
Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

443

RECONFIGURABLE AND MODULAR BASED SYNTHESIS

OF CYCLIC DSP DATA FLOW GRAPHS

AWNI ITRADAT

Assistant Professor, Department of Computer Engineering,
Faculty of Engineering, Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan

E-mail: itradat@hu.edu.jo

ABSTRACT

The conventional high level synthesis techniques target DSP algorithms onto architectures using basic
functional units such as adders or multipliers. In this paper, a scheme for the partitioning of the data flow
graph of a DSP application for a high-level synthesis aimed at a design using multi-modules is proposed. In
the propose scheme, the regularity characteristics of DSP application are exploited. Moreover, in order to
reduce the number of distinct modules, the near-isomorphism sub-graphs represents the modules are
merged together by multiplexing them in time to produce a single adaptable module. This merging process
enables the reuse of the adaptable modules by partially reconfiguring them at run time to realize different
modules during the running of the DSP data flow graph. Furthermore, a novel reconfigurable multiplier
multiplier is incorporated in the proposed synthesis technique. It is seen that a small overhead in terms of
the architecture’s controller is needed by the modules in order for them to be adapted to perform different
computations (multi-modes).

Keywords: Architectural Synthesis; Reconfigurable Multimodule; Time Scheduling, Reconfigurable Processing Units

1. INTRODUCTION

Some of the applications that need a high-level
synthesis are digital signal processing (DSP),
communications, and image processing. These
applications are among the most important
applications that demand high computational
power, and must be executed at a very high speed
to enable real-time processing. Due to the
parallelism within the DSP applications, parallel
processing architectures are a natural choice for the
synthesis of these applications.

Moreover, the need to reduce the design time of
digital systems, and thus, the time to market is
increasingly crucial factor to have a competitive
edge. Such an advantage can be achieved if there
are efficient techniques to reduce the time taken by
each of the individual steps of the design process.
The design cycle of a digital system is composed of
three major steps: RTL design, Physical
implementation and Verification or Validation at
various levels of design and implementation. A
multi-module design could be an attractive platform
to reduce the overall design time by reducing the
time of the steps of the design cycle following the
step at which the modularity is introduced. There
exist a variety of architectural synthesis techniques,
most of which target DSP algorithms onto
multiprocessor architecture using basic functional

units such as adders or multipliers [1][2]. This
however results in inferior implementation of DSP
applications, since the regularity feature of DSP
application are not exploited.

Furthermore, hardware flexibility is a crucial
factor in today’s system design. However, such
flexibility must not be gained at the expense of
performance and area, as is the case with general-
purpose reconfigurable fabrics such as field
programmable gate-arrays (FPGAs) [3]. Hybrid
FPGAs and reconfigurable cores provide hardware
flexibility, their coarse integration of fixed logic
and reconfigurable fabric results in performance,
area and power penalties [4]. New techniques have
therefore been explored to add flexibility to
individual hardware components without the
penalties associated with FPGAs. To overcome the
latter penalties, small-scale reconfiguration would
minimizes the area and delay penalties by inserting
into fixed-logic only the minimum amount of
reconfigurable logic and interconnect and by
reusing the main part of the available logic and by
changing the status of a few control signals to
achieve the desired component functionality.

In this paper, a scheme for the architectural
synthesis of DSP applications based on adaptable
multi-modules is proposed. The regularity
characteristics of DSP applications are identified by
employing the so called regularity extraction. Then,

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

444

those near-isomorphism modules (sub-graphs) are
merged together by multiplexing them on time. The
original data flow graph (DFG) represents the DSP
application is reconstructed by using the extracted
and merged modules. Scheduling and allocation
techniques are proposed to map the DSP
application onto reconfigurable multi-module
structure. The proposed architectural synthesis
technique operating on the cyclic multi-module
based DFG of a DSP algorithm is designed to
determine the relative firing times of the nodes by
using Floyd-Warshall's longest path algorithm [5]
so that the throughput is aimed to be maximized
and the number of distinct module resources is
aimed to be minimized.

2. SCHEME FOR MULTI-MODULE

SYNTHESIS

The data flow graph (DFG) is proven to be an
efficient representation of the system specification
due to its ability to expose the hidden concurrency
between the operations of the underlying algorithm.
Since DSP applications are known for their inherent
parallelism, the DFG model is suitable for the DSP
applications. Moreover, regularity is an inherent
feature of several VLSI systems, especially those
we find in signal processing applications. Data flow
graph representations is an efficient to exploit such
regular characteristics of such applications.
Unfortunately, most of architectural synthesis
algorithms proposed to-date aim to provide a
generalized approach to synthesis, without usually
much regard to the special characteristics of the
system being synthesized. An efficient work on
regularity extraction could be found in [6].

We present in this paper an approach to high-
level synthesis (specifically, scheduling and module
allocation) that is aimed to exploit the inherent
characteristics of DSP circuits. We assume here that
the designer has the behaviour of the filter in terms
of its dataflow graph. We propose that such
behavioural data-flow graphs can be abstracted as a
collection of identical or near-identical modules
(sub-graphs), each of which represents a part of the
behaviour. The flow graph of these module is the
one on which we perform the scheduling and
module allocation. Thus, hardware sharing is now
done on the module (sub-graph), rather than on
individual functional units like adders and
multipliers.

Once each of the module templates is fully
characterized, we are left with the task of having to
schedule the multi-module based graph.

The overall synthesis scheme involves the

following steps.

1. Identification of common module
structures: The computation module
structures can be identified by using
regularity extraction algorithm [6].

2. Reconstruction of the data flow graph
representing the DSP application using the
newly identified module structures.

3. Determination of the computational delay
of each module. This is done by the
synthesis of the internal module
computations.

4. Scheduling of the newly constructed cyclic
data flow graph (the module-based DFG).

5. Allocation of modules onto multi-module

structures.

6. Synthesis of control structures: In this step
the control signals specifies the data flow
of the algorithm are retargeted for
synthesising the base module structures.

3. TIME SCHEDULING AND ALLOCATION

OF MULTI- MODULE FLOW GRAPH

After the extraction of the regular modules of a
DFG, this original DFG is reconstructed by
clustering those computations having isomorphism
with the extracted modules. Those computations
which are not covered by any module because they
don’t have an isomorphism with any extracted
module are considered as if they are separate
modules. A module-based graph G can be
represented by the pair (M, E), where M is a set of
nodes (modules), and E is a set of elements called
edges. Each edge is associated with a pair of
modules. The symbols

nn
mmmm ,,...,

121 −

are used to

represent the modules, and the symbols ,...,

21
ee are

used to represent the edges of a graph. A direct path

kmm
P

0
 is a finite sequence of distinct modules

kmmm ,...,,

10
 and distinct edges such that the edge

),(
1+ii

mm is present in the path
kmm

P
0

. If
kmm =

0
then

this path is called a directed circuit or loop. Each
loop in a DSP graph must contain at least one ideal
delay element for the graph to be computable. The
data flow graph that contains at least one directed
circuit is called the cyclic graph, otherwise it is
acyclic.

In order to find the best assignment of the
modules in a module-based DFG, the allocation
process needs to know the time schedule for the
nodes or modules. For this purpose, in this section a
time schedule is built. An iterative procedure based
on the node mobility is employed. The earliest and
the latest firing times (EFT and LFT) at which each
module can be scheduled to fire are iteratively

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

445

calculated. The module mobility is equal to the
difference between its calculated latest and earliest
firing times. These earliest and the latest firing
times are found relative to a reference node. Given
a module-based data flow graph of a DSP
application, the time scheduling can be built using

the longest path matrix f
Q [5]. The entries of this

matrix represent the length of the longest path
between each pair of modules)(jimm which is

given by

[[max
ji

jmim

mm
Pall

f
ij PlenQ = (1)

The earliest firing time and the latest firing time
for a module jm relative to that of a reference

module
i

m are, respectively, given by

 () f
ijim

m
QmFTEFT

i

j +=

 (2)

 () f
jiim

m
QmFTLFT

i

j −=

 (3)

where ()
i

mFT is the firing time of module
i

m . To

find the earliest and the latest firing times of
node

i
m , the maximum earliest firing time and the

minimum latest firing time of the module must be
found relative to all previously scheduled modules.
Thus, EFT and LFT of node jm are, respectively,

given by

=

<

)() max
i

j
j m

m
EFTEFT(m

jiall

 (4)

=

<

)() min
i

j
j m

m
LFTLFT(m

jiall

 (5)

A valid schedule range specifies a valid way
to schedule the module for a given the
precedence relations. Thus, the mobility is given
as () () ()jjj mEFTmLFTvM −= .

3.1 The time schedule

The time schedule is built by selecting a
reference-module and by calculating the mobility of
all non-scheduled modules with respect to this
reference module. All the non-scheduled modules
are put in a list. The module with the minimum
mobility calculated thus far is chosen for
scheduling first and then removed from the list.
When choosing between equal mobility modules,
the selection is made such that individual modules
concurrency is equalized with the previous step.
This is to increase the probability that a module unit
would be reused by dynamically reconfiguration a
few control signals or even without any

reconfiguration. Due to the new firing time of the
module, the time schedule of other non-scheduled
modules may be affected. This module is chosen to
be the new reference-module and the rest of all the
earliest and latest firing times for the rest of the
non-scheduled modules are calculated. A new
module is chosen for scheduling and the process is
iteratively repeated.

3.2 Choosing the firing time

We defined the level of a control step to be the
number of modules which will eventually occupy
this control step. This level determines the number
of module structures required in the implementation
of the final system. The chosen module is
scheduled to fire at a control step that would results
in a minimum number of functional modules
required. We defined the level of a control step to
be the summation of sub-levels of the different
types of operations and given by

...

21
++= typetype levellevellevel . The choosing of the best

firing time is done by examining all the control
steps within its mobility such that total number of
module per cycle is minimized, rather than
individual module concurrency. More specifically,
find the control step having the minimum total level
as a primary key or the minimum sublevel (typelevel)

as a secondary key.

3.3 Scheduling algorithm

The scheduling algorithm involves the following
steps.

Algorithm 1 Time schedule

1. Calculate the minimum iteration period.

Find the longest path matrix.

2. Take the input module as the reference and
schedule it first to fire at the control step
zero.

3. Calculate the earliest and latest firing
times of all the remaining modules with
respect to the input module.

4. Calculate the current schedule range or
mobility for each of the remaining non-
scheduled modules.

5. Schedule all the modules that have zero
mobility to fire at the only control step in
their mobility. (Note: There is no need to
update the earliest and latest firing times
of the remaining modules after scheduling
such a zero-mobility module)

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

446

6. Based on the current mobility for each
non-scheduled module, choose one
module as the target module for the
scheduling according to the following
priority:

a. A module that has the minimum
current mobility. If more than one
module has minimum current
mobility, chose from these modules
the one that is a predecessor or
successor to the current reference
module.

b. A module that is longest
computational time and a predecessor
or successor of any scheduled module.

c. Any first available module.

7. Within the scheduling range of the target
module, find the best firing time position
as the control step that has the minimum
level. If more than one control step results
in the same minimum possible level, chose
minimum sublevel. Set the best firing time
position found as the time schedule of the
target module.

9. Set the target module to be the new
reference node. Update the earliest and
latest firing times of all the remaining
non-scheduled modules.

10. Go to Step 4 until all the modules have
been scheduled.

3.4 Multi-module allocation

A straight forward allocating the modules in the
data flow graph onto multi-module structure from a
time schedule can be carried out by using an
allocation algorithm similar to the one presented in
[7].

4. MERGING OF NEAR-ISOMORPHISM

MODULES

In order to reduce the number of distinct
modules in the multi-module structure, the sub-
graphs represent each selected module are merged
together, synthesizing a single reconfigurable
module structure for the near-isomorphism
modules. The data-flow graph merging process
enables the reuse of hardware blocks and
interconnections by identifying similarities among
the DFGs representing the modules, and produces a
single module structure that can be partially
reconfigured at run-time by setting some control
signals specifically for each module (sub-graph).

Efficient merging techniques can be found in [8]
and [9].

In addition to modularity, this merging process
results in a data-path having a few and simple
hardware blocks (module units and registers) and
interconnections (multiplexers and wires), which in
turn, reduces its cost, area, and power consumption.
Achieving such an aim is possible if hardware
blocks and interconnections be reused across the
application as much as possible. The module
allocation that is used in the previous section has
also a great impact in reducing the system
reconfiguration overhead, both in time and space.
An example of module merging is shown in Fig. 1.

0
c

2110
00

GMergedcGMergedc =→==→=

Fig 1: Merging of two modules (sub-graphs)

5. EXAMPLES

In this section, we consider two examples of
DSP filters, a fourth-order Jaumann filter and
fourth-order lattice All-pole filter, in order to
demonstrate the proposed synthesis scheme. In the
two benchmark problems, the computational delays
of the addition and multiplication nodes are
assumed to be 1 and 5 cycles, respectively.
Moreover, the delay of multiplexer is assumed to be
equal to that of the adder, i.e., 1 cycle.

5.1 Fourth-order Jaumann wave filter

The DFG of the fourth-order Jaumann wave filter is
shown in Fig. 2(a). Fig. 2(b) shows extracted
regular module for this filter. A latency of 8 cycles
for this module is calculated based on its critical
path from input to output. The time schedule and
module allocation obtained for the multi-module
based DFG (Fig. 2(c)) by using the proposed
technique are given in Fig. 3. It is seen, that the
iteration period obtained for this filter using multi-
module structure is 16 cycles which is equal to that
using individual hardware functional units. Hence,
modularity is gained without penalties in terms of
delay or throughput.

5.2 Fourth-order all-pole lattice filter

The DFG of the all-pole lattice filter is shown in
Fig. 4(a). Fig. 2(b) shows extracted regular module
for this filter. Near-isomorphism modules are
identified and then merged by multiplexing them in
time. So that, this module structure can be reused
for all the modules from which it is obtained. A

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

447

latency of 8 cycles for this module is calculated
based on its critical path, i.e. (+, *, MUX, +). The
time schedule and module allocation obtained for
the multi-module based DFG are given in Fig. 5.
Fig. 6 shows the status of the reconfiguration

control signals that are dynamically changed each
iteration of execution. Fully-regular and
reconfigurable multi-module structure is obtained,
but associated with a penalty of 2 cycles in terms of
iteration period.

0
out

1
out

1
in

0
in

4
m

Fig 2: (A) Data Flow Graph Of Fourth-Order Jaumann Wave Filter (B) Module Structure (C)

Modular Structure Of The Jaumann Wave Filter

0

0
m

1

3
m

0

2
m

0

4
m

0

1
m

Fig 3: Time Schedule Of Multi-Module Based Fourth-Order Jaumann Filter

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

448

0
c

1
c

0
in

1
in

0
out

1
out

Fig 4: (A) Data Flow Graph Of Fourth-Order All-Pole Filter (B) Module Structure

(C) Modular Structure Of The All-Pole Filter

0

0
m

1

3

−

m
1

2

−

m

0

1
m

Fig 5: Time schedule of multi-module based fourth-order all-pole filter

00 =C

01 =C

10 =C

11 =C

10 =C

11 =C

10 =C

11 =C

Fig 6: Reconfiguration Control Signals Of Each Adaptable Module

6. INCORPORATION OF

RECONFIGURABLE PROCESSING UNIT

We incorporate dynamically reconfigurable

functional units [10][11] in the extracted modules

in order to increase regularity and optimize the area

of each module.

The reconfigurable multiplier is employed in the

proposed scheme since it is capable of

implementing both multiplication and addition (in

fact, it can perform two or more data-independent

additions in parallel) with the same delay as a fixed

logic multiplier and with very small area overhead.

Given the regularity occurrence of MAC operations

in DSP algorithms, such dynamically

reconfigurable functional unit provides significant

benefits for DSP applications. The goal of the

proposed technique is to make use of this

morphable multiplier in a hybrid library of

functional units composed both operation-specific

and reconfigurable functional units supporting sets

of different operators. Figure 7 (a and b) gives an

example of the use of reconfiguarable functional

units in building the RTL modules.

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

449

0c0c

(a)

0
c

0
c

 (b)

Fig 7: (A) A Module With Basic FU (B) A Module With Reconfigurable FU Incorporated

Fig 8: Iteration Period Obtained For DSP Applications Targeting Modular Architectures With And Without
Reconfigurable Processing Units

7. INCORPORATION THE PROPOSED SCHEME IN

MULTI-MODE ARCHITECTURES DSP

APPLICATIONS

The schemes proposed in [12] and [13] address the
design of multi-mode architectures for digital signal
processing applications. The multi-mode or multi-
configuration architectures are specifically designed
for a set of time-wise mutually exclusive

applications (multi-standard applications) [12]. One
of the goals of multi-mode architecture design is to
minimize the area reusing the resources effectively
among the different modes. The proposed scheme is
very much suitable for such applications. Hence,
we have incorporated our proposed scheme of
modular and reconfigurable synthesis into such
multi-mode DSP application.

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

450

Fig 9: Modular Synthesis Results In Terms Of Area For Four Set Of Multi-Mode DSP Applications With And Without
Reconfigurable Processing Units

8. EXPERIMENTAL RESULTS

We have carried out several experiments with some
well-known set of DSP applications commonly
used in the literature of architectural synthesis.
Moreover, we have used the Synopsys Design
Compiler (DC) synthesis tool, which performs
different levels of optimization, i.e., architectural,
logic- and gate-level optimization to synthesize the
obtained modular RTL structures. The
reconfigurable morphable multiplier shown in [11]
is employed. It is shown in [11] that an extra area is
required to be added in order to introduce mode2
(reconfiguration to adder) to a fixed multiplier. For
example, an additional area overhead of 1.5% is
required to implement one 32-bit Adder in a
reconfigurable 16x16-bit morphable multiplier RC-

PM
A1

. If mode2 has two adders (RC-PM
A2

), the
area overhead is pushed up significantly to be
11.4%. Normalized to the area of 32-bit Adder X:
The area of the fixed 16x16-bit pipelined multiplier
is 4.77X, of the fixed multiple-operation (ALU) is
6.1X, and of the reconfigurable pipelined

multipliers RC-PM
A1

and RC-PM
A2

, are 4.84X
and 5.32X, respectively. Figure 8 summarizes the
synthesis results of schedules obtained for 4 DSP
filters in the two cases: (a) only operation-specific
functional units (b) hybrid library of functional
units. It is seen that iteration period obtained for the
time schedule targeting modular architectures with
reconfigurable functional units in reduced

compared to that obtained using only operation-
specific functional.

Another experiment is carried out. We choose four
sets of DSP applications for our experiment,
namely, set1: HOUGH-TRNS, BIQUAD, FFT,
PFILTER, set2: FIR19, FIR15, FIR11, FIR7, set3:
LMS16, FIR16, set4: FIR64, FIR32, FIR16.
Figures 9 shows the synthesis results obtained in
terms of area. It is seen that a significant reduction
in terms of the area is achieved by using the
proposed scheme for modular architecture with
reconfigurable processing units in multi-mode DSP
applications.

9. CONCLUSION

In this paper, we have improved the scheme
proposed in [14] for modular synthesis in which the
high level synthesis of DSP applications mapped
onto dynamically reconfigurable and modular
architecture has been introduced. We have
incorporated reconfigurable processing units into
the proposed scheme. Furthermore, it has been
applied to multi-mode DSP applications. The
regularity characteristics of DSP application have
been exploited. Near-isomorphism sub-graphs have
been merged together by multiplexing them in time.
The DFG of the DSP application is reconstructed
based on the extracted modules. Scheduling and
multi-module allocation techniques have been
proposed. The proposed techniques have been used
to obtain the time schedule and multi-module
structures for DSP applications. The proposed

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

451

technique has been applied to well-known
benchmark problems of Digital filters showing that
a dynamically reconfigurable multi-module
architecture brings about a trade-off between the
modularity, throughput, and area.

REFERENCES

[1] Y.-N. Chang, C.-Y. Wang, and K. K. Parhi.
“Loop-list scheduling for heterogeneous
functional units,” in Proc.6th Great Lakes

Symposium on VLSI, pp. 2–7, March 1996.

[2] Z. Shao, Q. Zhuge, C. Xue, and E.H.-M. Sha
“Efficient assignment and scheduling for
heterogeneous DSP systems,” IEEE Tran. on

Parallel and Distributed Systems vol. 16, pp.
516-525, June 2005.

[3] K. Compton and S. Hauck. “Reconfigurable
computing: A survey of systems and
software,” ACM Computing Surveys, vol 34,
no. 2, 2002, pp.171–210.

[4] R. Tessier and W. Burleson., “Reconfigurable
Computing for Digital Signal Processing: A
Survey,” Journal of VLSI Signal Processing,
vol 28, no. 1, pp.7–27, 2002.

[5] R. W. Floyd, "Algorithm 97: shortest path,"
Communications of ACM, vol. 5, no. 6, pp.
345, 1962.

[6] D. Sreenivasa Rao and F. J. Kurdahi,
“Partitioning by regularity extraction,” in Proc.

29th DAC, June 1992, pp. 235-238.

[7] A. Itradat, M.O. Ahmad, and A. Shatnawi,
“Scheduling of DSP algorithms onto
heterogeneous multiprocessors with inter-
processor communication,” in Proc of 3rd

International IEEE-NEWCAS, June 2005,
pp.95-98

[8] N. Shirazi, W. Luk, and P. Cheung,
“Automating production of runtime
reconfigurable designs,” in Proc. 6th Symp.

FCCM, Apr. 1998, pp. 147–156.

[9] Z. Huang and S. Malik, “Managing dynamic
reconfiguration overhead in systems-on-a-chip
design using reconfigurable datapaths and
optimized interconnection networks,” in Proc.

Design Automation Test Eur. Conf., 2001, pp.
735–740.

[10] A. Itradat, M.O. Ahmad, A. Shatnawi,
“Architectural synthesis of DSP applications
with dynamically reconfigurable functional

units,” in Proc. of the International Symposium

on Circuits and Systems. ISCAS 2007, New
Orleans, USA, 27-30 May 2007, pp. 1037 -
1040.

[11] S. M. S. A. Chiricescu, M. A. Schuette, R.
Glinton, and H. schmit, “Morphable
multipliers,” in Proc. of 12th International

Conference on Field Programmable Logic and

Applications (FLP ’02), , Montpellier, France,
September 2002, pp. 647–656.

[12] Cyrille Chavet, Caaliph Andriamisaina,
Philippe Coussy, Emmanuel Casseau,
Emmanuel Juin, Pascal Urard, Eric Martin, "A
design flow dedicated to multi-mode
architectures for DSP applications", in proc. of
the 2007 IEEE/ACM international conference
on Computer-aided design, November 05-08,
2007, San Jose, California.

[13] A. Itradat, T. Hayajneh, and A. Qatoom,
"Mapping of multiple data Flow graphs of DSP
applications onto ASIC/Reconfigurable
architectures," in International Journal of
Science and Applied Information
Technology(IJSAIT), Vol. 2, No. 2, pp. 35-39,
2013.

[14] A. Itradat, M.O. Ahmad, and A. Shatnawi,
Dynamically reconfigurable adaptable multi-
module based synthesis of DSP data flow
graphs. In proc. 20th Canadian Conference on
Electrical and Computer Engineering. pp.
1515{1518. IEEE (2007)

