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ABSTRACT 

The conventional high level synthesis techniques target DSP algorithms onto architectures using basic 
functional units such as adders or multipliers. In this paper, a scheme for the partitioning of the data flow 
graph of a DSP application for a high-level synthesis aimed at a design using multi-modules is proposed. In 
the propose scheme, the regularity characteristics of DSP application are exploited. Moreover, in order to 
reduce the number of distinct modules, the near-isomorphism sub-graphs represents the modules are 
merged together by multiplexing them in time to produce a single adaptable module. This merging process 
enables the reuse of the adaptable modules by partially reconfiguring them at run time to realize different 
modules during the running of the DSP data flow graph. Furthermore, a novel reconfigurable multiplier 
multiplier is incorporated in the proposed synthesis technique.  It is seen that a small overhead in terms of 
the architecture’s controller is needed by the modules in order for them to be adapted to perform different 
computations (multi-modes).  
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1.  INTRODUCTION 

Some of the applications that need a high-level 
synthesis are digital signal processing (DSP), 
communications, and image processing. These 
applications are among the most important 
applications that demand high computational 
power, and must be executed at a very high speed 
to enable real-time processing. Due to the 
parallelism within the DSP applications, parallel 
processing architectures are a natural choice for the 
synthesis of these applications.  

Moreover, the need to reduce the design time of 
digital systems, and thus, the time to market is 
increasingly crucial factor to have a competitive 
edge. Such an advantage can be achieved if there 
are efficient techniques to reduce the time taken by 
each of the individual steps of the design process. 
The design cycle of a digital system is composed of 
three major steps: RTL design, Physical 
implementation and Verification or Validation at 
various levels of design and implementation. A 
multi-module design could be an attractive platform 
to reduce the overall design time by reducing the 
time of the steps of the design cycle following the 
step at which the modularity is introduced. There 
exist a variety of architectural synthesis techniques, 
most of which target DSP algorithms onto 
multiprocessor architecture using basic functional 

units such as adders or multipliers [1][2]. This 
however results in inferior implementation of DSP 
applications, since the regularity feature of DSP 
application are not exploited.  

Furthermore, hardware flexibility is a crucial 
factor in today’s system design. However, such 
flexibility must not be gained at the expense of 
performance and area, as is the case with general-
purpose reconfigurable fabrics such as field 
programmable gate-arrays (FPGAs) [3]. Hybrid 
FPGAs and reconfigurable cores provide hardware 
flexibility, their coarse integration of fixed logic 
and reconfigurable fabric results in performance, 
area and power penalties [4]. New techniques have 
therefore been explored to add flexibility to 
individual hardware components without the 
penalties associated with FPGAs. To overcome the 
latter penalties, small-scale reconfiguration would 
minimizes the area and delay penalties by inserting 
into fixed-logic only the minimum amount of 
reconfigurable logic and interconnect and by 
reusing the main part of the available logic and by 
changing the status of a few control signals to 
achieve the desired component functionality.  

In this paper, a scheme for the architectural 
synthesis of DSP applications based on adaptable 
multi-modules is proposed. The regularity 
characteristics of DSP applications are identified by 
employing the so called regularity extraction. Then, 
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those near-isomorphism modules (sub-graphs) are 
merged together by multiplexing them on time. The 
original data flow graph (DFG) represents the DSP 
application is reconstructed by using the extracted 
and merged modules. Scheduling and allocation 
techniques are proposed to map the DSP 
application onto reconfigurable multi-module 
structure.   The proposed architectural synthesis 
technique operating on the cyclic multi-module 
based DFG of a DSP algorithm is designed to 
determine the relative firing times of the nodes by 
using Floyd-Warshall's longest path algorithm [5] 
so that the throughput is aimed to be maximized 
and the number of distinct module resources is 
aimed to be minimized.   

2.  SCHEME FOR MULTI-MODULE 

SYNTHESIS 

The data flow graph (DFG) is proven to be an 
efficient representation of the system specification 
due to its ability to expose the hidden concurrency 
between the operations of the underlying algorithm. 
Since DSP applications are known for their inherent 
parallelism, the DFG model is suitable for the DSP 
applications. Moreover, regularity is an inherent 
feature of several VLSI systems, especially those 
we find in signal processing applications. Data flow 
graph representations is an efficient to exploit such 
regular characteristics of such applications. 
Unfortunately, most of architectural synthesis 
algorithms proposed to-date aim to provide a 
generalized approach to synthesis, without usually 
much regard to the special characteristics of the 
system being synthesized. An efficient work on 
regularity extraction could be found in [6]. 

We present in this paper an approach to high-
level synthesis (specifically, scheduling and module 
allocation) that is aimed to exploit the inherent 
characteristics of DSP circuits. We assume here that 
the designer has the behaviour of the filter in terms 
of its dataflow graph. We propose that such 
behavioural data-flow graphs can be abstracted as a 
collection of identical or near-identical modules 
(sub-graphs), each of which represents a part of the 
behaviour. The flow graph of these module is the 
one on which we perform the scheduling and 
module allocation. Thus, hardware sharing is now 
done on the module (sub-graph), rather than on 
individual functional units like adders and 
multipliers. 

Once each of the module templates is fully 
characterized, we are left with the task of having to 
schedule the multi-module based graph. 

The overall synthesis scheme involves the 

following steps. 

1. Identification of common module 
structures: The computation module 
structures can be identified by using 
regularity extraction algorithm [6]. 

2. Reconstruction of the data flow graph 
representing the DSP application using the 
newly identified module structures. 

3. Determination of the computational delay 
of each module. This is done by the 
synthesis of the internal module 
computations. 

4. Scheduling of the newly constructed cyclic 
data flow graph (the module-based DFG). 

5. Allocation of modules onto multi-module 

structures. 

6. Synthesis of control structures: In this step 
the control signals specifies the data flow 
of the algorithm are retargeted for 
synthesising the base module structures. 

3. TIME SCHEDULING AND ALLOCATION 

OF MULTI- MODULE FLOW GRAPH  

After the extraction of the regular modules of a 
DFG, this original DFG is reconstructed by 
clustering those computations having isomorphism 
with the extracted modules. Those computations 
which are not covered by any module because they 
don’t have an isomorphism with any extracted 
module are considered as if they are separate 
modules. A module-based graph G can be 
represented by the pair (M, E), where M is a set of 
nodes (modules), and E is a set of elements called 
edges. Each edge is associated with a pair of 
modules. The symbols 

nn
mmmm ,,...,

121 −

are used to 

represent the modules, and the symbols ,...,

21
ee  are 

used to represent the edges of a graph. A direct path 

kmm
P

0
 is a finite sequence of distinct modules 

kmmm ,...,,

10
 and distinct edges such that the edge 

),(
1+ii

mm is present in the path
kmm

P
0

. If 
kmm =

0
then 

this path is called a directed circuit or loop. Each 
loop in a DSP graph must contain at least one ideal 
delay element for the graph to be computable. The 
data flow graph that contains at least one directed 
circuit is called the cyclic graph, otherwise it is 
acyclic. 

In order to find the best assignment of the 
modules in a module-based DFG, the allocation 
process needs to know the time schedule for the 
nodes or modules. For this purpose, in this section a 
time schedule is built. An iterative procedure based 
on the node mobility is employed. The earliest and 
the latest firing times (EFT and LFT) at which each 
module can be scheduled to fire are iteratively 
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calculated. The module mobility is equal to the 
difference between its calculated latest and earliest 
firing times. These earliest and the latest firing 
times are found relative to a reference node. Given 
a module-based data flow graph of a DSP 
application, the time scheduling can be built using 

the longest path matrix f
Q [5]. The entries of this 

matrix represent the length of the longest path 
between each pair of modules )( jimm  which is 

given by 

[[max
ji

jmim

mm
Pall

f
ij PlenQ =                      (1) 

The earliest firing time and the latest firing time 
for a module jm  relative to that of a reference 

module 
i

m  are, respectively, given by 

                ( ) f
ijim

m
QmFTEFT

i

j +=




                    (2) 

                ( ) f
jiim

m
QmFTLFT

i

j −=




                    (3) 

where ( )
i

mFT   is the firing time of module
i

m . To 

find the earliest and the latest firing times of 
node

i
m , the maximum earliest firing time and the 

minimum latest firing time of the module must be 
found relative to all previously scheduled modules. 
Thus, EFT and LFT of node jm  are, respectively, 

given by 









=
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A valid schedule range specifies a valid way 
to schedule the module for a given the 
precedence relations. Thus, the mobility is given 
as ( ) ( ) ( )jjj mEFTmLFTvM −= .                     

3.1  The time schedule 

The time schedule is built by selecting a 
reference-module and by calculating the mobility of 
all non-scheduled modules with respect to this 
reference module. All the non-scheduled modules 
are put in a list. The module with the minimum 
mobility calculated thus far is chosen for 
scheduling first and then removed from the list. 
When choosing between equal mobility modules, 
the selection is made such that individual modules 
concurrency is equalized with the previous step. 
This is to increase the probability that a module unit 
would be reused by dynamically reconfiguration a 
few control signals or even without any 

reconfiguration. Due to the new firing time of the 
module, the time schedule of other non-scheduled 
modules may be affected. This module is chosen to 
be the new reference-module and the rest of all the 
earliest and latest firing times for the rest of the 
non-scheduled modules are calculated. A new 
module is chosen for scheduling and the process is 
iteratively repeated. 

3.2 Choosing the firing time  

We defined the level of a control step to be the 
number of modules which will eventually occupy 
this control step. This level determines the number 
of module structures required in the implementation 
of the final system. The chosen module is 
scheduled to fire at a control step that would results 
in a minimum number of functional modules 
required. We defined the level of a control step to 
be the summation of sub-levels of the different 
types of operations and given by  

...

21
++= typetype levellevellevel  . The choosing of the best 

firing time is done by examining all the control 
steps within its mobility such that total number of 
module per cycle is minimized, rather than 
individual module concurrency. More specifically, 
find the control step having the minimum total level 
as a primary key or the minimum sublevel ( typelevel ) 

as a secondary key. 

3.3 Scheduling algorithm   

The scheduling algorithm involves the following 
steps. 

 

Algorithm 1 Time schedule 

 
1. Calculate the minimum iteration period. 

Find the longest path matrix. 

2. Take the input module as the reference and 
schedule it first to fire at the control step 
zero.  

3. Calculate the earliest and latest firing 
times of all the remaining modules with 
respect to the input module. 

4. Calculate the current schedule range or 
mobility for each of the remaining non-
scheduled modules. 

5. Schedule all the modules that have zero 
mobility to fire at the only control step in 
their mobility. (Note: There is no need to 
update the earliest and latest firing times 
of the remaining modules after scheduling 
such a zero-mobility module) 
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6. Based on the current mobility for each 
non-scheduled module, choose one 
module as the target module for the 
scheduling according to the following 
priority: 

a. A module that has the minimum 
current mobility. If more than one 
module has minimum current 
mobility, chose from these modules 
the one that is a predecessor or 
successor to the current reference 
module.  

b. A module that is longest 
computational time and a predecessor 
or successor of any scheduled module.  

c. Any first available module. 

7. Within the scheduling range of the target 
module, find the best firing time position 
as the control step that has the minimum 
level. If more than one control step results 
in the same minimum possible level, chose 
minimum sublevel. Set the best firing time 
position found as the time schedule of the 
target module. 

9. Set the target module to be the new 
reference node. Update the earliest and 
latest firing times of all the remaining 
non-scheduled modules.  

10. Go to Step 4 until all the modules have 
been scheduled. 

 

3.4 Multi-module allocation  

A straight forward allocating the modules in the 
data flow graph onto multi-module structure from a 
time schedule can be carried out by using an 
allocation algorithm similar to the one presented in 
[7]. 
 

4.  MERGING OF NEAR-ISOMORPHISM 

MODULES 

In order to reduce the number of distinct 
modules in the multi-module structure, the sub-
graphs represent each selected module are merged 
together, synthesizing a single reconfigurable 
module structure for the near-isomorphism 
modules. The data-flow graph merging process 
enables the reuse of hardware blocks and 
interconnections by identifying similarities among 
the DFGs representing the modules, and produces a 
single module structure that can be partially 
reconfigured at run-time by setting some control 
signals specifically for each module (sub-graph). 

Efficient merging techniques can be found in [8] 
and [9]. 

In addition to modularity, this merging process 
results in a data-path having a few and simple 
hardware blocks (module units and registers) and 
interconnections (multiplexers and wires), which in 
turn, reduces its cost, area, and power consumption. 
Achieving such an aim is possible if hardware 
blocks and interconnections be reused across the 
application as much as possible. The module 
allocation that is used in the previous section has 
also a great impact in reducing the system 
reconfiguration overhead, both in time and space. 
An example of module merging is shown in Fig. 1.  

0
c

2110
00

GMergedcGMergedc =→==→=

Fig 1:  Merging of two modules (sub-graphs) 

5. EXAMPLES 

In this section, we consider two examples of 
DSP filters, a fourth-order Jaumann filter and 
fourth-order lattice All-pole filter, in order to 
demonstrate the proposed synthesis scheme. In the 
two benchmark problems, the computational delays 
of the addition and multiplication nodes are 
assumed to be 1 and 5 cycles, respectively. 
Moreover, the delay of multiplexer is assumed to be 
equal to that of the adder, i.e., 1 cycle. 

5.1 Fourth-order Jaumann wave filter 

The DFG of the fourth-order Jaumann wave filter is 
shown in Fig. 2(a). Fig. 2(b) shows extracted 
regular module for this filter. A latency of 8 cycles 
for this module is calculated based on its critical 
path from input to output. The time schedule and 
module allocation obtained for the multi-module 
based DFG (Fig. 2(c)) by using the proposed 
technique are given in Fig. 3. It is seen, that the 
iteration period obtained for this filter using multi-
module structure is 16 cycles which is equal to that 
using individual hardware functional units. Hence, 
modularity is gained without penalties in terms of 
delay or throughput.  

5.2 Fourth-order all-pole lattice filter 

The DFG of the all-pole lattice filter is shown in 
Fig. 4(a). Fig. 2(b) shows extracted regular module 
for this filter. Near-isomorphism modules are 
identified and then merged by multiplexing them in 
time. So that, this module structure can be reused 
for all the modules from which it is obtained. A 
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latency of 8 cycles for this module is calculated 
based on its critical path, i.e. (+, *, MUX, +). The 
time schedule and module allocation obtained for 
the multi-module based DFG are given in Fig. 5.  
Fig. 6 shows the status of the reconfiguration 

control signals that are dynamically changed each 
iteration of execution. Fully-regular and 
reconfigurable multi-module structure is obtained, 
but associated with a penalty of 2 cycles in terms of 
iteration period. 

0
out

1
out

1
in

0
in

4
m

 
Fig 2:  (A) Data Flow Graph Of Fourth-Order Jaumann Wave Filter (B) Module Structure (C) 

Modular Structure Of The Jaumann Wave Filter 
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Fig 3:  Time Schedule Of Multi-Module Based Fourth-Order Jaumann Filter 
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Fig 4:  (A) Data Flow Graph Of Fourth-Order All-Pole Filter (B) Module Structure 

(C)   Modular Structure Of The All-Pole Filter 
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Fig 5:  Time schedule of multi-module based fourth-order all-pole filter 
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Fig 6:  Reconfiguration Control Signals Of Each Adaptable Module 

6.  INCORPORATION OF 

RECONFIGURABLE PROCESSING UNIT  

We incorporate dynamically reconfigurable 

functional units [10][11] in the extracted modules 

in order to increase regularity and optimize the area 

of each module. 

The reconfigurable multiplier is employed in the 

proposed scheme since it is capable of 

implementing both multiplication and addition (in 

fact, it can perform two or more data-independent 

additions in parallel) with the same delay as a fixed 

logic multiplier and with very small area overhead. 

Given the regularity occurrence of MAC operations 

in DSP algorithms, such dynamically 

reconfigurable functional unit provides significant 

benefits for DSP applications. The goal of the 

proposed technique is to make use of this 

morphable multiplier in a hybrid library of 

functional units composed both operation-specific 

and reconfigurable functional units supporting sets 

of different operators. Figure 7 (a and b) gives an 

example of the use of reconfiguarable functional 

units in building the RTL modules.   
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(a) 

0
c

0
c

       

         (b) 

Fig 7: (A) A Module With Basic FU (B) A Module With Reconfigurable FU Incorporated 

 

Fig 8: Iteration Period Obtained For DSP Applications Targeting Modular Architectures With And Without 
Reconfigurable Processing Units 

 

7.  INCORPORATION THE PROPOSED SCHEME IN 

MULTI-MODE ARCHITECTURES DSP 

APPLICATIONS  

The schemes proposed in [12] and [13] address the 
design of multi-mode architectures for digital signal 
processing applications. The multi-mode or multi-
configuration architectures are specifically designed 
for a set of time-wise mutually exclusive 

applications (multi-standard applications) [12]. One 
of the goals of multi-mode architecture design is to 
minimize the area reusing the resources effectively 
among the different modes. The proposed scheme is 
very much suitable for such applications. Hence, 
we have incorporated our proposed scheme of 
modular and reconfigurable synthesis into such 
multi-mode DSP application.  
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Fig 9: Modular Synthesis Results In Terms Of Area For Four Set Of Multi-Mode DSP Applications With And Without 
Reconfigurable Processing Units    

8.  EXPERIMENTAL RESULTS  

We have carried out several experiments with some 
well-known set of DSP applications commonly 
used in the literature of architectural synthesis. 
Moreover, we have used the Synopsys Design 
Compiler (DC) synthesis tool, which performs 
different levels of optimization, i.e., architectural, 
logic- and gate-level optimization to synthesize the 
obtained modular RTL structures. The 
reconfigurable morphable multiplier shown in [11] 
is employed. It is shown in [11] that an extra area is 
required to be added in order to introduce mode2 
(reconfiguration to adder) to a fixed multiplier. For 
example, an additional area overhead of 1.5% is 
required to implement one 32-bit Adder in a 
reconfigurable 16x16-bit morphable multiplier RC-

PM
A1

. If mode2 has two adders (RC-PM
A2

), the 
area overhead is pushed up significantly to be 
11.4%. Normalized to the area of 32-bit Adder X: 
The area of the fixed 16x16-bit pipelined multiplier 
is 4.77X, of the fixed multiple-operation (ALU) is 
6.1X, and of the reconfigurable pipelined 

multipliers RC-PM
A1

and RC-PM
A2

, are 4.84X 
and 5.32X, respectively. Figure 8 summarizes the 
synthesis results of schedules obtained for 4 DSP 
filters in the two cases: (a) only operation-specific 
functional units (b) hybrid library of functional 
units. It is seen that iteration period obtained for the 
time schedule targeting modular architectures with 
reconfigurable functional units in reduced 

compared to that obtained using only operation-
specific functional.  

Another experiment is carried out. We choose four 
sets of DSP applications for our experiment, 
namely, set1: HOUGH-TRNS, BIQUAD, FFT, 
PFILTER, set2: FIR19, FIR15, FIR11, FIR7, set3: 
LMS16, FIR16, set4: FIR64, FIR32, FIR16. 
Figures 9 shows the synthesis results obtained in 
terms of area. It is seen that a significant reduction 
in terms of the area is achieved by using the 
proposed scheme for modular architecture with 
reconfigurable processing units in multi-mode DSP 
applications. 

9. CONCLUSION 

In this paper, we have improved the scheme 
proposed in [14] for modular synthesis in which the 
high level synthesis of DSP applications mapped 
onto dynamically reconfigurable and modular 
architecture has been introduced. We have 
incorporated reconfigurable processing units into 
the proposed scheme. Furthermore, it has been 
applied to multi-mode DSP applications. The 
regularity characteristics of DSP application have 
been exploited. Near-isomorphism sub-graphs have 
been merged together by multiplexing them in time. 
The DFG of the DSP application is reconstructed 
based on the extracted modules. Scheduling and 
multi-module allocation techniques have been 
proposed. The proposed techniques have been used 
to obtain the time schedule and multi-module 
structures for DSP applications. The proposed 
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technique has been applied to well-known 
benchmark problems of Digital filters showing that 
a dynamically reconfigurable multi-module 
architecture brings about a trade-off between the 
modularity, throughput, and area. 
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