
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

1

V
ol

6.
 N

o1
. (

pp
 0

01
 -

00
8)

COMPLEXITY METRIC FOR ANALOGY BASED EFFORT
ESTIMATION

1VANDANA BHATTACHERJEE 2PRABHAT KUMAR MAHANTI 3SANJAY KUMAR

1Department of Cs & E, Birla Institute Of Technology, Ranchi

2Department of Csas, Saint John University Of New Brunswick, Canada

3Department of Cs & E, Birla Institute of Technology, Ranchi

E-mail: vbhattacharya@bitmesra.ac.in , pmahanti@gmail.com, k_sanjay71@yahoo.com

ABSTRACT

The problem of cost estimation in software engineering has been addressed by several researchers.
Research shows that among many factors that affect the development cost, size of the product plays an
important role. In addition to the size, product properties like complexity, cohesion and coupling are also
mentioned as cost factors. We focus on the relationship between complexity of a product to its development
cost. The aim of this research is to identify the use of complexity metrics as important parameters in
similarity matching for retrieval of cases in case based effort estimation. The objective is to estimate the
development effort of student programs based on the values of certain attributes using case based reasoning
model. We have developed a case based estimation model using complexity metrics and have validated it
upon student data. Our focus is on object oriented programs.

Keywords: Effort estimation, Case based reasoning, Analogy

1. INTRODUCTION

Software cost estimation is one of the most
important activities for any software development
project. Before the development of the product,
estimation of cost is very difficult and without cost
estimation we cannot proceed further. Developers
in large projects use measurements to help them
understand their progress towards completion.
Metrics gathered from historical data provide an
estimate of future similar projects. Estimation
models for predicting software effort have
motivated considerable research in recent years [1 -
5] [7] [8] [13].

Due to the nature of the software engineering
domain, it is important that software cost estimation
models should be able to deal with imprecision and
uncertainty associated with such values. It is to
serve this purpose that we propose our analogy
based reasoning method for software cost
estimation [6]. We feel that such models are
particularly useful when it is difficult to define
concrete rules about a problem domain in addition
to this, expert advice may be used to supplement
the existing stored knowledge. Software metrics
gather information about a product based on its

measurable characteristics and hence provide good
criteria for measuring the similarity of two software
products [11] [15 – 18] [24 - 25] [31 – 32]. In this
paper we have proposed a complexity metric and
used it for retrieving similar cases. The rest of the
paper is organized as follows: Section 2 gives a
brief overview of the various complexity metrics
and the ones used for the study, Section 3 describes
the related work and approach in general. In
Section 4 we present Methodology Overview,
Section 5 presents the Results and in Section 6
Conclusion is presented. The Appendix provides
the details of partial data set.

2. ROLE OF COMPLEXITY
 METRICS IN PREDICTING
 DEVELOPMENT EFFORT

Among the most commonly known and earliest
proposed complexity metrics is the Weighted
Method per Class (WMC) Metric of Chidamber and
Kemerer [31 – 32]. Consider a class C1 with
methods M1, M2, M3,….Mn that are defined in the
class. Let c1, c2, c3,…..cn be the complexity of the
methods.
Then, WMC (Weighted Method per Class) =

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

2

V
ol

6.
 N

o1
. (

pp
 0

01
 -

00
8)

∑
=

n

i 1

 ci

If all method complexities are considered to be
unity, then WMC = n, the number of methods.
Chidamber and Kemerer are of the view that the
number of methods and the complexity of methods
involved is a predictor of how much time and effort
is required to develop and maintain the class.

Another metric to be mentioned is the Class
Method Complexity (CMC) Metric. Li’s [38] CMC
(Class Method Complexity) is the summation of the
internal structural complexity of all local methods,
regardless whether they are visible outside the class
or not (e.g. all public and private methods in C++).
This definition is essentially the same as the first
definition of the WMC metric in [13]. However, the
CMC metric’s theoretical basis and viewpoints are
significantly different from the WMC metric. The
CMC metric is directly linked to the effort needed
to design, implement, test, and maintain a class.
The more complex a class methods are, the more
effort is needed to design, implement, test, and
maintain the methods.

In defining the Class Complexity (CC) Metric
Balasubramanian [25] states, that class complexity
is the sum of the number of instance variables in a
class and the sum of the weighted static complexity
of a local method in the class. To measure the static
complexity Balasubramanian uses McCabe’s
Cyclomatic Complexity where the weighted result
is the number of nodes subtracted from the sum of
the number of edges in a program flow graph and
the number of connected components. The
CMOOD metric of Rajnish and Bhattacherjee
(Complexity Metric for Object Oriented Design)
for measuring the complexity of class in object-
oriented design is defined as the sum of all private,
public and protected variables, sum of the formal
parameters used in all local methods of a class and
the sum of the weighted static complexity of all
local methods in the class [18] [33].

For the purpose of this study, we propose the
following complexity metric Difficulty Level
Metric (DLM). It is obtained by multiplying the
size of a program/ class with its difficulty level.
Any size measure such as Lines of Code or function
points (or a combination of the two) could be
chosen. The difficulty level of software is
considered to be the difficulty the programmer/
developer faces in designing and implementing the
program. Since the difficulty level is an ordinal
variable (low, medium, high), we scale it as per the

formula given in section 4. For example, if a class
is of 250 lines of code and the difficulty level for
the programmer is 2 (on a scale of 1 to 3 ranging
from least to most difficult), then DLM for the class
is 500.

In our present work we build two models, one
based on product attributes only and the other
incorporating the above mentioned complexity
metrics (CMOOD and DLM). A comparative
analysis has been done for their predictive
capability. The study has been conducted at Birla
Institute of Technology, Ranchi. Post graduate
students participated in the study. The model was
developed using Visual Basic at the front end and
Microsoft Access at the back end. To make the
database secure Oracle could be used as the
database.

3. RELATED WORK

Several methods have been proposed to estimate

software cost estimation using soft computing
approaches, for example, COCOMO [38], neural
networks [39], and expert judgement [40]. The
basis for these methods is that similar projects will
have similar costs. This has been presented by
several researchers [5] [10] [12] [14] [19 – 20] [22 -
23] [28] [30]. A. Abran et al have proposed several
approaches for estimating software cost, Fuzzy
Analogy being one of them [1 – 4]. V Bhattacherjee
et al have proposed a framework for expert – case
based model [29 - 30] [34 – 35]. V. Bhattacherjee
has proposed and established a soft computing
approach to development time estimation,
developing a neural network model based on
program and programmer attributes [36]. More
recently, a case based model has been proposed
considering several attributes [37] however,
research papers correlating software metrics with
development effort are few [17 – 18] [21][41].

For the cost estimation of a new project by
analogy based method, the following steps must be
done [23]:

• Measure the features of the new project
• Identify projects with similar features from

database
• get the new estimate using the known

costs of the retrieved projects

A project P is described by a set of features (f1,
f2,…….fn, c), where f1, f2,…….fn denote the
features which are measured at estimation time and
c is the development cost at completion.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

3

V
ol

6.
 N

o1
. (

pp
 0

01
 -

00
8)

 The similarity of two projects P1 and P2 is
defined as a weighted MinKowski distance:

δ (P1, P2) =

)(
p

p
ii

n

i
i ffabsw

/1

21
1

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−∑

=

when p = 2, this formula gives the Euclidean
distance and when p = 1, it gives the Manhattan
distance.

4. METHODOLOGY OVERVIEW

For each program, effort was collected and

accounted for designing and coding the class,
documenting, testing and correcting it. For the
effort data collection, the students were instructed
to record the effort spent on each program. This
includes all effort for designing, implementing and
testing/ debugging the programs.

The parameters chosen for the model were
based upon the following assumptions [24]:

• the mental discrimination required to
design and code a program depends upon
the numbers of methods and number of
variable names

• the final lines of code produced affects the
development time

• the number of methods is a predictor of
how much effort is required to develop a
program

• the programming language exposure/
experience of a programmer affects the
development time

• the inherent program difficulty level (as
experienced by the programmers) also
affects the development time

The case base was created by the data collected
from the student programs. 25% of the data was set
aside for the validation of the models. Two models
were created based on the collected data. The
Model 1 considered the above mentioned
parameters for retrieval of cases. Model 2
considered the CMOOD and DLM metrics
alongwith the parameters of Model 1.

To compute the dissimilarity between objects
described by variables of mixed type (interval –
scaled, categorical, ordinal, symmetric/
asymmetric, binary or ratio – scaled), the general

procedure is to combine the different variables into
a single dissimilarity matrix bringing all of the
meaningful variables onto a common scale of the
interval [0.0, 1.0]. Suppose that the data set
contains p variables of mixed type. The
dissimilarity d (i, j) between objects i and j is
defined as:

d (i, j) =

∑

∑

=

=
p

f

f
ij

p

f

f
ij

f
ij d

1

)(

1

)()(

δ

δ

where, δ ij (f) = 0, if

there is no measurement of variable f for object i or
j; or x if = x jf

 = 0 and variable f is asymmetric
binary; otherwise δ ij (f) = 1,

The contribution of variable f to the
dissimilarity between i and j, i.e., dij

(f) is computed
dependent on its type. All interval – scaled
variables were normalized by the formula:

x if =
ff

fifx

minmax

min

−

−

Each ordinal variable was scaled as:

z if =
1

1

−

−

f

if
M

r

where, rif is the rank of the variable and Mf is

the number of ordered states. A small distance
indicates a high degree of similarity. To determine
the effort estimate of a new project, its distances to
each of the stored projects are calculated. The costs
of the most similar projects are used to estimate the
new project.

Data collected from students included the
following:

• number of lines of code (statements)
• number of functions
• number of variables
• difficulty level of program (low, medium,

high)
• number of formal parameters in each

function
• exposure to programming language (low,

medium, high)
• familiarity of problem area (low, medium,

high)

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

4

V
ol

6.
 N

o1
. (

pp
 0

01
 -

00
8)

• development time

5. DEVELOPMENT OF MODEL

In this section we briefly describe the
development steps for the prediction model. As a
first step towards development of the model, the
high level requirements were identified as follows:

• Computation of complexity metric for
input cases.

• Prediction based on analogy that uses
various similarity measures.

• Updation mechanism to update the
database as new cases are generated.

• Modifiaction or removal of a particular
record.

• Updation mechanism for adding new
similarity measures and additional
parameters.

 The context level diagram for the proposed system
is given in Figure 1.

Figure 1. Context Level diagram for the Effort estimation system

A master database is created and maintained to

store the cases against which the matching process
has to be performed. Parameters related to the
software are given as input and the development
time is predicted by finding the best match from the
database. The matching is done using varying
similarity measures like Manhattan and Euclidean.
Once the result is predicted it is added to the
database to enhance the accuracy of future
predictions. The objective is to predict the cost of
project accurately and use the results in future
predictions. Increasing the volume of database is
yet another objective. The larger the database more
likely the results are to be accurate

6. RESULTS

We present the results obtained when applying

the Case Based Reasoning model to the data set.

The accuracy of estimates is evaluated by using

the magnitude of relative error MRE defined as:

MRE=
actualtime

predictedtimeactualtimeabs
_

)__(−

 Prediction level Pred is also used to test the
performance of the model. It is defined as:

Pred(p) = N
K

Where, N is the total size of the data set and K is
the number of programs with MRE less than or
equal to p. We calculate Pred (0.25), mean of MRE
called MMRE and minimum of MRE called
minMRE.

 Table – 1: Prediction Error Analysis
(Model - 1: Manhattan Distance)

Parameters Development
time (minutes)

MMRE 0.157

Software

Effort
Estimation

System

User

Administrator

Inputs the parameters
of the Software

Create an

Matching
cases

Reports success or

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

5

V
ol

6.
 N

o1
. (

pp
 0

01
 -

00
8)

MinMRE 0.00
Pred (0.25) % 66.667

R2 0.2125

Table – 2: Prediction Error Analysis
(Model - 1: Euclidean Distance)

Parameters Development
time (minutes)

MMRE 1.571
MinMRE 0.00

Pred (0.25)% 13.33
R2 0.0026

Table – 3: Prediction Error Analysis
(Model - 2: Manhattan Distance)

Parameters Development
time (minutes)

MMRE 0.167
MinMRE 0.00

Pred (0.25)% 73.33
R2 0.9612

Table – 4: Prediction Error Analysis
(Model – 2: Euclidean Distance)

7. CONCLUSION

The aim of this research was to identify the use

of complexity metrics as important parameters in
similarity matching for retrieval of cases in case
based effort estimation. The objective was to
estimate the development effort of student
programs based on the values of certain attributes
using case based reasoning model. We have used
complexity metrics for retrieval of similar cases in
case based estimation. Our focus is on object
oriented programs. In this research, student
programs were the target of study. Data regarding
seven parameters were collected and the associated
complexity metrics were also calculated. Two case
based models were developed, one with the
measured attributes and the other with the metrics
as well. The improvement in prediction was 250 %

for Euclidean Distance and 10 % for Manhattan
Distance. The MRE improved by 79 % for
Euclidean Distance but decreased by 6 % for
Manhattan Distance. The Coefficient of
Determination improved in both the cases. The
effect of complexity metrics in similarity matching
for retrieval of cases is to improve the overall
performance of the models. As part of our ongoing
work on metrics, we are in the process of
developing coupling and inheritance based metrics
and study their effect on other program parameters.
We also aim to carry on the validation on more
realistic data.

8. ACKNOWLEDGEMENT

This research work has been partially funded by
UGC [F. No.: 33 – 61/ 2007 (SR)] under financial
grants for Major Research Project.

9. REFERENCES

[1] A. Abran and N. P. Robillard, (1996),

“Function Points Analysis: An Empirical
Study of its Measurement Processes”,
IEEE Transactions on Software
Engineering, 22(12): pp. 895-909.

[2] A. Idri, L. Kjiri, and A. Abran, (2000),
“COCOMO Cost Model Using Fuzzy
Logic”, in Proceedings of the
7th.International Conference on Fuzzy
theory and Technology, pp.219-223.
Atlantic City, NJ, USA.

[3] A. Idri and A. Abran, (2000b), “Towards a
Fuzzy Logic Based Measures for Software
Project Similarity”, in Proceedings of the
6th. Maghrebian Conference on Computer
Sciences, pp. 9-18, Fes Morocco.

[4] A. Idri and A. Abran, (2001), “A Fuzzy
Logic Based Measures for Software
Project similarity: Validation and Possible
Improvements”, in Proceedings of the 7th.
International Symposium on Software
Metrics, pp. 85-96, England, UK, IEEE.

[5] A. Idri, A. Abran and T.M. Khoshgoftaar,
(2001c), “Fuzzy Analogy: Anew
Approach for Software Cost Estimation”,
in Proceedings of the 11th. International
workshop on software Measurements,
pp.93-101, Montreal, Canada.

[6] A. Aamodt and E. Plaza, (1994), “Case-
Based Reasoning: Foundational Issues,
Methodological Variations and System
Approaches”, AI Communication, IOS
Press, vol. 7:1, pp.39-59.

Parameters Development
time (minutes)

MMRE 0.315
MinMRE 0.00

Pred (0.25)% 46.67
R2 0.211

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

6

V
ol

6.
 N

o1
. (

pp
 0

01
 -

00
8)

[7] B. W. Boehm, Software Engineering
Economics, Englewood Cliffs, NJ:
Prentice Hall, 1981.

[8] B.W. Boehm et. al., (1995), “Cost Models
for Future Software Life Cycle Processes:
COCOMO II”. Annals of Software
Engineering: Software Process and
Product Measurement, Amsterdam.

[9] B. Boehm, S. Chulani, et. al., “Software
Cost Estimation with COCOMO II’,
Prentice Hall, 2000.

[10] G. Kadoda, M. Cartwright, L. Chen, and
M. Shepperd, (2000), “Experiences Using
Case- Based Reasoning to Predict
Software Project Effort”, in Proceeding of
EASE, p.23-28, Keele, UK.

[11] G. Booch, Object Oriented Design with
Applications, Benjamin/ Cummings,
Menlo Park, CA, 1995.

[12] I. Myrtveit and E. Stensrud, (1999), “A
Controlled Experiment to Assess the
Benefits of Estimating with Analogy and
Regression Models”, IEEE transactions on
software Engineering, vol. 25, no. 4, pp.
510-525.

[13] J. Matson, E. B. E. Barrett, J. M.
Mellichamp, (1994), Software
Development Cost Estimation Using
Function Points”, Transaction on Software
Engineering, vol. 20, no. 4, pp. 275-287,
IEEE Computer Society.

[14] K. Ganesan, T. M. Khoshgoftaar, and E.
Allen, (2002), “Case-based Software
Quality Prediction”, International journal
of Software Engineering and Knowledge
Engineering, 10 (2), pp. 139-152.

[15] K. Rajnish and V.Bhattacherjee,
“Maintenance of Metrics through class
Inheritance hierarchy”, in Proceedings of
International conference on Challenges
and Opportunities in IT Industry”, PCTE,
Ludhiana, 2005, pp. 83.

[16] K.Rajnish and V.Bhattacherjee,” A New
Metric for Class Inheritance Hierarchy: An
Illustration”, in Proceedings of National
Conference on Emerging Principles and
Practices of Computer Science &
Information Technology”, GNDEC,
Ludhiana, 2006, pp. 321-325.

[17] K. Rajnish, V. Bhattacherjee, “Class
Cohesion and Development Time: A
Study”, in Proceedings of National
Conference on Methods and Models in
Computing (NCM2C-2006), 18-19
December, 2006, JNU, New-Delhi, India,
2006, pp. 26-34.

[18] K. Rajnish and V. Bhattacherjee,
“Complexity of Class and Development
Time: A Study”, Journal of Theoretical
and Applied Information Technology
(JATIT), Vol. 3, No. 1, Dresden, Germany,
January 2007, pp. 63-70.

[19] L. Angelis and I. Stamelos, (2000), “A
Simulation Tool for Efficient Analogy
Based Cost Estimation”, Empirical
software Engineering, vol. 5, no. 1, pp. 25-
68.

[20] L. Angelis, I. Stamelos, and M. Morisio,
(2001), “Building a Software Cost
Estimation Model Based on Categorical
Data”, in Proceedings of the 7th.

International Software Metrics
Symposium, pp. 4-15, London, UK, IEEE
Computer Society.

[21] L. C. Briand and J. K. Wust, “Modeling
Development Effort in Object – Oriented
Systems Using Design Properties”, IEEE
Trans. Software Eng., 27, 11 (2001), 963 –
986.

[22] M. Shepperd C. Schofield, and B.
Kitchenham, (1996), “Effort Estimation
using Analogy”, in Proceeding of the
18th.International Conference on Software
Engineering, pp.170-178, Berlin.

[23] M. Shepperd and C. Schofield, (1997),
“Estimating Software Project Effort Using
Analogies”, IEEE Transactions on
Software Engineering, vol. 23, no. 12, pp.
736-743, November 1997.

[24] M. Alshayeb and W. Li, “An Empirical
Validation of Object – Oriented Metrics in
Two Different Iterative Software
Processes”, IEEE Trans. on Software
Engineering, 29, 11 (2003), 1043 – 1049.

[25] N. V. Balasubramanian, “Object -
Oriented Metrics”, Asian Pacific Software
Engineering Conference (APSEC-96),
December-1996, pp. 30-34.

[26] R. Pratap, Getting Started with MATLAB
 – V, Oxford University Press, 1998.
[27] R. Gulezian, (1991), “Reformulating and

Calibrating COCOMO”, Journal Systems
Software, vol. 16, pp. 235-242.

[28] S. Vicinanza and M. J. Prietulla, (1990),
“Case-Based Reasoning in Software Effort
Estimation”, in Proceeding of the 11th.
International Conference on Information
System.

[29] S. Kumar and V. Bhattacherjee,
(2005),“Fuzzy logic based Model for
Software cost Estimation”, in Proceedings
of the International Conference on

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

7

V
ol

6.
 N

o1
. (

pp
 0

01
 -

00
8)

Information Technology, Nov’05, PCTE,
Ludhiana, India.

[30] S. Kumar and V.Bhattacherjee, (2007),
“Analogy and Expert Judgment: A Hybrid
Approach to Software Cost Estimation” in
Proceedings of the National Conference
on information Technology: Present
Practices and Challenges, Sep’07, New
Delhi, India.

[31] S. R. Chidamber and C. F. Kemerer,
“Towards a Metrics Suite for Object
Oriented Design”, in Proceedings of Sixth
OOPSLA Conference, 1991, 197 – 211.

[32] S. R. Chidamber and C. F. Kemerer, “A
Metrics Suite for Object Oriented Design”,
IEEE Transactions on Software
Engineering, 20, 6(1994), 476 – 493.

[33] V. Bhattacherjee and K.Rajnish, “Class
Complexity: A Case Study”, Proceedings
of First International Conference on
Emerging Applications of Information
Technology (EAIT-2006), Kolkata, India,
2006, pp. 253-258.

[34] V. Bhattacherjee and S. Kumar, (2004),
“Software Cost Estimation and its
relevance in the Indian Software
Industry”, in Proceedings of the
International Conference on Emerging
Technologies IT Industry, Nov’05, PCTE,
Ludhiana India.

[35] V. Bhattacherjee and S .Kumar, (2006),
“An Expert - Case Based Framework for
Software Cost Estimation”, in Proceedings
of the National Conference on Soft
Computing Techniques for Engineering
Application (SCT-2006), NIT, Rourkela.

[36] V. Bhattacherjee, (2006), “The Soft
Computing Approach to Program
Development Time Estimation” in
Proceeding of the International
Conference on Information Technology,
ICIT 06, Dec’06, Bhubaneswar, India,
IEEE Computer Society.

[37] V. Bhattacherjee, S. Kumar and E. Rashid
(2008), “Estimation of Software
development Effort in University Setting:
A Case Study”, in Proceeding of the
National Conference on Architecturing
Future IT Systems NCAFIS – 08, Indore,
pp. 40 - 43

[38] Wei Li, (1998)“Another Metric Suite for
Object-Oriented Programming”, The
Journal of System and Software”, 44, pp.
155-162.

[39] J. Bode, (1998)“Decision Support with
Neural Networks in the Management of
Research and Development: Concepts and
Application to Cost Estimation”,
Information and Management, no. 34, pp.
33 – 40

[40] R. Hughes, (1996), “Expert Judgement as
an Estimating Method”, Information and
Software Technology, Vol. 38, no. 2, pp.
67 – 75, 1996

[41] V. Bhattacherjee, (2008), ”Use of Complexity
Metric for Similarity Matching in
Software Development Effort Estimation”,
Accepted for presentation at NCM2C,
JNU, New Delhi, December 8 – 9, 2008

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

8

V
ol

6.
 N

o1
. (

pp
 0

01
 -

00
8)

APPENDIX

