
Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

425

I/O MATCH (I/O MAT) AND BEHAVIORAL MATCH (BEH

MAT) BASED SEMANTIC WEB SERVICE DISCOVERY

1
J.UMA MAHESWARI,

 2
Dr.G.R.KARPAGAM

1Assistant Professor (Senior Grade), Dept of CSE,PSG College of Technology, Coimbatore, India

2 Professor, Dept of CSE, PSG College of Technology, Coimbatore, India

E-mail: 1uma_ftt@yahoo.co.in , 2grkarpagam@gmail.com

ABSTRACT

 Discovery is one of the central reasoning tasks in SOA systems, concerned with the detection of usable
Web services for a specific request or application con-text. Aiming at the automation of this task, most
existing works on semantically enabled Web service discovery focus on the degree of match of two
services based merely on their I/O pairs. Another approach for matchmaking in Semantic Web Services
(SWS) that considers each service as a sub-graph of the semantic network of the ontology formed by
inputs, outputs, pre and post-conditions with contribution of syntactical information such as keywords and
textual descriptions. The similarity between services is defined as the similarity between these graphs
(Behavior Graphs). This paper presents the detailed description of both approaches and it also analyses the
advantages, disadvantages and retrieval effectiveness of these two matchmaking systems (I/O Mat, BEH
Mat) and proposes new algorithm for semantic match making.

Keywords: Semantic Web, Web Services, Matchmaking, Bipartite Graph, Behaviourally Correct Path,

Critical Elements

1. INTRODUCTION

The popularity of the service oriented

computing and web services, attracts organizations
to use the web to sell their own services. Web
services are advertised in a central repository, later
it can be invoked and used by the consumers. In
central repository the web services are described by
the description language called WSDL. A Web
service based on Web Service Description
Language (WSDL)[1] is termed as syntactic based
web services. WSDL based description allows
keyword based processing. This limitation prevents
fully automatic discovery, composition, invocation,
and monitoring of web services. The reason for this
shortcoming is the lack of semantic understanding.
To overcome this problem, Web services require a
method to incorporate semantics. Just as the
Semantic Web [2] is an extension of the current
World Wide Web, a semantic Web service [3][4] is
an extension of Web services. It overcomes Web
service limitations by using knowledge
representation technology from the semantic Web.
Specifically, it uses ontology[5][6] to describe its
service instead of using WSDL. Such ontology can
be understood by machines. This allows a fully
automatic discovery, composition, invocation, and
monitoring in Web services.

Due to the increase of web services, finding

most appropriate services among list of services
becomes difficult task. Web service discovery is the
vital part in web service model because for all types
of research like service composition, service
selection discovering the suitable service according
to the user requirement is the first phase.

WS discovery is performed with the aid of the
UDDI[7][8]]registries that support keyword based
matching between the textual descriptions of the
user request and the published/advertised services.
However, according to the Semantic Web vision,
WS will eventually be replaced by Semantic Web
Services (SWS). SWS are, essentially, a metadata
layer that allows for more expressive description of
service capabilities, used both for service
advertisements (formed by the service providers)
and requests (formed by the service requestors).
Such metadata is represented through semantic
Web technologies like ontology and rules.

Semantic service discovery is the process of
locating existing Web services based on the
description of their functional and non-functional
semantics. Most current approaches measure the

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

426

degree of match of two services based merely on
their I/O pairs. Another approach[9] for
matchmaking in Semantic Web Services (SWS)
that considers each service as a sub-graph of the
semantic network of the ontology formed by inputs,
outputs, pre and post-conditions with contribution
of syntactical information such as keywords and
textual descriptions is also called as behavioral
match. This paper analyses and presents the
retrieval effectiveness of Input-Output match and
behavioral match and proposes new algorithm for
semantic matchmaking.

2. SEMANTIC MATCH MAKING BASED

ON INPUT – OUTPUT PARAMETERS

 Each web service contains service profiles that
has enough information for a match maker to
determine whether this service is suitable for user
requirement. In fact, several matchmaking
algorithms [10][11] rely only on the matching of
Inputs and Outputs of the Service Profiles. In this
matchmaking algorithm [12], the input and output
of services are represented in ontology. Both
requested service and advertised service utilize the
same domain ontology. The match degree between
advertised and requested services are determined
through their levels in ontology. The detailed
algorithm is given in Figure 1(a) and the illustration
is given in Figure 1(b). In this outR stands for an
output of a requested service and outA stands for an
output of an advertised service.

The following algorithm can also be applied to
find the match between inR and inA. These four
degrees [13] as ranked as: Exact > Plugin >
Subsumes > Fail.

Figure 1(a): Matchmaking Algorithm

 Exact Plugin

 Subsume Fail

Figure 1(b): Matchmaking Algorithm Illustration

. Here, x > y indicates that x is ranked higher
(is a more desirable match) than y. To overcome
certain false positives and false negatives, the same
algorithm is applied for a bipartite graph which is
created using inputs and outputs of requested
service and advertised service.

Bipartite Graph: A Bipartite Graph is a graph
G = (V, E) in which the vertex set can be
partitioned into two disjoint sets, V = V0 ∪
V1,such that every edge e G E has one vertex in V0

and another in V1.

Matching: A matching of a bipartite graph G =

(V,E) is subgraph G′ = (V,E′), E′ G E, such that no

two edges e1, e2 G E′ share the same vertex. A

vertex v is matched if it is incident to an edge in the

matching. Given a bipartite graph G = (V0 + V1,E)

and its matching G′, the matching is complete if

and only if, all vertices in V0 are matched.

A numerical weight is assigned to every edge

in the bipartite graph. The weight of an edge, e = (a,

b), is a function of the degree of match between

concepts a and b. In G = (V0 + V1, E), the values

of the edge weights are computed as follows:

Table 1: Weights and categories

also w1<w2<w3

Table 2: Computation of Edge Weights

Degree of Match Weight of edge

Exact w1

Plugin w2

Subsume w3

degreeOfMatch(outR,outA)
 if(outA==outR)

 return exact;

 if(outR is a subClassOf outA)

return plugin;
 if(outA subsumes outR)

return subsume;

 else return fail

 A=R A
R

 A

R
A

 R

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

427

|V0| =Cardinality of set V0

2.1. Input Output Matching Algorithm

Figure 2 defines the search() procedure. It

accepts a Query as input and tries to match it with

each advertisement in the repository. A match is

computed for both, output and input concepts. If the

match is not a Fail, it appends the advertisement to

the result set. Finally the sorted result set is

returned to the client. The match() procedure in

Figure 3 accepts two concept-lists as inputs and

constructs a bipartite graph using them. It then

invokes a hungarian algorithm [14][15]to compute

a complete matching on the graph. The match()

procedure is invoked twice in search(). The order of

Query and Advertisement in each call is however

swapped. The computeWeights() function

computes the values of w1,w2,w3, depending on

the number of concepts in V0. It uses the formulae

presented in Fig.3. The degreeOfMatch() function

is a call to the reasoner in order to determine the

relationship between the two concepts a and b.

Figure2: search (Query)

3. SEMANTIC MATCH MAKING BASED

ON BEHAVIOUR

Although an appropriate measurement of degree

of match is difficult to define, it is that the result of

matching should agree with human intuition. Inputs

and outputs sometimes may not provide sufficient

information about service's behavior, and relying on

them may lead to false results. Every service is

described as 4-tuple (T; I;O;Q), [9] where:

Figure 3: match (List1,List2)

S(T) is syntactical information of the service

which has been taken from service description and

service name.

S(I) is a set of input concepts.

S(O) is a set of output concepts.

S(Q) is a set of post-conditions or effects

The preconditions are omitted because before

the execution of services, these conditions are

checked and it does not supply any information for

determining behavior of the service.

3.1. Service Behavioral Graph (SBG)

The ontology can be represented by a multi

relational graph where each vertex denotes a

concept and each edge denotes a relationship

between concepts. This feature of ontology

encourages the researcher to view the service as sub

graph of ontology.

As per the definition of [9] the Service

Behavioral Graph is termed as, Let G be an

ontology in its graph representation, G = (V, E)

where V is the set of concepts and E is the set of

relations of heterogeneous types, where each

relation is represented using a pair < L, (V×V) >,

where L is the label of the relation (e.g.

hasBirthday). A service S is denoted as GS = (V’,

E’) where V’ contained in V and E’ contained in E.

Elements of V’ and E’ are identified using the

service description. This sub-graph of the ontology

is referred as Service Behavioral Graph (SBG).

Consider the following two services s1 and s2.

Degree of Match Weight

Exact w1=1

Plugin w2=(w1*|V0|)+1

Subsume w3=(w2*|V0|)+1

Result = Empty List

for each Advt in Repository do

 outputMatch=match(Queryout,Advtout)
 if(outputMatch = Fail) then

 Skip and take next Advt

 end if

 inputMatch=match(Advtin,Queryin)

 if(inputMatch=Fail) then

 Skip and take next Advt

 end if

 Add (Advt,outputMatch, inputMatch) to the

Result

end for
return sort(Result)

match(List1,List2)

Initialize Graph G

compute weights(w1,w2,w3) for List1

for each concept a in List1 do

 for each concept b in List2

 degree = degreeOfMatch(a,b)

 if degree ≠ Fail then

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

428

function SBG(O,S)

 SBG=Empty Set
 CE� Critical Elements(O,S)

 if |CE| > 0 then

 for all o ∈ S(O) do

 paths� ϕ

 T = returns the birthday of a given

 novelist

 S1= I = {Novelist}

 O = {Date}

 Q = hasBirthday(Novelist,Date)

 T = published date of a novelist’s

 earliest Book

 S2 = I = {Novelist}

 O = {Date}

 Q = ɸ

Figure 4: SBGs of S1 and S2

The above figure shows the SBGs of S1 and

S2. These graphs can be discovered from the

ontology graph using critical elements and

behaviorally correct paths, which are defined in the

following sections.

3.2. Critical Elements

The mapping from input to output of a service

is done through finding several paths between input

and output concepts. There may exist multiple

paths between pair of I/O concepts. Such paths are

determined by several components in the ontology

which can be concepts or relations, and are referred

as critical elements. Q (Post-condition) and T

(Syntactical information) of service descriptions

may provide certain information to determine these

critical elements.

The syntactical information about the services

illuminates the service discovery because it can

contribute to find the service behavior by removing

unnecessary words using traditional information

retrieval technique (TF-IDF)[16]. After removal of

unwanted words the core words are extracted and

those words are considered as critical elements.

The post conditions are the set of rules that

should be true after the execution of the services. It

supply some information regarding the service

behavior by connecting input to the output of a

service.

Figure 5 shows how the weights of the critical

elements are computed. The syntactic information

(T) about the service is tokenized, stemmed and

then using [16] weights are assigned to each token.

The weight assigned to each token, specifies the

importance of that token. The ontological element

corresponding to this token considered as critical

elements. Any post condition which its domain and

range are from inputs and outputs separately is

considered to be critical elements with weight 1.

3.3. Behaviorally Correct Path (BCP)

The path has to be found between inputs to

output in the ontology for services. The path can

have multiple critical elements. There can be

multiple paths that can exist from

input to output for a service, but the path which has

the maximum weight has been considered as a

behavioral path for a particular service. Therefore

the behavioral correct path can be defined as

maximum weighted path that connects input to the

output of a service including critical elements.

 function CriticalElements(O,S)

 for all o ∈ O do

 o.weight = 0

 end for

 for all S(Q) with domain and range is equal to

input and output respectively
 Set Property weight(O) =1

 end for

 T� Tokenize(S(T))

 T� Stem(T)

 for all t ∈ T do

 w� Tfidf(t)

 E� OntologyElements(O,t) ∩ S(I,O)

 for all e ∈ E do
 e.weight =w

 end for

 end for

 return E
end function

Figure 5: Algorithm for determining and weighting the

Critical elements

Date

Date Novel Novelist

Novelist

date Published writtenBy

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

429

Figure 6: SBG Discovery

The above algorithm shows how the

behaviorally correct path is discovered. If there are

critical elements, for each pair if input and output

BCP is determined. The service behavioral graph is

thus a set containing these paths. If no critical

elements can be identified, SBG will simply be a

union of input and output concepts.

4. CASE STUDY

The following table describes the services and

their inputs, outputs, syntactical information and

effects.The requested service from the user is a

service which returns the published date of novelist

earliest book. Therefore the requested service is

represented as

 T= returns the published date of novelist

 earliest book

 I = Novelist

S= O= Date

 Q= ᵩ

Bipartite Graph is constructed between inputs

of requested service and advertised service and

outputs of requested service and advertised service.

By applying algorithm in Figure 2 and 3 the below

results have been obtained. The service which

scores lowest is the nearest to the user requirement.

In this algorithm, relevant services according to the

user need are s1, s2, s3, s5, s4. The service s1 and

s2 scores the same. It means that both services are

same but in real these two services are different.

The input output matchmaking algorithm fails in

differentiating these two services.

Table 3: Example Web Services

Table 4: I/O Match

From the service description by applying the

second algorithm given in Figure 5, the critical

elements of each service have been found and the

corresponding scores are calculated using TF-

IDF[16] technique. The service behavioural graph

is constructed using the algorithm given in Figure 6

and ontology given in[9][17].

Table 5: Weight Calculation

Serv

ices

I/P O/P Syntactic

Info

Effects

S1 Novelist Date Returns

the

birthday of

a given

novelist

hasBirthday

(novelist,

date)

S2 Novelist Date Published

date of

novelist

earliest

book

ᵩ

S3 Book Date Returns

the

published

date of a

book

datePublished

(Book,

Date)

S4 Novel Writer Returns

the writer

of the

novel

ᵩ

S5 Novelist Novel Returns

the novel

written by

novelist

writtenBy

(novel,

novelist)

S I/P O/P I/P

rankg

O/P

ranking

Tot

scor

e

S1 Novelist –

Novelist

Date –

Date

Exact Exact 2

S2 Novelist –

Novelist

Date –

Date

Exact Exact 2

S3 Novelist –

Book

Date –

Date

Plugin Exact 3

S4 Novelist –

Novel

Date –

writer

Plugin Subsume 5

S5 Novelist –

Novelist

Date –

novel

Exact Subsume 4

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

430

Service Critical

Elements

Score

S1 Birthday 0.087371

Given 0.087371

Novelist 0.083193

Date 0.055462

hasBirthday 0.087371

S2 Published 0.056849

Date 0.063385

Novelist 0.063385

Earliest 0.099853

Book 0.056849

S3 Published 0.049743

Date 0.083193

Book 0.149228

datePublished 0.087371

S4 Writer 0.349485

Novel 0.19897

S5 Novel 0.149228

Written 0.087371

Novelist 0.083193

writtenBy 0.087371

4.1 Service Behavioural Graph

Figure 7(a): SBG of S1

Figure 7(b): SBG of S2

Figure 7(c): SBG of S3

Figure 7(d): SBG of S4

Figure 7(e): SBG OF S4

Figure 7(f): SBG OF S5

From the above Figure 7(d) and 7(e), the

inferred information is that the SBG for the web

service s4 is different. According to the total weight

between the critical elements, the first SBG is

preferred than the second one. In behaviour match

making among several SBGs of the same web

service, there is a provision to choose the relevant

SBG by applying the score for critical elements. In

Input Output Based matchmaking two or more web

services can falls in to the same category. The SBG

for S1 and S2 are different even though their inputs

and outputs are same. Further S1 and S2 can be

differentiated using the similarity matching

technique given in [18][19][20][21]. Therefore

choosing the relevant web services among these

1 0.15

0.083

0.083

1

0.15

0.35

0.2

0.35

1

0.2

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

431

services is very difficult. In this paper the two

techniques of retrieving web services based on the

user specification is analysed. The results of the

analysis are given below.

Table 6: Hash Table 1 for IOMAT

Parameters IOMAT BEHMAT

Precision Low(0.5) High (0.7)

Recall Same Same

Relevance Low (50%) High(70%)

Grade for

the
retrieved

services

Only

categorization
is possible

The

individual
score is

calculated

No of
services

Retrieved

according
to the user

query

One or more
relevant web

services

The exact
result of the

query

Execution

Time

Low (534ms) High(741ms)

 From the above results, even though the

execution time for the BEHMAT is higher

compared to IOMAT the BEHMAT performance is

high when compared to IOMAT. When the user

wants the correct results for their requested service

the BEHMAT is highly preferable to retrieve the

exact result as the user wants. The base for the

semantic match making is input and output of the

services. The merit of the I/O match is less

execution time. Therefore the I/O match can be

used as a filter to reduce the number of relevant

services. Based on the merits of these two match

making algorithms a new method is proposed to

improve the retrieval effectiveness.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup:

This approach has been evaluated on data sets.

To simulate a real-world scenario, the OWL-S

service retrieval test collection OWLS-TC [22]

version 3.0 revision 1.0 is considered. This

collection contains services retrieved mainly from

public IBM UDDI registries, and semi-

automatically transformed from WSDL to OWL-S.

More specifically, it comprises: (a) a set of

ontologies, derived from 7 different domains

(education, medical care, food, travel,

communication, economy and weapons),

comprising a total of 3500 concepts, used to

semantically annotate the service parameters, (b) a

set of 1007 OWL-S services, (c) a set of 29 sample

requests, and (d) the relevance set for each request.

For this paper only the domain food and

communication is considered.

Based on OWLS-TC V3, data set was

synthetically generated to maintain the properties of

real-world service descriptions. In particular, a set

of approximately 100 services are created, by doing

the variations of the services of the original data

set. For each original service, randomly one or

more input or output parameters are selected, and

created a new service description by exchanging

and replacing them to have set of services that

satisfy IOMAT rules and also set of services that

falls under BEHMAT category. A set of 10 requests

was generated following the same process, based

on the original 29 requests.

After applying IOMAT and BEHMAT, some

of the services are identified as identical based on

input output parameters and some of the services

are behaviourally same. Those services are

maintained in a hash table for future reference. The

table 7 & 8 shows the structure of the hash table.

Table7: Hash Table 1 for IOMAT

S1
0 S2 1 S6 0 S8 1

S1

0
0

S7 0
S1

1
1

S1

3
0 S15 1

S1

7
0

S1

4
0

S2

3
0

S1

8
0

S2

0
1

S2

2
0 S30 1

S3

5
0

S1

9
0

S4

0
1

S5

0
0 S55 1

S6

0
0

S2

4
0

S2

5
0

S9

5
1

S10

0
0

Table 8: Hash Table 2 for BEHMAT

The structure of the hash table is defined as the

first field followed by all the fields represents the

services that are identical based on input and output

parameters. Meaning is that service S1 is similar to

S2, S3, S4, S5, S6, S8, S9, S10. Similarly Service

S2 is having the same input and output as S1, S3,

S4, S5, S6, S8, S9, and S10 and so on. Each service

field of the hash table is associated with one more

flag field that gives the information about whether

the next service is considered as an individual

S1 0 S8 1 S10 0

S3 0 S15 1 S20 0

S28 0 S30 1 S35 0

S40 0 S41 1 S50 0

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

432

service or continuation of previous service. In the

sense in S1 the flag field 0 represents it is an

individual service. In S2 the flag 1 represents the

next service is the continuation that is from service

S2 to S6 is same as service S1. The same principle

applies to Hashtable2 also. There the services are

behaviourally similar.

Figure 8: Comparative Analysis

 The graph shows that the precision values are

higher in BEHMAT and proposed method when

compared to IOMAT. In all the above three

methods the recall value is same (all the needed

web services are retrieved) therefore the separate

graph is not provided for recall. The precision plays

an important role in web service discovery because

precision is defined as the fraction of retrieved

documents that are relevant to the search. By

analysing the above results the categories of

IOMAT algorithms are re formulated to achieve the

performance of BEHMAT. The algorithm is given

below.

Degreeofmatch(ReqService, Hashtable1,Hashtable

2)

Start
If (ReqService in Hashtable1 and Hashtable 2)

 Then Degree=Exact // alternate services are

available
If(ReqService in Hashtable2)

 Then Degree=Plugin

If(ReqService in Hashtable1)

 Then Degree=Subsume
If(ReqService Not in (Hashtable1 and Hashtable 2))

 Then Degree = Fail // Service composition

is necessary
 If(Any Partial Input output Matching)

 then do service composition

 Else Inform to the provider to create new service

End

Figure 9: Proposed Algorithm

6. CONCLUSION

This paper analyses the two methods I/OMAT

and BEHMAT based on service input, outputs and

service Input, Output, Precondition, effect and

Syntactical Information respectively. The above

two mentioned methods have same recall value that

is number of services that are retrieved is same.

Behaviour based matchmaking has the highest

precision value; it means the number of relevant

services that are retrieved is high. But I/O match

has the less execution time. Even though the

precision of I/OMAT is less compared to

BEHMAT, it can be used as a filter to reduce the

number of irrelevant services that are retrieved

because of its less execution time nature. Based on

the observations regarding the merits and demerits

of these algorithms new method for match making

is proposed. Further this work can be extended to

apply similarity based matchmaking on the above

mentioned algorithm and also it can be extended to

cloud based service discovery. The limitation of the

proposed algorithm is , the processing time is more

for constructing hash tables based on I/O and

behaviour of the services.

REFERENCES

[1] Web Services Description Language (WSDL).

http://www.w3.org/TR/wsdl.

[2] Ding Y, Fensel D, Klein MCA , Omelayenko

B,The SemanticWeb: yet another hip? Data

Knowl Eng ,2002,205–227.

[3] McIlraith S, Son TC, Zeng H , (2001) Semantic

Web services. IEEE Intell Sys Special Issue

Semantic Web 16(2):46–53.

[4] Bussler C , Fensel D, MaedcheA , Semantic

Web enabled Web services. In: Proceedings

of the international Semantic Web conference,

Sardinia, Italy, June 2002, pp 1–2.

[5] Grigoris Antoniou and Frank Van Harmelen, A

Semantic Web Primer.

[6] OWL-S: Semantic Markup for Web Services.

http://www.w3.org/Submission/OWL-S/

[7] OASIS. UDDI

v3.0,http://uddi.org/pubs/uddiv3.0.1-

20031014.htm,2002.

[8] UDDI: The UDDI Technical white paper

http://uddi.org/, (2000).

Journal of Theoretical and Applied Information Technology
 30

th
 November 2014. Vol. 69 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

433

[9] Alberto Fernández And Zijie Cong, Behavioral

Matchmaking of Semantic Web Services.

[10] Amit Gupta , Harin Vadodaria , Umesh

Bellur,Semantic Matchmaking Algorithms,

Open Access Database www.intechweb.org.

[11] C. Bartolini , J. Gonzalez-Castillo, D. Trastour

,A semantic web approach to service

description for matchmaking of services. In

Proc. of SWWS,2001

[12]Roshan Kulkarni, Umesh

Bellur,(2007),Improved Matchmaking

Algorithm for Semantic Web Services Based

on Bipartite Graph Matching, Web Services,

ICWS 2007.

[13] T. Kawamura, M. Paolucci, , T. Payne, and K.

Sycara, Semantic matching of web services

capabilities.,The Semantic Web (ISWC

2002), pages 333-347.

[14] H. Kuhn. The Hungarian Method for the

Assignment Problem,Naval Research Logistic

Quarterly,1955.

[15] K. Nedas. Implementation of Munkres-Kuhn

(Hungarian)

Algorithm.,http://www.spatial.maine.edu/

Kostas,2005.

[16]

http://en.wikipedia.org/wiki/Tf%E2%80%93i

df

[17] Protege: Ontology Editor and Knowledge-base

framework. http://protege.stanford.edu/.

[18] M. Bouzeghoub J.C. Corrales and D. Grigori,

Behavioral matchmaking for service retrieval:

Application to conversation protocols.

Information Systems, 2008, 33(7-8):681_698.

[19] M. Bouzeghoub J. Corrales, and D. Grigori,

BPEL processes matchmaking for service

discovery. On the Move to Meaningful

Internet Systems 2006: CoopIS, DOA,

GADA, and ODBASE, pages 237_254.

 [20] Wu, J., Wu, Z, Similarity-based web service

matching. In: Proc. of IEEE International

Conference on Services Computing, 2005.

[21] X. Dong, A.Y. Halevy, J. Madhavan, E.

Nemes, and J. Zhang, Similarity Search for

Web Services,VLDB,2004

[22] Owls-tc version 2.2 revision 2.

http://projects.semwebcentral.org/projects/owl

stc/.

