
Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

326

PROPERTY BASED DYNAMIC SLICING OF OBJECT

ORIENTED PROGRAMS

1
SANTOSH KUMAR PANI,

 2
G.B.MUND

1 School of Computer Engineering, KIIT University

2 School of Computer Engineering, KIIT University

E-mail: 1spanifcs@kiit.ac.in , 2mundgb@yahoo.com

ABSTRACT

Slicing is the process of extracting the statements of a program affecting a given computation.In contrast
to static slices, Dynamic slices are smaller in size as they extract statements for a given execution of a
program and helps in interactive applications like debugging and testing. From last three decades, many
algorithms have been designed to slice a program with respect to the syntax of the program. Traditional
bulky Syntax based slices for program variables used at many places in a program are generally large even
for dynamic slices. Most of the semantics based slicing algorithms extract slices by storing an execution
trace of a program. To the best of our knowledge generating dynamic slices based on abstract/concrete
properties of program variables is scarcely reported in literature. We present here an algorithm for
generating dynamic syntax based as well as property slices of object oriented programs addressing all key
object oriented features.

Keywords: Dynamic slice, ReferenceSet, Property based Slice, Polymerphism, Abstract state.

1. INTRODUCTION

Program slicing is an analysis method. It is

the process of extracting the statements of a
program affecting a given computation. A slicing
criterion <s, V> is a tuple where s is a program
statement and V is a subset of the program’s
variables used or defined at s. A dynamic slice of
program P contains the statements that has an effect
on the slicing criterion for a given execution. Hence
a dynamic slice is smaller in size and more useful
for interactive application like program testing and
debugging.

Weiser [1] was the first to introduce static
program slicing. In his intraprocedural static
slicing algorithm he constructed a Control Flow
Graph (CFG) for intermediate representation. Inter-
statement influences were represented by means of
data-flow equations. Weiser’s method generated
static slices based on iteratively solving these data-
flow equations. Korel and Laski [2] were first to
compute dynamic slices. The space requirement of
Korel and Laski was O(N) for storing the execution
history, and O(N2) for storing the dynamic flow
data, where N is the length of execution.

Mund et al. [4] present an efficient
dynamic slicing algorithm for intraprocedural
environment, and then extend it to handle
interprocedural calls. A collection of control

dependence graphs were used by their methods as
the intermediate program representation.

Larson and Harrold [7] were the first to
consider object orientation aspects in their work.
They introduced the class dependence graph .They
represent a class hierarchy, data members,
inheritance and polymorphism. This paper
describes the construction of system dependence
graphs for object-oriented software on which
efficient slicing algorithms can be applied.

The concurrency and dynamic slicing
aspects were not addressed by Larson and Harrold,
Wang et al. [14], Huynh and Song [13] , Xu and
Chen [12] and Zhao [11] have addressed these
issues of object-oriented programs.

Now-a-days most of the application
programs contain thousands of lines of code.
Traditional bulky syntax based slices for program
variables used at many places in a program are
generally large even for dynamic slices.

While analyzing a program P, suppose it is
required for a variable v in P to have a particular
property ρ. If we find at a fixed program point, v
does not have the desired property ρ, then it is
needed to know which statements affect the
computation of property ρ of v. Here we are not
interested in the exact value of v, hence all the
statements that a standard syntax based slicing
algorithm would extract are not required. Therefore,
the traditional bulky value based static slicing is not

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

327

adequate in this case. Since, properties propagate
less than values, some statements might affect the
values but not the property. Due to this the
debugging and program understanding can be
easier, as a relatively smaller portion of the code
has to be inspected.

Mastroeni and Zanardini in [15]
introduced a semantics-based dependency which
act as a bridge between syntax and semantics.
Based on this semantic dependency, a more precise
PDG can be obtained by removing the false
dependencies from the traditional syntactic PDG.
The semantic dependency can also be lifted to an
abstract domain where dependencies are computed
with respect to some specific properties of interest
rather than syntax influenced values. This (abstract)
semantic dependency is computed at expression
level over all possible (abstract) states appearing at
program points.

Sukumaran et al.[16] introduced
Dependence Condition Graph (DCG), a refinement
of PDGs based on the notion of conditional
dependency. This is obtained by adding the
annotations which encode the condition under
which a particular dependence actually arises in a
program execution.

There are many papers on Dynamic
Slicing of object oriented programs but few papers
address in details about the most basic features of
Object Oriented Programming i.e. class definition,
object creation, accessing object through reference,
invoking methods of a class, polymorphism,
inheritance, dynamic binding etc. Most of the
semantics based slicing algorithms have focused
on finding static slices on the abstract properties by
using SSA as intermediate representation and
extract slices by storing an execution trace of a
program. To the best of our knowledge generating
dynamic slices based on abstract/Concrete
properties of variables/objects in object oriented
programs addressing all key features of object
oriented programming is scarcely reported in
literature.

We combine the concepts of Mund et al
[4] and R Halder and A cortesi [9] to design an
algorithm to generate dynamic slices on abstract
properties of object oriented program variables
rather than syntax based concrete values. In our
approach we first maintain some additional data
structures to capture all the object oriented features.
The semantic relevancy and semantic dependency
is also captured as soon as it is executed in actual
run of the program. We define a slicing criteria as
<s,V,P> where s is a program statement, V is the
variable of interest and P is the examined property

of interest. We modify the algorithm of mund et.
al. [4] to extract the syntax based slice of object
oriented program and simultaneously add it to the
semantic slice if the statement to be added to the
syntax data slice is semantically relevant. Since the
syntax based data dependencies and control
dependencies are already addressed and the syntax
slice is always a super set of semantic slice, the
generated slice will be smaller and useful in
interactive applications. Our algorithm also not
required to store any execution trace as it
immediately updates the required data structures.
The slices on defined properties of program
variables are already available before a slice is
asked for.

Next section describes some basic
definitions that are used by our proposed algorithm.
The property based dynamic slicing algorithm is
discussed in the next section followed by the
analysis of the algorithm and comparison with
related work. The next section concludes the paper.

.

2. BASIC CONCEPTS AND DEFINITIONS

Object oriented programs are much similar
to procedural programs except the restriction in
access to data. The dependencies that exist in an
object oriented program are the static control
dependency and the dynamic data dependency. The
other features of object oriented programming like
inheritance, polymorphism, dynamic binding etc
can be captured by using runtime disposable data
structures.

We present here few basic concepts and
definitions associated with our Algorithm. Some of
the concepts and definitions are available in Mund
et al [4] and R Halder and A cortesi [9].

2.1 Control Dependency

2.1.1 Control Flow Graph

The control flow graph (CFG) ‘G’ of a
program P is a graph G = (N,E), where each node n
Є N represents a basic block of statements in the
program P. For any pair of nodes x and y, (x,y) Є E
iff there is possible flow of control from x to y.
This Control Flow Graph can be used to extract
control dependency that can exist among statements
in a program..

2.1.2 ControlDependentOn(u)

Let u be a statement of the program P.
ControlDependentOn(u) = s iff the statement u is
control dependent on s.

2.1.3 ActiveContrlSlice(s)
If s is a predicate statement of a program P and
UseVarSet(s) = {v1. . . vk}. Before execution of the
program P, ActiveContrlSlice(s) is set ti Φ. After

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

328

each execution of the statement s in an actual run of
the program, ActiveContrlSlice(s) = {s} U
ActiveDataSlice(v1) U …U ActiveDataSlice(vk) U
ActiveContrlSlice(t), where
ControlDependentOn(s)= t. Let s is a loop control
statement, if the current execution of s corresponds
to exit from the loop, then ActiveContrlSlice(s) is
set to Φ.

2.2 Class

Any Object Oriented Programming must
supports classes. A class has a definition which
includes the definition of its data members and
methods. Different Object Oriented Programming
languages support different types of access to use
these class members. A programmer defined class
has to be defined with all it’s member definition.
The class member can be data or methods. We
define the following data structure to process
classes in an object oriented program.

2.2.1 DMemberSet()

Let C be a class then, DMemberSet(C) is the set of
all data members of the class C.

2.2.2 MMemberSet()

Let C be a class then, MMemberSet(C) is the set of
all method members of the class C.

Whenever a class is defined, the
DMemberSet() and MMemberSet() data structures
are updated.

2.3 Objects

The classes in Object Oriented
Programming are made useable by creating objects.
Objects can be created statically (C++) or
dynamically (C++ & JAVA). Most Object Oriented
Programming languages access objects through
reference variable. Again the reference variables
may be permanently (C++) or it may be temporarily
(JAVA) attached to an object.We define the
following data structures to process object creation
and accessing a class member through object
reference in an object oriented program.

2.3.1 InstanceOf(obj)
Let obj be an object or object reference of
a class C, then InstanceOf(obj)=C.

The InstanceOf() data structure is updated
with creation of each object(static creation) or
object reference (dynamic creation).

2.3.2 ActiveDataSlice(var)
Let var denotes a data variable or a member
variable or a reference variable of an Object
Oriented Program P.

If var is a data variable of basic data type

like int, char, float, double or a reference variable in
Object Oriented Program P, Initially,
ActiveDataSlice(var) =Φ.

Let x be a Def(var) node, and
UseVarSet(x)={v1,v2,…,vk}.ActiveDataSclice is
updated after execution of each statement u in the
following way:

ActiveDataSlice (var) ={x} ∪ ActiveDataSlice

(v1) ∪ ActiveDataSlice (v2)…∪ ActiveDataSlice

(vk)∪ ActiveContrlSlice(t), where
ControlDependentOn(x)=t.

If dv is a data member of a statically
created object obj.Initially, ActiveDataSlice(obj.dv)
=Φ.For all dv Є DMemberSet(InstanceOf(obj)). For
dynamically created object obj the
ActiveDataSlice(obj.var)= Φ for all var Є
DMemberSet(InstanceOf(obj)) dynamically
whenever the object creation statement is executed.

Let x be a Def(obj.dv) node, and
UseVarSet(x)={v1,v2,..vk}. After each execution of
the node x in the actual run of the

program,ActiveDataSlice(obj.dv)={x}∪

ActiveDataSlice(v1)∪ ActiveDataSlice(v2)…∪

ActiveDataSlice(vk)∪ ActiveContrlSlice(t) where
ControlDependentOn(x) = t.

2.3.3 DyanSlice(s,var)
Let s be a statement of an object oriented program
P, var (may be a data variable, member variable or

reference variable) be a variable in the set i.e. var∈

DefVarSet(s) ∪ UseVarSet(s).
Before execution of the program P,

DyanSlice(s,var) = Φ. After each execution of the
node s in an actual run

DyanSlice(s,var)=ActiveDataSlice(var) ∪

ActiveContrlSlice(t), whereControlDependentOn(s)
= t.

2.3.4 DyanSlice(obj)
Let obj be an object in Object Oriented Program P.
Before execution of program P, DyanSlice(obj)=Φ.
Let the DMemberSet(InstanceOf(obj))
={mvar1.mvar2,…,mvarn} then DyanSlice(obj)

=DyanSlice(obj.mvar1) ∪ DyanSlice(obj.mvar2)
∪ …∪ DyanSlice(obj.vbarn).

2.4 Method Call
2.4.1 CallSliceStack
This stack is maintained to keep track of the
ActiveCallSlice during the execution of the
program.
2.4.2 Formal(x,var), Actual(x,var).
Let m1 be a member method of a class in an Object
Oriented Program P and x be a calling node to the
member function m1. The formal and actual
parameter of member function m1 be f and a

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

329

 obj1

ref1
x

y

ref1

 obj1

x

y

ref2

respectively, then Formal(x,a) = f and Actual(x,f) =
a.

2.4.3 ActiveReturnSlice
Let P be an Object Oriented Program. Initially,
ActiveReturnSilce= Φ. If x is a return statement in
program P and UseVarSet(x)={v1,v2,...,vk}. Then,

before execution of x, ActiveReturnSlice={x} ∪

ActiveDataSlice(v1)∪ ActiveDataSlice(v2)∪ ...∪

ActiveDataSlice(vk)∪ ActiveCallSlice∪
ActiveContrlSlice(t),where
ControlDependentOn(x)=t.
Followings are done after execution of each call
node u:

- ActiveReturnSlice is used to compute and
update necessary run-time information .
- ActiveCallSlice is set to Φ.

 If the formal and actual parameter of a method m1

be f and a respectively, then

ActiveDataSlice(f)=ActiveDataSlice(a)∪
ActiveCallSlice.
For each variable var used or defined at an
execution node z, DyanSlice(z,var)=

ActiveDataSlice(var) ∪ ActiveCallSlice∪

ActiveContrlSlice(t), where
ControlDependentOn(x)=t.
Execution of the member method m1 ends with a
return node iff its corresponding method call node
y is a Def(v) node where v is a variable, then
ActiveDataSlice(v) =ActiveReturnSlice after
execution of the node y.

2.5 Object Reference
In OOP language it is possible that a

reference of a class can refer to one or more objects
of that class at different instance of time. We
propose to maintain a list for each object that
contains all the references which are referring to
that object. This list may contain a reference of its
own class or a reference of its base class.
2.5.1 RefSet(obj)
Let obj be an object of class ABC and
var1,var2…varkare the referencesof class ABC or
its base class referring to the object obj. Then
RefSet(obj)={var1,var2,…,vark}ControlDependentO
n)(u)):Let u be a statement of the object oriented
program P. ControlDependentOn(u)= s iff the
statement u is control dependent on s.
Whenever a reference variable var changes its
reference from obj1 to obj2, it will be removed from
RefSet(obj1) and inserted into
RefSet(obj2).Whenever a member function is called
with object(s) obj1, obj2., . . ., objn as reference
arguments then RefSet(obj) should be updated for
each obj in the argument list of the member

function. RefSet(obj) = RefSet(obj) ∪

Formal(x,obj) where x is the calling node to the
member function.

2.5.2 CurrentRefObj(var)
Let var is a reference of a class is referring to an
object obj of that class or of its any derived class.
Then CurrentRefObjrvar) = obj iff obj is the current
object to which var is referring to. If
RefSet(obj)={ref1,ref2,…,refk) then for each var in
RefSet(obj) , CurrentRefObj(rvar)=obj.

e.g. class ABC{

 int m;

 int n;

 }

ABC ref1;

ref1=new ABC();

ABC ref2;

ref2=ref1;

ABC ref3;

ref3=new ABC();

ref1=ref3;

For each execution of the Constructor of a class, the
slicer can assign a unique name (like obj1, obj2,. . .
,objn) to newly created objects for identifying them
uniquely.
After execution of statement-2
RefSet(obj1)={ref1}
CurrentRefObj(ref1)=obj1

Figure. 1: After Execution Of Statement -2

After execution of statement-4

RefSet(obj1)=RefSet(obj1) ∪ {ref2}={ref1,ref2}
CurrentRefObj(ref2)=obj1

Figure 2: After execution of statement -4

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

330

obj1

x

y

re

obj2

y

x
ref

After execution of statement-6
RefSet(obj2)={ref3}
CurrentRefObj(ref3)=obj2
On execution of statement-7
RefSet(CurrentRefObj(ref1))=
RefSet(CurrentRefObj(ref1))
i.e. RefSet(obj1)=RefSet(obj1)− {ref1}={ref1,ref2}
− {ref1}={ref2}

Figure 3: After execution of statement -7

2.6 Inheritance

2.6.1 Predecessorof()

Let D be a class inherited from a class B then
Predecessorof(D)=B , if D is not inheriting from
any class in the source code program then
Predecessorof(D)= Φ. Inheritance is captured by
the Predecessorof() data structure. If a method
which is not existing in the derived class is called
with the derived class reference then the method
can be recursively searched in the
MMemberSet(predecessorof(derived class)) and the
required update can be made before calling the
method.

2.7 Polymephism

Polymerphism basically achieved in object
oriented program in two ways i.e. method
overloading and through method overriding and
dynamic binding. In method overloading each
overloaded method has an unique signature so it
can be uniquely renamed by the slicer and the
required update can be made before calling an
overloaded method.In the other polymorphic
behaviour we allow the base class references to stay
in the RefSet of an object. On that base class
reference whenever an overriding method is called
,by looking into the CurRef(obj) and
MMemberSet(InstanceOf(obj))The required update
can be made before calling an overloaded method.

2.8 Abstract interpretation

Abstract domains represent properties of
variables over concrete domains. Their
mathematical structure guarantees, for each
concrete element there exists the best correct
approximation in the abstract domain. This is
because the property of abstract domains of being
closed under greatest lower bound. The lattice of
abstract interpretation of C is isomorphic to the
lattice UCO(C) of all the upper closure
operators(uco) on C .UCOs are distinctively
calculated by the set ρ(C) of their fix-points. We
have used the abstract domain SIGN containing (
), () and the abstract values [neg] ≡ Z- (negative
number) and [pos] ≡ Z+ (positive numbers
including 0).
Completeness in abstract interpretation is a
property of abstract domains relative to a fixed
computation. An abstract domain ρ is complete for
f if it is optimally precise for calculation.
Generally ρ is complete for f if ρ o f o ρ = ρ o f .
In other words, computing f in the abstract domain
corresponds precisely to abstracting the concrete
computation of f, without further loss of
information.

2.9 AbstractState(u)

AbstractState (u) represents the abstract
state associated with each program variable at
statement u of program P. This is updated after
each execution of program statement u.

e.g. 1.p=10;
 2.q=-6;
 3.r=p+2q

After execution of statement 1:
AbstractState(1)={+, , }.
After execution of statement 2:
AbstractState(2)={+, -, }.
After execution of statement 3:
AbstractState(3)={+, - , +}.
Where represents the abstract state of
uninitialized variables and is the least upper bound
for the lattice for abstract domain for abstract
property sign.

2.10 Semantic Relevancy

∀ ε ∈ ∑ρ : P[[s]]p
ρ(ε) = ε , the statement s

is not semantically relevant with respect to the
abstract domain ρ.statement s at program point p is
semantically irrelevant if no changes take place in
the abstract state ε (abstract state(s)) occurring at p,
when s is executed over ε. The statements which do
not contribute to any change in the states occurring
at that program point are considered semantically
irrelevant. The atomicity of the abstract value for

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

331

each variable in the abstract state ε with respect to
property ρ is one of the crucial requirements during
computation of ρ-relevancy of the statements.
These atomic abstract values are obtained from
induced partitioning. The following example shows
how to compute the semantic relevancy for the
statements by using covering techniques.

e.g. 1.x=y+0
2.x=y+1

If we consider a property ρ =sign then statement 1
is irrelevant with respect to property ρ as for any of
the value of y the statement will not change the
state. In statement 2 if y= -1 then the statement
changes the value of y from negative to zero.
Similarly if y=0 then the statement changes the
value of y from zero to positive. So statement 2
becomes relevant with respect to the property ρ

2.11 Semantic Dependancy

A variable vi is said to be have semantic
dependency on variable v, if excluding vi from u
and re-executing u does not change the abstract
state of v with respect to ρ.

2.12 ActiveSemanticSlice(v, ρ)

ActiveSemanticSlice holds only those
statements which influence the variable v
semantically on the basis of an abstract property ρ.
It is updated in the following ways:

- Let u be a Def(v) statement in program p,
the node u is included in
ActiveSemanticSlice(v, ρ) if execution of
node u changes the abstract state of v for
current set of inputs with respect to ρ.

- Let UseVarSet(u)={v1,v2....................vk},
the ActiveDataSlice(vi) is included in
ActiveSemanticSlice(v, ρ) if there is
semantic dependency of vi on v(where v is
defined in statement u).A variable vi is
said to be have semantic dependency on
variable v, if excluding vi from u and re-
executing u does not change the abstract
state of v with respect to ρ.

- Let ControlDependentOn(u) = t,
ActiveContrlSlice(t) is included in
ActiveSemanticSlice(v, ρ) if execution of node u
changes the abstract state of v for current set of
inputs with respect to ρ.
Before execution of node u
ActiveSemanticSlice(var, ρ)=Φ.
ActiveSemanticSlice(var, ρ) is updated
appropriately after execution of u.

2.13 DynamicSemanticSlice(v, s, ρ)

Let s be a statement of Program P, v be a
variable in the set UseVarSet(s) U DefVarSet(s)
and ρ is the abstract property of interest. Before
execution of the program P, DyanSlice(v, s, ρ) = Φ.
After each execution of the node s in the actual run
of the program, the dynamic slice
DyanSemanticSlice(v, s, ρ) with respect to the
slicing criterion <v,s, ρ > is updated as
DyanSemanticSlice(v, s, ρ) =
ActiveSemanticSlice(v) U ActiveContrlSlice(t)(if s
is semantically relevant to v), where
ControlDepenedentOn(u) = t.

2.14 SemanticReturnSlice

Initially, SemanticReturnSilce= Φ. Let x is
a return statement in program P, and
UseVarSet(x)={v1,...,vk}. Before execution of node

x, SemanticReturnSlice={x}∪

ActiveDataSlice(v1) ∪ ActiveDataSlice(v2)... ∪

ActiveDataSlice(vk) ∪ ActiveCallSlice ∪

ActiveContrlSlice(t), ∀vi : vi has
semantic dependency on result of x with respect to
abstract property ρ and ControlDependentOn(x)=t.

Let u be a call node. After each execution call
node u, we do the following:

- Use SemanticReturnSlice to compute and
update relevant run-time information
corresponding to the execution of u

- Update ActiveCallSlice=Φ
Let the formal and actual parameter of the method
m1 at the calling node x be f and a respectively..
Then ActiveDataSlice(f)=ActiveDataSlice(a)U
ActiveCallSlice and ActiveSemanticSlice(f)=
ActiveSemanticSlice(a).
Thus for each var used or defined at an execution
node z inside method m1, then DyanSlice (z,var,ρ)

=ActiveCallSlice∪ ActiveDataSlice(var) ∪

ActiveControl Slice(t) where
ControlDependentOn(z)=t. and DyanSemanticSlice

(z,var,ρ) =ActiveCallSlice∪

ActiveSemanticSlice(var) ∪ ActiveContrlSlice(t),
if z is semantically relevant to var with respect to
abstract property ρ.
Execution of the member method m1 ends with a
RETURN node iff its corresponding method call
node y is a Def(v) node where v is a variable, then

• ActiveDataSlice(v) =ActiveReturnSlice.

• ActiveSemanticSlice(v)
=SemanticReturnSlice.

3. ALGORITHM

we present here an efficient property based
dynamic slicing algorithm for an Object Oriented
program. To compute slices, we first construct the

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

332

control flow graph (CFG) of the program P
statically once. The algorithm uses the CFG for
extracting the control dependency. The run time
data structures are updated by the algorithm during
execution of the program P.

3.1. Property based dynamic slicing Algorithm

for Object Oriented programs

1. Construct the Control Flow Graph GP of the
program P.
2. Before each execution of the program do the
followings for each statement u.
Set ActiveContrlSlice(u) = Φ If u is a predicate
statement..
Update ControlDependentOn(u)
For each variable var Є DefVarSet(u) U
UseVarSet(u) do
DynamicSemanticSlice(var,u, ρ) = Φ.
DyanSlice(u, var) = Φ.
Initialize the followings for each variable var of the
program P
ActiveSemanticsSlice(var, ρ) = Φ
ActiveDataSlice(var) = Φ.
CallSliceStack = NULL.
ActiveCallSlice = Φ
For definition of each class C
Update DMemberSet(C)
Update MMemberof(C)
For each member m of the class
If the class is inhering from a class D
Update
Predeccesorof(C)
For each object or reference variable r
Update
Instanceof(r)
For abstract property ρ set AbstractState(u)={ ,

, ,…, },where u is the first statement to be
executed by program P.
3. Repeat steps 4, 5 and 6 with given set of input
values until the program terminates.
4. Do the following before execution of a call
statement u.
If u is a call statement to a method Q, then
(a) Update CallSliceStack and ActiveCallSlice.
(b)For each actual parameter var in the procedure
call Q do
ActiveDataSlice(Formal(u,var))=
ActiveDataSlice(var) U ActiveCallSlice.
ActiveSemanticSlice(Formal(u,var)) =
ActiveSemanticSlice(var).
If the parameters are object references then
Update RefSet() and CurrentRefOf()
5. before execution of a return statement u,
 Update ActiveReturnSlice and
SemanticReturnSlice.

If the return value is an object reference then
Update RefSet() and CurrentRefOf()
6. After execution of statement u of the program P,
do the following
(a) If u is a Def(var) statement and not a call
statement then
Update ActiveDataSlice(var).
Update ActiveSemanticSlice(var)
(b) If u is a call statement to a procedure Q then do
For every formal reference parameter var in the
procedure Q do
ActiveDataSlice(Actual(u,var))=
ActiveDataSlice(var).
ActiveSemanticSlice(Actual(u,var))=
ActiveSemanticSlice(var).
if u is a Def(var) statement then
ActiveDataSlice(var) = ActiveReturnSlice.
ActiveSemanticSlice(var) = SemanticReturnSlice.
for every local variable var in the procedure Q do
ActiveDataSlice(var) = Φ .
ActiveSemanticSlice(var) = Φ
Update CallSliceStack and ActiveCallSlice.
Set ActiveReturnSlice = Φ.
SemanticReturnSlice= Φ.
Updtae AbstractState(u).
(c) For every variable var Є DefVarSet(u) U
UseVarSet(u) do
Update DyanSlice(u, var).
Update DynamicSemanticSlice(var,u, ρ)
(d) Update ActiveContrlSlice(u) where u is a
predicate statement.
7. Exit

3.2. Working of the Algorithm
For better understanding of the working of

the algorithm and updation of the run-time data
structures, we consider the following two example
programs.Example program-1 illustrates the
updation of data structures in dealing with all object
oriented features and generates syntax based slices.
Example program-2 illustrates the property based
slicing to generate both syntax and semantic based
slices.
Example program-1:
class Number

 {

 int x;

 int y;

 Number(int p, int q)

 {

15. x=p;

16. y=q;

 }

void getData(int p, int q)

 {

17. x=p;

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

333

18. y=q;

 }

 void showData()

 {

19.System.out.println(“x = “+x+”\t

y = “+y);

 }

 void getIncrement()

 {

20. x = x + 1;

21. y = y + 1;

}

Number addNumber(Number ref5)

{

 Number temp;

22. temp=new Number();

23. temp. x = x + ref5. x;

24. temp.y = y + ref5.y;

25. return temp;

}

}

public class Main

{

Public static void main(String

s[])

{

 Number ref1;

1. ref1=new Number();

 Number ref2;

 int a, b;

2. a=4;

3. b=5;

4. ref1.getData(a,b);

5. ref1.getIncrement();

6. ref1.showData();

7. ref2=ref1;

8. ref2.getIncrement();

9. ref2.showData();

 Number ref3,ref4;

10. a=10;

11. b=20;

12. ref3=new Number(a,b);

13. ref4=ref1. addNumber(ref3);

14. ref4. showData();

 }

}
After execution of node-1: ActiveDataSlice(obj1.
x)= Φ, DyanSlice(1,obj1. x)= Φ,
ActiveDataSlice(obj1. y)= Φ, DyanSlice(1,obj1.
y)= Φ, DyanSlice(obj1)= DyanSlice(1,obj1. x) ⋃

DyanSlice(1,obj1. y)= Φ⋃ Φ = Φ,

ActiveDataSlice(ref1)= {1}⋃ Φ = {1},
DyanSlice(1,ref1)= {1}, RefSet(obj1)={ref1},
CurrentRefObj(ref1)=obj1.

After execution of node-2: ActiveDataSlice(a)={2},
DyanSlice(2,a)={2}.

After execution of node-3: ActiveDataSlice(b)={3},
DyanSlice(3,b)={3}.

Before execution of node-4: ActiveCallSlice = {4}

⋃ Φ = {4}, CallSliceStack = [{4}], Formal(4,a)=p,
Formal(4,b)=q,ActiveDataSlice(p)=ActiveDataSlic

e(a) ⋃ ActiveCallSlice={2}⋃{4}={2,4},

ActiveDataSlice(q)=ActiveDataSlice(b) ⋃

ActiveCallSlice ={3}⋃{4}={3,4}.

After execution of node-17: ActiveDataSlice(ref1.

x)={17}⋃ActiveDataSlice(p) ={17}⋃{2,4} =
{2,4,17},DyanSlice(17,ref1.x)=ActiveDataSlice(ref
1.x)={2,4,17},DyanSlice(17,p)=ActiveDataSlice(p)
={2,4},DyanSlice(CurrentRefObj(ref1))=DyanSlice

(obj1)=DyanSlice(17,ref1.x)⋃DyanSlice(17,ref1.y)

= {2,4,17} ⋃ Φ={2,4,17}.

After execution of node-18: ActiveDataSlice(ref1.

y)={18}⋃ActiveDataSlice(q) ={18}⋃{3,4} =
{3,4,18},DyanSlice(18,ref1.y)=ActiveDataSlice(ref
1.y)={3,4,18},DyanSlice(18,q)=ActiveDataSlice(q)
={3,4},DyanSlice(CurrentRefObj(ref1))=DyanSlice
(obj1)=DyanSlice(18,ref1.x⋃DyanSlice(18,ref1.y)

={2,4,17}⋃{3,4,18}={2,3,4,17,18}.

After execution of node-4: DyanSlice(4, ref1)= {1},
ActiveCallSlice= Φ, CallSliceStack= Φ.

Before execution of node-5: ActiveCallSlice = {5}

⋃Φ = {5}, CallSliceStack = [{5}].

After execution of node-20: ActiveDataSlice(ref1.

x)={20}⋃ActiveDataSlice(ref1.x)={20}⋃{2,4,17}
={2,4,17,20},DyanSlice(20,ref1.x)=ActiveDataSlic
e(ref1.x)={2,4,17,20},DyanSlice(CurrentRefObj(re

f1))=DyanSlice(obj1)=DyanSlice(20,ref1.x) ⋃

DyanSlice(20,ref1.y)={2,4,17,20}⋃{3,4,18}
={2,3,4,17,18,20}.

After execution of node-21: ActiveDataSlice(ref1.

y)={21}⋃ActiveDataSlice(ref1. y)={21}⋃{3,4,18}
={3,4,18,21},DyanSlice(21,ref1.y)=ActiveDataSlic
e(ref1.y)={3,4,18,21},DyanSlice(CurrentRefObj(re
f1))=DyanSlice(obj1)=DyanSlice(20,ref1.x)

⋃DyanSlice(21,ref1.y) = {2,3,4,17,18,20,21}.

After execution of node-5: DyanSlice(5, ref1)=
ActiveDataSlice(ref1)={1}, ActiveCallSlice= Φ,
CallSliceStack= Φ.

Example program-2:

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

334

void main()

 {

 int p,q,i,r;

 1. read(p);

 2. read(i);

 3. read(r);

 4. q=r;

 5. while(i<2)

 {

 6. p=add(p,r);

 7. p=2*(p+2);

 8. q=calculate(p,r);

 9. i=i+1;

}

 10. write(p);

 11. write(q);

 }

int add(int a, int b)

 {

 12. a=a+b;

 13. return(a);

 }

int calculate(int y, int z)

 {

 14. return(4*y%2 + 2*z +6);

 }

Before execution of node 1: AbstractState(1) = { ⊥,
⊥, ⊥, ⊥}.

After execution of node 1:ActiveDataSlice(p)={1},

DynaSlice(1,p)={1}, AbstractState (1)={-, ⊥,⊥,⊥},
ActiveSemanticSlice(p,SIGN)=
ActiveSemanticSlice(p, SIGN) U {1} = {1},
DyanSemanticSlice (p,1,SIGN)={1}.

After execution of node 2 : ActiveDataSlice(i)
={2}, DynaSlice(2,i) = {2}, AbstractState(2)= {-

,+,⊥,⊥}, ActiveSemanticSlice(i, SIGN) =
ActiveSemanticSlice(i, SIGN) U {2} = {2},
DyanSemanticSlice(i,2,SIGN)={2}.

After execution of node 3 : ActiveDataSlice(r)=
{3}, DynaSlice(3,r)= {3}, AbstractState(3)= {-

,+,+,⊥}, ActiveSemanticSlice(r, SIGN) =

ActiveSemanticSlice(r, SIGN) ⋃ {3} = {3},
DyanSemanticSlice(r, 3, SIGN)= {3}.

 After execution of node 4: ActiveDataSlice(q)={4}

⋃ ActiveDataSlice(r)={3,4}, DynaSlice(3,r)=
{3\},DynaSlice(3,q)= {3,4}, AbstractState(3)= {-
,+,+,+\}, ActiveSemanticSlice(q, SIGN) =

ActiveSemanticSlice(q,SIGN)⋃{4}⋃ActiveDataSli

ce(r) = {4} ⋃ {3}={3,4} , DyanSemanticSlice(r, 3,
SIGN)= {3}.

After execution of node 5

:ActiveControlSlice(5)={5} ⋃ ActveDataSlice(i) =
{2,5}, DynaSlice(5,i) = ActiveDataSlice(i)= {2},
AbstractState(5) = {-,+,+,+}, DyanSemanticSlice(i,
5, SIGN) = {2}.

Before execution of node 6 : AbstractState (6)= {-

,+,+,+},ActiveCallSlice={6}⋃ActiveCallSlice⋃
ActiveControlSlice(5)={6}⋃{2,5}={2,5,6},
CallSliceStack=[{2,5,6}], ActiveDataSlice(a) =

ActiveDataSlice(p) ⋃ ActiveCallSlice = {1} ⋃
{2,5,6}={1,2,5,6},ActiveDataSlice(b)=ActiveDataS

lice(r) ⋃ActiveCallSlice= {3} ⋃ {2,5,6} =
{2,3,5,6},ActiveSemanticSlice(a,SIGN)=ActiveSe
manticSlice(p,SIGN)={1},ActiveSemanticSlice(b,S
IGN)= ActiveSemanticSlice(r,SIGN)={3}

Before execution of node 12 :AbstractState(11) ={-
,+}

After execution of node 12 :

ActiveDataSlice(a)={12\} ⋃ ActiveDataSlice(a)
⋃ActiveDataSlice(b)={12} ⋃ {1,2,5,6} ⋃{2,3,5,6}
={1,2,3,5,6,12},DynaSlice(12,a)=ActiveDataSlice(

a) ⋃ AciveCallSlice={1,2,3,5,6,12} ⋃
{2,5,6}={1,2,3,5,6,12},DynaSlice(12,b)=ActiveDat
aSlice(b) ⋃ AciveCallSlice={2,3,5,6} ⋃
{2,5,6}={2,3,5,6},AbstractState(12)={+,+},

ActiveSemanticSlice(a,SIGN)={12}⋃ActiveDataSl

ice(b) ⋃ AciveCallSlice = {12} ⋃ {2,3,5,6}

⋃{2,5,6}={2,3,5,6,12},DyanSemanticSlice(a,12,SI

GN)=ActiveSemanticSlice(a,SIGN)⋃AciveCallSlic

e ={2,3,5,6,12} ⋃ {2,5,6} = {2,3,5,6,12},
DyanSemanticSlice(b,12,SIGN)=ActiveSemanticSl
ice(b,SIGN) ={3}.

12 is added to ActiveSemanticSlice(a,SIGN) since it

changes the SIGN of a ActiveDataSlice(b) is added

to ActiveSemanticSlice(a,SIGN) since the value of b

changes the SIGN of result of expression at 12.

Finally ActiveCallSlice is added to

ActiveSemanticSlice(a,SIGN) since statement 12

changes the SIGN property of a.

Before execution of node 13 :AbstractState
(13)={+,+},ActiveReturnSlice={13}⋃ActiveDatasl

ice(a) ⋃ ActiveCallSlice={13} ⋃ {1,2,3,5,6,12} ⋃
{2,5,6}={1,2,3,5,6,12,13}, SemanticReturnSlice =

{13} ⋃ ActiveDataslice(a) ⋃ ActiveCallSlice

={13}⋃{1,2,3,5,6,12}⋃ {2,5,6}={1,2,3,5,6,12,13}.

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

335

After execution of node 6 :
ActiveDataSlice(p)=ActiveReturnSlice={1,2,3,5,6,

12,13},DynaSlice(5,p) = ActiveDataSlice(p) ⋃
ActiveControlSlice(5)={1,2,3,5,6,12,13}⋃{2,5}={
1,2,3,5,6,12,13}, AbstractState (5) = {+,+,+,+},
ActiveSemanticSlice(p,SIGN)=ActiveSemanticSlic

e(p,SIGN) ⋃ SemanticReturnSlice=={1} ⋃
{1,2,3,5,6,12,13}={1,2,3,5,6,12,13},DyanSemantic

Slice(p,5,SIGN)=ActiveSemanticSlice(p,SIGN) ⋃

ActiveControlSlice(5) = {1,2,3,5,6,12,13} ⋃ {2,5}
={1,2,3,5,6,12,13},CallSliceStack=Φ,ActiveCallSli
ce=Φ,ActiveReturnSlice= Φ, SemanticReturnSlice=
Φ.

After execution of node 7 :ActiveDataSlice(p)={7}

⋃ ActiveDataSlice(p) ⋃ ActiveControlSlice(5)=

{7}⋃{1,2,3,5,6,12,13}⋃{2,5}={1,2,3,5,6,7,12,13},

DynaSlice(7,p)=ActiveDataSlice(p)⋃

ActiveControlSlice(5)={1,2,3,5,6,7,12,13}⋃
{2,5}={1,2,3,5,6,7,12,13},AbstractState(7)={+,+,+,
+},ActiveSemanticSlice(p,SIGN)={1,2,3,5,6,12,13
},DyanSemanticSlice(p,7,SIGN)=ActiveSemanticS
lice(p,SIGN)={1,2,3,5,6,12,13}.

Statement 7 is not added as it is not changing the

abstract property of p.

3.3. Complexity analysis
The space requirement of our algorithm is

O(n2) and is mainly due to the storage of the
Control Flow Graph Gp. It can be easily shown that
the other data structures used by our algorithm
requires maximum O(n) space . Some of the data
structures we use are reused or disposed when not
required(e.g.RefSet, Active CallSlice[4]) resulting
in efficient use of space.

The time complexity of finding dynamic
syntax slices is linear in terms of the number of
statements of the program[4].The complexity for
finding semantic relevancy only depends on the
comparison between the abstract state of the
currently executed statement and the previous
executed statement, which depends on the no of
variables in a program and no of abstract states
possible for a given property which is a constant.
Calculation of semantic dependency depends on the
maximum no of operators possible in an
expression.

3.4. Comparison with related work

The advantage of this algorithm is that, it
does not use a trace file for storing the execution
history. Our algorithm extract slices of Object
Oriented Programs by capturing all features of
object Oriented Programming in some run time

reusable and disposable data structures which are
updated with execution of each statement in the
program resulting in efficient use of space.

A pure dynamic slicing algorithm on
abstract properties of variable in Object Oriented
Programs is scarcely reported in literature. The
dynamic slicing algorithm in [4] only finds out the
slices based on the underlying syntax of the
program. The static slicing algorithms reported in
[9,11] has main disadvantage of maintaining trace
files for storing the execution trace which may be
unbounded in presence of loops. Our algorithm
does not use trace file as the recent semantic slice is
already captured in the data structures. Our
algorithm can find both syntax based and property
based dynamic slices and can be more helpful in
interactive application like debugging and testing

4. CONCLUSION

In this paper we present an algorithm for
property based dynamic slicing of Object Oriented
Programs. We first use the basic concepts of the
inter-procedural dynamic slicing algorithm [4] and
remodel it to extract slices of Object Oriented
Programs with introduction of some additional data
structures.

Since the syntax based data dependencies
and control dependencies are already addressed and
the syntax slice is always a super set of semantic
slice, the generated slice will be useful in
interactive applications like debugging and testing.
Our algorithm also not required to store any
execution trace as it immediately updates the
required data structures. The slices on defined
properties of program variables are already
available before a slice is asked for resulting in
faster response time. As opposed to any slicing
algorithms our algorithm generated both syntax
and property based dynamic slices of object
oriented programs.
The future scope of this paper lies in investigating
property based dynamic slicing in distributed
system and designing a testing tool for the proposed
slicing algorithm.

REFRENCES:

[1] M.Weiser, “Programmers Use Slices When
Debugging”, Communications of the ACM, Vol.
25, No. 7, July 1982, pp. 446 - 452.

[2] B.Korel and J.Laski, “Dynamic Program
Slicing”, Information Processing Letters, Vol.
29, No. 3, October 1988, pp. 155 - 163.

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

336

[3] G.B.Mund and R.Mall, “Program Slicing”, The

Compiler Design Hand Book, Optimization and

Machine Code Generation, CRC Press, 2008,
pp. 14.1 - 14.35.

[4] G.B.Mund and R.Mall, “An efficient
interprocedural dynamic slicing method”, The

Journal of Systems and Software, Vol. 79,
2006, pp. 791 - 806.

[5] G.B.Mund,R.Mall and R.S.Sarkar,
“Computation of intraprocedural dynamic
program slices,” Information and Software
Technology, vol. 45, no. 8, pp 499 - 512, 2003.

[6] G.B.Mund, R.Mall and S.Sarkar, “An efficient
dynamic program slicing technique”,
Information and Software Technology, Vol. 44,
2002, pp. 123 - 132.

[7] L.D.Larson and M.J.Harrold, “Slicing
objectoriented software,” In Proceedings of the
18th InternationalConference on Software
Engineering, German, March 1996.

[8] F. Tip., “A survey of program slicing
technique”, Journal of Programming

Languages, Vol. 3, 1995, pp. 121 - 189.

[9] R.Halder and A.Cortesi, “Abstract slicing of
dependence condition graphs”, Science of

Computer programming, Vol.78, 2013 pp.1240
- 1263.

[10] S. K. Pani, P. Arundhati and M. Mohanty, “ An
Effective Methodology for Slicing C++
Programs”, International Journal of Computer

Engineering and Technology, 2010 Vol. 1 pp.72
- 82.

[11] J. Zhao, “Dynamic slicing of object-oriented
programs”, Technical Report SE-98-119,

Information Processing Society of Japan, 1998
pp.17 - 23.

[12] Z. Chen and B. Xu., “Slicing objected-oriented
java programs”, ACM SIGPLAN Notices,

Vol.36, 2001, pp. 33 - 40.

[13] D. Huynh and Y. Song., “Forward computation
of dynamic slices in the presence of structured
jump statements”, Proceedings of ISACC,
Vol.97, 1997, pp. 73 - 81.

[14] T.Wang and A. RoyChoudhury, “Using
compressed bytecode traces for slicing Java
programs”, Proceedings of the IEEE

International Conference on Software

Engineering, 2004, pp. 512 - 521.

[15] I.Mastroeni and D. Zanardini, “ Data
dependencies and program slicing: from syntax
to abstract semantics”, Proceedings of the 2008

ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-based Program

Manipulation, PEPM ’08, ACM Press, 2008,
pp. 125 - 134.

[16] S. Sukumaran, A. Sreenivas and R. Metta, “The
dependence condition graph: precise conditions
for dependence between program points”,
Computer Languages, Systems & Structures,
Vol. 36, , 2010, pp. 96 - 121.

