parameters used in all local methods of a class and 
the sum of the weighted static complexity of all 
local methods in the class [18] [33]. 
 

For the purpose of this study, we propose the 
following complexity metric Difficulty Level 
Metric (DLM). It is obtained by multiplying the 
size of a program/ class with its difficulty level. 
Any size measure such as Lines of Code or function 
points (or a combination of the two) could be 
chosen. The difficulty level of software is 
considered to be the difficulty the programmer/ 
developer faces in designing and implementing the 
program. Since the difficulty level is an ordinal 
variable (low, medium, high), we scale it as per the 

formula given in section 4. For example, if a class 
is of 250 lines of code and the difficulty level for 
the programmer is 2 (on a scale of 1 to 3 ranging 
from least to most difficult), then DLM for the class 
is 500.  
 

In our present work we build two models, one 
based on product attributes only and the other 
incorporating the above mentioned complexity 
metrics (CMOOD and DLM). A comparative 
analysis has been done for their predictive 
capability. The study has been conducted at Birla 
Institute of Technology, Ranchi. Post graduate 
students participated in the study. The model was 
developed using Visual Basic at the front end and 
Microsoft Access at the back end.  To make the 
database secure Oracle could be used as the 
database. 
 
3.  RELATED WORK  

 
Several methods have been proposed to estimate 

software cost estimation using soft computing 
approaches, for example, COCOMO [38], neural 
networks [39], and expert judgement [40]. The 
basis for these methods is that similar projects will 
have similar costs. This has been presented by 
several researchers [5] [10] [12] [14] [19 – 20] [22 - 
23] [28] [30]. A. Abran et al have proposed several 
approaches for estimating software cost, Fuzzy 
Analogy being one of them [1 – 4]. V Bhattacherjee 
et al have proposed a framework for expert – case 
based model [29 - 30] [34 – 35]. V. Bhattacherjee 
has proposed and established a soft computing 
approach to development time estimation, 
developing a neural network model based on 
program and programmer attributes [36]. More 
recently, a case based model has been proposed 
considering several attributes [37] however, 
research papers correlating software metrics with 
development effort are few [17 – 18] [21][41].  
 

For the cost estimation of a new project by 
analogy based method, the following steps must be 
done [23]: 

• Measure the features of the new project 
• Identify projects with similar features from 

database 
• get the new estimate using the known 

costs of the retrieved projects 
 

A project P is described by a set of features (f1, 
f2,…….fn, c), where f1, f2,…….fn denote the 
features which are measured at estimation time and 
c is the development cost at completion. 
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 The similarity of two projects P1 and P2 is 
defined as a weighted MinKowski distance: 
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when p = 2, this formula gives the Euclidean 
distance and when p = 1, it gives the Manhattan 
distance.  
 
4.  METHODOLOGY OVERVIEW  

 
For each program, effort was collected and 

accounted for designing and coding the class, 
documenting, testing and correcting it. For the 
effort data collection, the students were instructed 
to record the effort spent on each program. This 
includes all effort for designing, implementing and 
testing/ debugging the programs. 
 

The parameters chosen for the model were 
based upon the following assumptions [24]: 

• the mental discrimination required to 
design and code a program depends upon 
the numbers of methods and number of 
variable names 

• the final lines of code produced affects the 
development time 

• the number of methods is a predictor of 
how much effort is required to develop a 
program 

• the programming language exposure/ 
experience of a programmer affects the 
development time 

• the inherent program difficulty level (as 
experienced by the programmers) also 
affects the development time 

The case base was created by the data collected 
from the student programs. 25% of the data was set 
aside for the validation of the models. Two models 
were created based on the collected data. The 
Model 1 considered the above mentioned 
parameters for retrieval of cases. Model 2 
considered the CMOOD and DLM metrics 
alongwith the parameters of Model 1. 
 

To compute the dissimilarity between objects 
described by variables of mixed type (interval – 
scaled, categorical, ordinal, symmetric/ 
asymmetric, binary or ratio – scaled), the general 

procedure is to combine the different variables into 
a single dissimilarity matrix bringing all of the 
meaningful variables onto a common scale of the 
interval [0.0, 1.0]. Suppose that the data set 
contains p variables of mixed type. The 
dissimilarity d (i, j) between objects i and j is 
defined as: 

d (i, j) =  

∑
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where, δ ij (f) = 0, if 

there is no measurement of variable f for object i or 
j; or x if  =  x jf 

 = 0 and variable f is asymmetric 
binary; otherwise δ ij (f) = 1,    

The contribution of variable f to the 
dissimilarity between i and j, i.e., dij 

(f) is computed 
dependent on its type. All interval – scaled 
variables were normalized by the formula: 
 

x if = 
ff

fifx
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Each ordinal variable was scaled as: 
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where, rif   is the rank of the variable and Mf  is 

the number of ordered states. A small distance 
indicates a high degree of similarity. To determine 
the effort estimate of a new project, its distances to 
each of the stored projects are calculated. The costs 
of the most similar projects are used to estimate the 
new project.  
 

Data collected from students included the 
following: 

• number of lines of code (statements) 
• number of functions 
• number of variables 
• difficulty level of program (low, medium, 

high) 
• number of formal parameters in each 

function 
• exposure to programming language (low, 

medium, high) 
• familiarity of problem area (low, medium, 

high) 
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• development time 
 
5.  DEVELOPMENT OF MODEL 

In this section we briefly describe the 
development steps for the prediction model. As a 
first step towards development of the model, the 
high level requirements were identified as follows: 

• Computation of complexity metric for 
input cases. 

• Prediction  based on analogy  that uses 
various similarity measures.  

• Updation  mechanism to update the 
database as new cases are generated. 

• Modifiaction or removal of a particular 
record. 

• Updation mechanism for adding new 
similarity measures and additional 
parameters.  

  The context level diagram for the proposed system 
is given in Figure 1. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Context Level diagram for the Effort estimation system 

 
 

 
 
A master database is created and maintained to 

store the cases against which the matching process 
has to be performed. Parameters related to the 
software are given as input and the development 
time is predicted by finding the best match from the 
database. The matching is done using varying 
similarity measures like Manhattan and Euclidean. 
Once the result is predicted it is added to the 
database to enhance the accuracy of future 
predictions. The objective is to predict the cost of 
project accurately and use the results in future 
predictions. Increasing the volume of database is 
yet another objective. The larger the database more 
likely the results are to be accurate 
 
6.  RESULTS  

 
We present the results obtained when applying 

the Case Based Reasoning model to the data set.  
 
 

 
 
The accuracy of estimates is evaluated by using 

the magnitude of relative error MRE defined as: 

MRE=  
actualtime

predictedtimeactualtimeabs
_

)__( −

  
 Prediction level Pred is also used to test the 
performance of the model. It is defined as: 

Pred(p)  = N
K  

Where, N is the total size of the data set and K is 
the number of programs with MRE less than or 
equal to p. We calculate Pred (0.25), mean of MRE 
called MMRE and minimum of MRE called 
minMRE. 
 
 Table – 1: Prediction Error Analysis 
(Model - 1: Manhattan Distance) 

 

Parameters Development 
time (minutes) 

MMRE 0.157 

 
Software 

Effort 
Estimation 

System 

User 

Administrator 

Inputs the parameters 
of the Software 

Create an 

Matching 
cases

Reports success or 
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MinMRE 0.00 
Pred (0.25) % 66.667 

R2 0.2125 
 
Table – 2: Prediction Error Analysis 
(Model - 1: Euclidean Distance) 

 

Parameters Development 
time (minutes) 

MMRE 1.571 
MinMRE 0.00 

Pred (0.25)% 13.33 
R2 0.0026 

 
 
Table – 3: Prediction Error Analysis 
(Model - 2: Manhattan Distance) 

 

Parameters Development 
time (minutes) 

MMRE 0.167 
MinMRE 0.00 

Pred (0.25)% 73.33 
R2 0.9612 

 
 
Table – 4: Prediction Error Analysis 
(Model – 2: Euclidean Distance) 

 
 
 
 
 
 
 
 

 
7.  CONCLUSION 

  
The aim of this research was to identify the use 

of complexity metrics as important parameters in 
similarity matching for retrieval of cases in case 
based effort estimation. The objective was to 
estimate the development effort of student 
programs based on the values of certain attributes 
using case based reasoning model. We have used 
complexity metrics for retrieval of similar cases in 
case based estimation. Our focus is on object 
oriented programs. In this research, student 
programs were the target of study. Data regarding 
seven parameters were collected and the associated 
complexity metrics were also calculated. Two case 
based models were developed, one with the 
measured attributes and the other with the metrics 
as well. The improvement in prediction was 250 % 

for Euclidean Distance and 10 % for Manhattan 
Distance. The MRE improved by 79 % for 
Euclidean Distance but decreased by 6 % for 
Manhattan Distance. The Coefficient of 
Determination improved in both the cases. The 
effect of complexity metrics in similarity matching 
for retrieval of cases is to improve the overall 
performance of the models. As part of our ongoing 
work on metrics, we are in the process of 
developing coupling and inheritance based metrics 
and study their effect on other program parameters. 
We also aim to carry on the validation on more 
realistic data. 
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