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ABSTRACT 

 
Slicing is the process of extracting the statements of a program affecting   a given computation.In contrast 
to static slices, Dynamic slices are smaller in size as they extract statements  for a given execution of a 
program and helps in interactive applications like debugging and testing. From last three decades, many 
algorithms have been designed to slice a program with respect to the syntax of the program. Traditional 
bulky Syntax based slices for program variables used at many places in a program are generally large even 
for dynamic slices. Most of the semantics based slicing algorithms extract slices by storing an execution 
trace of a program. To the best of our knowledge generating dynamic slices based on abstract/concrete 
properties of program variables is scarcely reported in literature.  We present here an algorithm for 
generating dynamic syntax based as well as property slices of object oriented programs addressing all key 
object oriented features.  

Keywords: Dynamic slice, ReferenceSet, Property based Slice, Polymerphism, Abstract state. 

 

1. INTRODUCTION 

 
Program slicing is an analysis method. It is 

the process of extracting the statements of a 
program affecting   a given computation. A slicing 
criterion <s, V>  is a tuple where s is a program 
statement and V is a subset of the program’s 
variables used or defined at s. A dynamic slice of 
program P contains the statements that has an effect 
on the slicing criterion for a given execution. Hence 
a dynamic slice is smaller in size and more useful 
for interactive application like program testing and 
debugging.  

Weiser [1] was the first to introduce static 
program slicing. In his  intraprocedural static 
slicing algorithm he constructed  a Control Flow 
Graph (CFG) for intermediate representation. Inter-
statement influences were represented by means of 
data-flow equations. Weiser’s  method generated  
static slices based on iteratively solving these data-
flow equations. Korel and Laski [2] were first to 
compute dynamic slices. The space requirement of 
Korel and Laski was O(N) for storing the execution 
history, and O(N2) for storing the dynamic flow 
data, where N is the length of execution. 

Mund et al. [4] present an efficient 
dynamic slicing algorithm for  intraprocedural 
environment, and then extend it to handle 
interprocedural calls. A collection of control 

dependence graphs were used by their methods as 
the intermediate program representation. 

Larson and Harrold [7] were the first to 
consider object orientation aspects in their work. 
They introduced the class dependence graph .They 
represent a class hierarchy, data members, 
inheritance and polymorphism. This paper 
describes the construction  of system dependence 
graphs for object-oriented software on which 
efficient slicing algorithms can be applied.  

The concurrency and dynamic slicing 
aspects were not addressed by Larson and Harrold, 
Wang et al. [14], Huynh and Song [13]  , Xu and 
Chen [12] and Zhao [11] have addressed these 
issues of object-oriented programs.  

Now-a-days most of the application 
programs contain thousands of lines of code. 
Traditional bulky syntax based slices for program 
variables used at many places in a program are 
generally large even for dynamic slices. 

While analyzing a program P, suppose it is 
required for a variable v in P to have a particular 
property ρ. If we find at a fixed program point, v 
does not have the desired property ρ, then it is 
needed to know which statements affect the 
computation of property ρ of v. Here we are not 
interested in the exact value of v, hence all the 
statements that a standard syntax based slicing 
algorithm would extract are not required. Therefore, 
the traditional bulky value based static slicing is not 
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adequate in this case. Since, properties propagate 
less than values, some statements might affect the 
values but not the property. Due to this the 
debugging and program understanding can be 
easier, as a relatively smaller portion of the code 
has to be inspected.  

Mastroeni and Zanardini in [15] 
introduced a semantics-based dependency which 
act as a bridge between syntax and semantics. 
Based on this semantic dependency, a more precise 
PDG can be obtained by removing the false 
dependencies from the traditional syntactic PDG. 
The semantic dependency can also be lifted to an 
abstract domain where dependencies are computed 
with respect to some specific properties of interest 
rather than syntax influenced values. This (abstract) 
semantic dependency is computed at expression 
level over all possible (abstract) states appearing at 
program points. 

Sukumaran et al.[16] introduced 
Dependence Condition Graph (DCG), a refinement 
of PDGs based on the notion of conditional 
dependency. This is obtained by adding the 
annotations which encode the condition under 
which a particular dependence actually arises in a 
program execution. 

There are many papers on Dynamic 
Slicing of object oriented programs but few papers 
address in details about the most basic features of 
Object Oriented Programming i.e. class definition, 
object creation, accessing object through reference, 
invoking methods of a class, polymorphism, 
inheritance, dynamic binding etc. Most of the 
semantics based slicing algorithms   have focused 
on finding static slices on the abstract properties by 
using SSA as intermediate representation and 
extract slices by storing an execution trace of a 
program. To the best of our knowledge generating 
dynamic slices based on abstract/Concrete 
properties of variables/objects in object oriented 
programs addressing all key features of object 
oriented programming is scarcely  reported in 
literature. 

We combine the concepts of Mund et al 
[4] and R Halder and A cortesi [9] to design an 
algorithm to generate dynamic slices on abstract 
properties of object oriented program variables 
rather than syntax based concrete values. In our 
approach we first maintain some additional data 
structures to capture all the object oriented features. 
The semantic relevancy and semantic dependency 
is also captured as soon as it is executed in actual 
run of the program. We define a slicing criteria as 
<s,V,P> where s is a program statement, V is the 
variable of interest and P is the examined property 

of interest. We modify the algorithm of  mund et. 
al. [4] to extract the syntax based slice of object 
oriented program and simultaneously add it to the 
semantic slice if the statement to be added to the 
syntax data slice is semantically relevant. Since the 
syntax based data dependencies and control 
dependencies are already addressed and the syntax 
slice is always a super set of semantic slice, the 
generated slice will be smaller and useful in 
interactive applications. Our algorithm also not 
required to store any execution trace as it 
immediately updates the required data structures. 
The slices on defined properties of program 
variables are already available before a slice is 
asked for.       

Next section describes some basic 
definitions that are used by our proposed algorithm. 
The property based dynamic slicing algorithm is 
discussed in the next section followed by the 
analysis of the algorithm and comparison with 
related work. The next section concludes the paper. 

. 

2. BASIC CONCEPTS AND DEFINITIONS  

Object oriented programs are much similar 
to procedural programs except the restriction in 
access to data. The dependencies that exist in an 
object oriented program are the static control 
dependency and the dynamic data dependency. The 
other features of object oriented programming like 
inheritance, polymorphism, dynamic binding etc 
can be captured by using runtime disposable data 
structures. 

We present here few basic concepts and 
definitions associated with our Algorithm. Some of 
the concepts and definitions are available in Mund 
et al [4] and R Halder and A cortesi [9].  
 

2.1 Control Dependency 

2.1.1 Control Flow Graph 

The control flow graph (CFG) ‘G’ of a 
program P is a graph G = (N,E), where each node n 
Є N represents a basic block of statements in the 
program P. For any pair of nodes x and y, (x,y) Є E 
iff there is possible flow of control from x to y. 
This Control Flow Graph can be used to extract 
control dependency that can exist among statements 
in a program.. 

2.1.2 ControlDependentOn(u) 

Let u be a statement of the program P. 
ControlDependentOn(u) = s iff the statement u is 
control dependent on s. 

2.1.3 ActiveContrlSlice(s) 
If s is a predicate statement of a program P and 
UseVarSet(s) = {v1. . . vk}. Before execution of the 
program P, ActiveContrlSlice(s) is set ti Φ. After 
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each execution of the statement s in an actual run of 
the program, ActiveContrlSlice(s) = {s} U 
ActiveDataSlice(v1) U …U ActiveDataSlice(vk) U 
ActiveContrlSlice(t), where 
ControlDependentOn(s)= t. Let s is a loop control 
statement, if the current execution of s corresponds 
to exit from the loop, then ActiveContrlSlice(s) is 
set to Φ. 

 
2.2 Class 

Any Object Oriented Programming must 
supports classes. A class has a definition which 
includes the definition of its data members and 
methods. Different Object Oriented Programming 
languages support different types of access to use 
these class members. A programmer defined class 
has to be defined with all it’s member definition. 
The class member can be data or methods.  We 
define the following data structure to process 
classes in an object oriented program. 

2.2.1 DMemberSet() 

Let C be a class then, DMemberSet(C) is the set of 
all data members of the class C. 

2.2.2 MMemberSet() 

Let C be a class then, MMemberSet(C) is the set of 
all method members of the class C. 

Whenever a class is defined, the 
DMemberSet( ) and MMemberSet( ) data structures 
are updated. 
 

2.3 Objects 

The classes in Object Oriented 
Programming are made useable by creating objects. 
Objects can be created statically (C++) or 
dynamically (C++ & JAVA). Most Object Oriented 
Programming languages access objects through 
reference variable. Again the reference variables 
may be permanently (C++) or it may be temporarily 
(JAVA) attached to an object.We define the 
following data structures to process object creation 
and accessing a class member through object 
reference in an object oriented program. 

2.3.1 InstanceOf(obj) 
Let obj be an object or object reference of  
a class C, then InstanceOf(obj)=C. 

The InstanceOf( ) data structure is updated 
with creation of each object(static creation) or 
object reference (dynamic creation). 

2.3.2 ActiveDataSlice(var) 
Let var denotes a data variable or a member 
variable or a reference variable of an Object 
Oriented Program P.  

If var is a data variable of basic data type  

like int, char, float, double or a reference variable in 
Object Oriented Program P, Initially, 
ActiveDataSlice(var) =Φ.  

Let x be a Def(var) node, and  
UseVarSet(x)={v1,v2,…,vk}.ActiveDataSclice is 
updated after execution of each statement u in the 
following way: 

ActiveDataSlice (var) ={x} ∪  ActiveDataSlice 

(v1) ∪  ActiveDataSlice (v2)…∪  ActiveDataSlice 

(vk)∪  ActiveContrlSlice(t), where 
ControlDependentOn(x)=t. 

If dv is a data member of a statically  
created object obj.Initially, ActiveDataSlice(obj.dv) 
=Φ.For all dv Є DMemberSet(InstanceOf(obj)). For 
dynamically created object obj the 
ActiveDataSlice(obj.var)= Φ  for all var Є 
DMemberSet(InstanceOf(obj)) dynamically 
whenever the object creation statement is executed.  

Let x be a Def(obj.dv) node, and  
UseVarSet(x)={v1,v2,..vk}. After each execution of 
the node  x in the actual run of the 

program,ActiveDataSlice(obj.dv)={x}∪

ActiveDataSlice(v1)∪  ActiveDataSlice(v2)…∪

ActiveDataSlice(vk)∪ ActiveContrlSlice(t) where 
ControlDependentOn(x) = t. 

2.3.3 DyanSlice(s,var) 
Let s be a statement of an object oriented program 
P, var (may be a data variable, member variable or 

reference variable) be a variable in the set i.e. var∈

DefVarSet(s) ∪  UseVarSet(s).  
Before execution of the program P, 

DyanSlice(s,var) = Φ. After each execution of the 
node s in an actual run 

DyanSlice(s,var)=ActiveDataSlice(var) ∪

ActiveContrlSlice(t), whereControlDependentOn(s)  
= t. 

2.3.4 DyanSlice(obj) 
Let obj be an object in Object Oriented Program P. 
Before execution of program P, DyanSlice(obj)=Φ.  
Let the DMemberSet(InstanceOf(obj)) 
={mvar1.mvar2,…,mvarn} then DyanSlice(obj) 

=DyanSlice(obj.mvar1) ∪  DyanSlice(obj.mvar2)
∪ …∪  DyanSlice(obj.vbarn). 
 

2.4 Method Call 
2.4.1 CallSliceStack 
This stack is maintained to keep track of the 
ActiveCallSlice during the execution of the 
program. 
2.4.2 Formal(x,var), Actual(x,var). 
Let m1 be a member method of a class in an Object 
Oriented Program P and x be a calling node to the 
member function m1. The formal and actual 
parameter of member function m1 be f and a 
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respectively, then Formal(x,a) = f and Actual(x,f) = 
a. 

2.4.3 ActiveReturnSlice 
Let P be an Object Oriented Program. Initially, 
ActiveReturnSilce= Φ. If x is a return statement in 
program P and UseVarSet(x)={v1,v2,...,vk}. Then, 

before  execution of x, ActiveReturnSlice={x} ∪

ActiveDataSlice(v1)∪ ActiveDataSlice(v2)∪ ...∪

ActiveDataSlice(vk)∪ ActiveCallSlice∪  
ActiveContrlSlice(t),where 
ControlDependentOn(x)=t. 
Followings are done after execution of each call 
node u: 

- ActiveReturnSlice is used to compute and 
update necessary run-time information .  
- ActiveCallSlice is set to Φ. 

 If the formal and actual parameter of a method m1 

be f and a respectively, then 

ActiveDataSlice(f)=ActiveDataSlice(a)∪  
ActiveCallSlice.  
For each variable var used or defined at an 
execution node z, DyanSlice(z,var)= 

ActiveDataSlice(var) ∪  ActiveCallSlice∪

ActiveContrlSlice(t), where 
ControlDependentOn(x)=t. 
Execution of the member method m1 ends with a 
return node iff its corresponding method call node 
y is a Def(v) node where v is a variable, then 
ActiveDataSlice(v) =ActiveReturnSlice after 
execution of the node y. 
 

2.5 Object Reference 
In OOP language it is possible that a 

reference of a class can refer to one or more objects 
of that class at different instance of time. We 
propose to maintain a list for each object that 
contains all the references which are referring to 
that object. This list may contain a reference of its 
own class or a reference of its base class. 
2.5.1 RefSet(obj) 
Let obj be an object of class ABC and 
var1,var2…varkare the referencesof class ABC  or 
its base class referring to the object obj. Then 
RefSet(obj)={var1,var2,…,vark}ControlDependentO
n)(u)):Let u be a statement of the object oriented 
program P. ControlDependentOn(u)= s iff the 
statement u is control dependent on s. 
Whenever a reference variable var changes its 
reference from obj1 to obj2, it will be removed from 
RefSet(obj1) and inserted  into 
RefSet(obj2).Whenever a member function is called 
with object(s) obj1, obj2., . . ., objn as reference 
arguments then RefSet(obj) should be updated for 
each obj in the argument list of the member 

function. RefSet(obj) = RefSet(obj) ∪

Formal(x,obj) where x is the calling node to the 
member function. 

2.5.2 CurrentRefObj(var) 
Let var is a reference of a class is referring to an 
object obj of  that class or of its any derived class. 
Then CurrentRefObjrvar) = obj iff obj is the current 
object to which var is referring to. If 
RefSet(obj)={ref1,ref2,…,refk) then for each var in 
RefSet(obj) , CurrentRefObj(rvar)=obj. 

e.g. class ABC{   

 int m; 

 int n; 

 } 

ABC ref1; 

ref1=new ABC( ); 

ABC ref2; 

ref2=ref1;    

ABC ref3; 

ref3=new ABC( ); 

ref1=ref3; 

For each execution of the Constructor of a class, the 
slicer can assign a unique name (like obj1, obj2,. . . 
,objn) to newly created objects for identifying them 
uniquely. 
After execution of statement-2 
RefSet(obj1)={ref1} 
CurrentRefObj(ref1)=obj1 

 
 
 
 
 
 
 
 
 
 
 

Figure. 1: After Execution Of Statement -2 

 
After execution of statement-4 

RefSet(obj1)=RefSet(obj1) ∪ {ref2}={ref1,ref2} 
CurrentRefObj(ref2)=obj1 
 

 
 
 
 
 
 
 
 
 

Figure  2:  After execution of statement -4 
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After execution of statement-6 
RefSet(obj2)={ref3}   
CurrentRefObj(ref3)=obj2 
On execution of statement-7 
RefSet(CurrentRefObj(ref1))= 
RefSet(CurrentRefObj(ref1)) 
i.e. RefSet(obj1)=RefSet(obj1)− {ref1}={ref1,ref2} 
− {ref1}={ref2} 

 

 
 

 
 
 
 

 

Figure 3: After execution of statement -7 

 

2.6 Inheritance  

2.6.1 Predecessorof( ) 

Let D be a  class inherited from a class B then 
Predecessorof(D)=B , if D is not inheriting from 
any class in the source code program then 
Predecessorof(D)= Φ.  Inheritance is captured by 
the Predecessorof() data structure. If a method 
which is not existing in the derived class  is called 
with the derived class reference then the method 
can be recursively searched in the 
MMemberSet(predecessorof(derived class)) and the 
required update can be made before calling the 
method. 
 

2.7 Polymephism  

Polymerphism basically achieved in object 
oriented program in two ways i.e. method 
overloading and through method overriding and 
dynamic binding. In method overloading each 
overloaded method has an unique signature so it 
can be uniquely renamed by the slicer and the 
required update can be made before calling an 
overloaded method.In the other polymorphic 
behaviour we allow the base class references to stay 
in the RefSet of an object. On that base class 
reference whenever an overriding method is called  
,by looking into the CurRef(obj) and 
MMemberSet(InstanceOf(obj))The required update 
can be made before calling an overloaded method. 

 

2.8 Abstract interpretation  

Abstract domains represent properties of 
variables over concrete domains. Their 
mathematical structure guarantees, for each 
concrete element there exists the best correct 
approximation in the abstract domain. This is 
because the property of abstract domains of being 
closed under greatest lower bound. The lattice of 
abstract interpretation of C is isomorphic to the 
lattice UCO(C) of all the upper closure 
operators(uco) on C .UCOs are distinctively 
calculated by the set ρ(C) of their fix-points. We 
have used the abstract domain SIGN containing (  
), ( ) and the abstract values [neg] ≡ Z-  (negative 
number) and [pos] ≡ Z+ (positive numbers 
including 0).  
Completeness in abstract interpretation is a 
property of abstract domains relative to a fixed 
computation. An abstract domain ρ is complete for 
f   if it is optimally precise for calculation. 
Generally ρ is complete for f if  ρ o  f  o  ρ = ρ o  f  . 
In other words, computing f in the abstract domain 
corresponds precisely to abstracting the concrete 
computation of f, without further loss of 
information.  

2.9 AbstractState(u)  

AbstractState (u) represents the abstract 
state associated with each program variable at 
statement u of program P. This is updated after 
each execution of program statement u. 

e.g. 1.p=10; 
   2.q=-6; 
   3.r=p+2q 

After execution of statement 1:  
AbstractState(1)={+, , }. 
After execution of statement 2:  
AbstractState(2)={+, -, }. 
After execution of statement 3:  
AbstractState(3)={+, - , +}. 
Where  represents the abstract state of 
uninitialized variables and is the least upper bound 
for the lattice for abstract domain for abstract 
property sign. 
 

2.10 Semantic Relevancy  

∀ ε ∈ ∑ρ : P[[s]]p
ρ(ε) = ε , the statement s 

is not semantically relevant with respect to the 
abstract domain ρ.statement s at program point p is 
semantically irrelevant if no changes take place in 
the abstract state ε (abstract state(s))  occurring at p, 
when s is executed over ε. The statements which do 
not contribute to any change in the states occurring 
at that program point are considered semantically 
irrelevant. The atomicity of the abstract value for 
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each variable in the abstract state ε with respect to 
property ρ is one of the crucial requirements during 
computation of  ρ-relevancy of the statements. 
These atomic abstract values are obtained from 
induced partitioning. The following example shows 
how to compute the semantic relevancy for the 
statements by using covering techniques.  

e.g. 1.x=y+0 
2.x=y+1 

If we consider a property ρ =sign then statement 1 
is irrelevant with respect to property ρ as for any of 
the value of y the statement will not change the 
state. In statement 2 if  y= -1 then the statement 
changes the value of y from negative to zero. 
Similarly if y=0 then the statement changes the 
value of y from zero to positive. So statement 2 
becomes relevant with respect to  the property ρ  

 

2.11 Semantic Dependancy 

A variable vi is said to be have semantic 
dependency on variable v, if excluding vi from u 
and re-executing u does not change the abstract 
state of v with respect to ρ. 
 

2.12 ActiveSemanticSlice(v, ρ) 

ActiveSemanticSlice holds only those 
statements which influence the variable v 
semantically on the basis of an abstract property ρ.  
It is updated in the following ways: 

- Let u be a Def(v) statement in program p, 
the node u is included in 
ActiveSemanticSlice(v, ρ) if execution of 
node u changes the abstract state of v for 
current set of inputs with respect to ρ.  

- Let UseVarSet(u)={v1,v2....................vk}, 
the ActiveDataSlice(vi) is included in 
ActiveSemanticSlice(v, ρ) if there is 
semantic dependency of vi on v(where v is 
defined in statement u).A variable vi is 
said to be have semantic dependency on 
variable v, if excluding vi from u and re-
executing u does not change the abstract 
state of v with respect to ρ. 

- Let ControlDependentOn(u) = t, 
ActiveContrlSlice(t) is included in 
ActiveSemanticSlice(v, ρ) if execution of node u 
changes the abstract state of v for current set of 
inputs with respect to ρ. 
Before execution of node u 
ActiveSemanticSlice(var, ρ)=Φ. 
ActiveSemanticSlice(var, ρ) is updated 
appropriately after execution of u.  
 

2.13  DynamicSemanticSlice(v, s, ρ) 

Let s be a statement of Program P, v be a 
variable in the set UseVarSet(s) U DefVarSet(s) 
and ρ is the abstract property of interest. Before 
execution of the program P, DyanSlice(v, s, ρ) = Φ. 
After each execution of the node s in the actual run 
of the program, the dynamic slice 
DyanSemanticSlice(v, s, ρ) with respect to the 
slicing criterion <v,s, ρ > is updated as 
DyanSemanticSlice(v, s, ρ) = 
ActiveSemanticSlice(v) U ActiveContrlSlice(t)(if s 
is semantically relevant to v), where 
ControlDepenedentOn(u) = t. 

 

2.14 SemanticReturnSlice 

Initially, SemanticReturnSilce= Φ. Let x is 
a return statement in program P, and 
UseVarSet(x)={v1,...,vk}. Before execution of  node 

x,     SemanticReturnSlice={x}∪  

ActiveDataSlice(v1) ∪  ActiveDataSlice(v2)... ∪

ActiveDataSlice(vk) ∪  ActiveCallSlice ∪

ActiveContrlSlice(t),                      ∀vi : vi has 
semantic dependency on result of x with respect to 
abstract property ρ and ControlDependentOn(x)=t. 

Let u be a call node. After each execution call 
node u, we do the following:  

- Use SemanticReturnSlice to compute and 
update relevant run-time information 
corresponding to the execution of u 

- Update ActiveCallSlice=Φ 
Let the formal and actual parameter of the method 
m1 at the calling node x be f and a respectively.. 
Then ActiveDataSlice(f)=ActiveDataSlice(a)U 
ActiveCallSlice and ActiveSemanticSlice(f)= 
ActiveSemanticSlice(a). 
Thus for each var used or defined at an execution 
node z inside method m1, then DyanSlice (z,var,ρ) 

=ActiveCallSlice∪ ActiveDataSlice(var) ∪

ActiveControl Slice(t) where 
ControlDependentOn(z)=t. and DyanSemanticSlice 

(z,var,ρ) =ActiveCallSlice∪

ActiveSemanticSlice(var) ∪ ActiveContrlSlice(t), 
if z is semantically relevant to var with respect to 
abstract property ρ. 
Execution of the member method m1 ends with a 
RETURN node iff its corresponding method call 
node y is a Def(v) node where v is a variable, then  

• ActiveDataSlice(v) =ActiveReturnSlice.   

• ActiveSemanticSlice(v) 
=SemanticReturnSlice. 

 

3. ALGORITHM 

we present here an efficient property based 
dynamic slicing algorithm for an Object Oriented 
program. To compute slices, we first construct the 
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control flow graph (CFG) of the program P 
statically once. The algorithm uses the CFG for 
extracting the control dependency. The run time 
data structures are updated by the algorithm during 
execution of the program P. 
 

3.1. Property based dynamic slicing Algorithm 

for Object Oriented programs 

1. Construct the Control Flow Graph GP of the 
program P. 
2. Before each execution of the program do the 
followings for each statement u. 
Set ActiveContrlSlice(u) = Φ If u is a predicate 
statement.. 
Update ControlDependentOn(u) 
For each variable var Є DefVarSet(u) U 
UseVarSet(u) do 
DynamicSemanticSlice( var,u, ρ) = Φ. 
DyanSlice(u, var) = Φ. 
Initialize the followings for each variable var of the 
program P 
ActiveSemanticsSlice(var, ρ) = Φ 
ActiveDataSlice(var) = Φ. 
CallSliceStack = NULL. 
ActiveCallSlice = Φ 
For definition of each class C  
Update DMemberSet(C) 
Update MMemberof(C) 
For each member m of the class 
If the class is inhering from a class D 
Update  
Predeccesorof(C) 
For each object or reference variable r  
Update  
Instanceof(r) 
For abstract property ρ set AbstractState(u)={ ,

, ,…,  },where u is the first statement to be 
executed by program P. 
3. Repeat steps 4, 5 and 6 with given set of input 
values until the program terminates. 
4. Do the following before execution of a call 
statement u. 
If  u is a call statement to  a method Q, then 
(a) Update CallSliceStack and ActiveCallSlice. 
(b)For each actual parameter var in the procedure 
call Q do 
ActiveDataSlice(Formal(u,var))= 
ActiveDataSlice(var) U ActiveCallSlice. 
ActiveSemanticSlice(Formal(u,var)) = 
ActiveSemanticSlice(var). 
If the parameters are object references then 
Update RefSet( ) and CurrentRefOf()   
5. before execution of a return statement u, 
 Update ActiveReturnSlice and 
SemanticReturnSlice.    

If the return value is an object reference then 
Update RefSet( ) and CurrentRefOf()   
6. After execution of  statement u of the program P, 
do the following  
(a) If u is a Def(var) statement and not a call 
statement then  
Update ActiveDataSlice(var). 
Update ActiveSemanticSlice(var) 
(b) If u is a call statement to a procedure Q then do 
For every formal reference parameter var in the 
procedure Q do 
ActiveDataSlice(Actual(u,var))= 
ActiveDataSlice(var). 
ActiveSemanticSlice(Actual(u,var))= 
ActiveSemanticSlice(var). 
if u is a Def(var) statement then 
ActiveDataSlice(var) = ActiveReturnSlice. 
ActiveSemanticSlice(var) = SemanticReturnSlice. 
for every local variable var in the procedure Q do 
ActiveDataSlice(var) = Φ . 
ActiveSemanticSlice(var) = Φ 
Update CallSliceStack and ActiveCallSlice. 
Set ActiveReturnSlice = Φ. 
SemanticReturnSlice= Φ. 
Updtae AbstractState(u). 
(c) For every variable var Є DefVarSet(u) U 
UseVarSet(u) do 
Update DyanSlice( u, var). 
Update DynamicSemanticSlice( var,u, ρ) 
(d) Update ActiveContrlSlice(u) where u is a 
predicate statement. 
7.  Exit  
 

3.2. Working of the Algorithm 
For better understanding of the working of 

the algorithm and updation of the run-time data 
structures, we consider the following two example 
programs.Example program-1 illustrates the 
updation of data structures in dealing with all object 
oriented features and generates syntax based slices. 
Example program-2 illustrates the property based 
slicing to generate both syntax and semantic based 
slices.  
Example program-1:  
class Number 

 { 

 int x; 

 int y; 

 Number(int p, int q) 

 { 

15. x=p; 

16. y=q; 

 } 

void getData(int p, int q) 

 { 

17. x=p; 
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18. y=q; 

      } 

 void showData( ) 

      { 

19.System.out.println(“x = “+x+”\t 

y = “+y); 

      } 

 void getIncrement( ) 

  { 

20. x = x + 1; 

21.  y = y + 1; 

} 

 

Number addNumber(Number ref5) 

{ 

 Number temp; 

22. temp=new Number( ); 

23. temp. x = x + ref5. x; 

24. temp.y = y + ref5.y; 

25. return temp; 

} 

} 

public class Main 

{ 

Public static void main(String 

s[]) 

{ 

 Number ref1; 

1. ref1=new Number( ); 

 Number ref2; 

 int a, b; 

2.    a=4; 

3. b=5; 

4. ref1.getData(a,b); 

5. ref1.getIncrement( ); 

6. ref1.showData( );  

7. ref2=ref1; 

8. ref2.getIncrement( ); 

9. ref2.showData( );  

 Number ref3,ref4; 

10. a=10; 

11. b=20; 

12. ref3=new Number( a,b); 

13. ref4=ref1. addNumber(ref3); 

14. ref4. showData( ); 

 } 

} 
After execution of node-1: ActiveDataSlice(obj1. 
x)= Φ, DyanSlice(1,obj1. x)= Φ, 
ActiveDataSlice(obj1. y)= Φ, DyanSlice(1,obj1. 
y)= Φ, DyanSlice(obj1)= DyanSlice(1,obj1. x) ⋃ 

DyanSlice(1,obj1. y)= Φ⋃ Φ = Φ, 

ActiveDataSlice(ref1)= {1}⋃ Φ = {1}, 
DyanSlice(1,ref1)= {1}, RefSet(obj1)={ref1}, 
CurrentRefObj(ref1)=obj1. 
 

After execution of node-2: ActiveDataSlice(a)={2}, 
DyanSlice(2,a)={2}. 
 
After execution of node-3: ActiveDataSlice(b)={3}, 
DyanSlice(3,b)={3}. 
 
Before execution of node-4: ActiveCallSlice = {4} 

⋃ Φ = {4}, CallSliceStack = [{4}], Formal(4,a)=p, 
Formal(4,b)=q,ActiveDataSlice(p)=ActiveDataSlic

e(a) ⋃ ActiveCallSlice={2}⋃{4}={2,4}, 

ActiveDataSlice(q)=ActiveDataSlice(b) ⋃ 

ActiveCallSlice ={3}⋃{4}={3,4}. 
 
After execution of node-17: ActiveDataSlice(ref1. 

x)={17}⋃ActiveDataSlice(p) ={17}⋃{2,4} = 
{2,4,17},DyanSlice(17,ref1.x)=ActiveDataSlice(ref
1.x)={2,4,17},DyanSlice(17,p)=ActiveDataSlice(p) 
={2,4},DyanSlice(CurrentRefObj(ref1))=DyanSlice

(obj1)=DyanSlice(17,ref1.x)⋃DyanSlice(17,ref1.y) 

= {2,4,17} ⋃ Φ={2,4,17}. 
 
After execution of node-18: ActiveDataSlice(ref1. 

y)={18}⋃ActiveDataSlice(q) ={18}⋃{3,4} = 
{3,4,18},DyanSlice(18,ref1.y)=ActiveDataSlice(ref
1.y)={3,4,18},DyanSlice(18,q)=ActiveDataSlice(q) 
={3,4},DyanSlice(CurrentRefObj(ref1))=DyanSlice
(obj1)=DyanSlice(18,ref1.x⋃DyanSlice(18,ref1.y)

={2,4,17}⋃{3,4,18}={2,3,4,17,18}. 
 
After execution of node-4: DyanSlice(4, ref1)= {1}, 
ActiveCallSlice= Φ, CallSliceStack= Φ. 
 
Before execution of node-5: ActiveCallSlice = {5} 

⋃Φ = {5}, CallSliceStack = [{5}]. 
 
After execution of node-20: ActiveDataSlice(ref1. 

x)={20}⋃ActiveDataSlice(ref1.x)={20}⋃{2,4,17}
={2,4,17,20},DyanSlice(20,ref1.x)=ActiveDataSlic
e(ref1.x)={2,4,17,20},DyanSlice(CurrentRefObj(re

f1))=DyanSlice(obj1)=DyanSlice(20,ref1.x) ⋃ 

DyanSlice(20,ref1.y)={2,4,17,20}⋃{3,4,18} 
={2,3,4,17,18,20}. 
 
After execution of node-21: ActiveDataSlice(ref1. 

y)={21}⋃ActiveDataSlice(ref1. y)={21}⋃{3,4,18} 
={3,4,18,21},DyanSlice(21,ref1.y)=ActiveDataSlic
e(ref1.y)={3,4,18,21},DyanSlice(CurrentRefObj(re
f1))=DyanSlice(obj1)=DyanSlice(20,ref1.x) 

⋃DyanSlice(21,ref1.y) = {2,3,4,17,18,20,21}. 
 
After execution of node-5: DyanSlice(5, ref1)= 
ActiveDataSlice(ref1)={1}, ActiveCallSlice= Φ, 
CallSliceStack= Φ. 
 
Example program-2: 
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void  main() 

 { 

 int p,q,i,r; 

 1. read(p); 

 2. read(i); 

 3. read(r); 

 4. q=r; 

 5. while(i<2) 

 { 

 6. p=add(p,r); 

 7. p=2*(p+2); 

 8. q=calculate(p,r); 

 9. i=i+1; 

} 

 10.  write(p); 

 11. write(q); 

 } 

 

int add(int a, int b) 

 { 

 12. a=a+b; 

 13. return(a); 

 } 

 

int  calculate(int y, int z) 

 { 

  14. return(4*y%2 + 2*z +6);  

 }  

 
 

Before execution of node 1: AbstractState(1) = { ⊥, 
⊥, ⊥, ⊥}. 
 
After execution of node 1:ActiveDataSlice(p)={1}, 

DynaSlice(1,p)={1}, AbstractState (1)={-, ⊥,⊥,⊥}, 
ActiveSemanticSlice(p,SIGN)= 
ActiveSemanticSlice(p, SIGN) U {1}  = {1}, 
DyanSemanticSlice (p,1,SIGN)={1}. 
 
After execution of node 2 : ActiveDataSlice(i) 
={2}, DynaSlice(2,i) = {2}, AbstractState(2)= {-

,+,⊥,⊥}, ActiveSemanticSlice(i, SIGN) = 
ActiveSemanticSlice(i, SIGN) U {2} = {2}, 
DyanSemanticSlice(i,2,SIGN)={2}. 
 
After execution of node 3 : ActiveDataSlice(r)= 
{3}, DynaSlice(3,r)= {3}, AbstractState(3)= {-

,+,+,⊥}, ActiveSemanticSlice(r, SIGN) = 

ActiveSemanticSlice(r, SIGN) ⋃ {3} = {3}, 
DyanSemanticSlice(r, 3, SIGN)= {3}. 
 
 After execution of node 4: ActiveDataSlice(q)={4} 

⋃ ActiveDataSlice(r)={3,4}, DynaSlice(3,r)= 
{3\},DynaSlice(3,q)= {3,4}, AbstractState(3)= {-
,+,+,+\}, ActiveSemanticSlice(q, SIGN) = 

ActiveSemanticSlice(q,SIGN)⋃{4}⋃ActiveDataSli

ce(r) = {4} ⋃ {3}={3,4} , DyanSemanticSlice(r, 3, 
SIGN)= {3}. 
 
After execution of node 5 

:ActiveControlSlice(5)={5} ⋃ ActveDataSlice(i) = 
{2,5}, DynaSlice(5,i) = ActiveDataSlice(i)= {2}, 
AbstractState(5) = {-,+,+,+}, DyanSemanticSlice(i, 
5, SIGN) = {2}. 
 
Before execution of node 6 : AbstractState (6)= {-

,+,+,+},ActiveCallSlice={6}⋃ActiveCallSlice⋃ 
ActiveControlSlice(5)={6}⋃{2,5}={2,5,6}, 
CallSliceStack=[{2,5,6}], ActiveDataSlice(a) = 

ActiveDataSlice(p) ⋃ ActiveCallSlice = {1} ⋃   
{2,5,6}={1,2,5,6},ActiveDataSlice(b)=ActiveDataS

lice(r) ⋃ActiveCallSlice= {3} ⋃ {2,5,6} =  
{2,3,5,6},ActiveSemanticSlice(a,SIGN)=ActiveSe
manticSlice(p,SIGN)={1},ActiveSemanticSlice(b,S
IGN)= ActiveSemanticSlice(r,SIGN)={3} 
 
Before execution of node 12 :AbstractState(11) ={-
,+} 
 
After execution of node 12 : 

ActiveDataSlice(a)={12\} ⋃ ActiveDataSlice(a) 
⋃ActiveDataSlice(b)={12} ⋃ {1,2,5,6} ⋃{2,3,5,6} 
={1,2,3,5,6,12},DynaSlice(12,a)=ActiveDataSlice(

a) ⋃ AciveCallSlice={1,2,3,5,6,12} ⋃  
{2,5,6}={1,2,3,5,6,12},DynaSlice(12,b)=ActiveDat
aSlice(b) ⋃ AciveCallSlice={2,3,5,6} ⋃  
{2,5,6}={2,3,5,6},AbstractState(12)={+,+}, 

ActiveSemanticSlice(a,SIGN)={12}⋃ActiveDataSl

ice(b) ⋃ AciveCallSlice = {12} ⋃ {2,3,5,6} 

⋃{2,5,6}={2,3,5,6,12},DyanSemanticSlice(a,12,SI

GN)=ActiveSemanticSlice(a,SIGN)⋃AciveCallSlic

e ={2,3,5,6,12} ⋃ {2,5,6} = {2,3,5,6,12},   
DyanSemanticSlice(b,12,SIGN)=ActiveSemanticSl
ice(b,SIGN) ={3}. 
 
12 is added to ActiveSemanticSlice(a,SIGN) since it 

changes the SIGN of a ActiveDataSlice(b) is added 

to ActiveSemanticSlice(a,SIGN) since the value of b 

changes the SIGN of result of expression at 12. 

Finally ActiveCallSlice is added to 

ActiveSemanticSlice(a,SIGN) since statement 12 

changes the SIGN property of a. 

 
Before execution of node 13 :AbstractState 
(13)={+,+},ActiveReturnSlice={13}⋃ActiveDatasl

ice(a) ⋃ ActiveCallSlice={13} ⋃ {1,2,3,5,6,12} ⋃ 
{2,5,6}={1,2,3,5,6,12,13}, SemanticReturnSlice = 

{13} ⋃ ActiveDataslice(a) ⋃ ActiveCallSlice 

={13}⋃{1,2,3,5,6,12}⋃ {2,5,6}={1,2,3,5,6,12,13}.  
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After execution of node 6 :  
ActiveDataSlice(p)=ActiveReturnSlice={1,2,3,5,6,

12,13},DynaSlice(5,p) = ActiveDataSlice(p) ⋃ 
ActiveControlSlice(5)={1,2,3,5,6,12,13}⋃{2,5}={
1,2,3,5,6,12,13}, AbstractState (5) = {+,+,+,+}, 
ActiveSemanticSlice(p,SIGN)=ActiveSemanticSlic

e(p,SIGN) ⋃ SemanticReturnSlice=={1} ⋃ 
{1,2,3,5,6,12,13}={1,2,3,5,6,12,13},DyanSemantic

Slice(p,5,SIGN)=ActiveSemanticSlice(p,SIGN) ⋃ 

ActiveControlSlice(5) = {1,2,3,5,6,12,13} ⋃ {2,5} 
={1,2,3,5,6,12,13},CallSliceStack=Φ,ActiveCallSli
ce=Φ,ActiveReturnSlice= Φ, SemanticReturnSlice= 
Φ. 
 
After execution of node 7 :ActiveDataSlice(p)={7} 

⋃ ActiveDataSlice(p) ⋃ ActiveControlSlice(5)= 

{7}⋃{1,2,3,5,6,12,13}⋃{2,5}={1,2,3,5,6,7,12,13},  

DynaSlice(7,p)=ActiveDataSlice(p)⋃ 

ActiveControlSlice(5)={1,2,3,5,6,7,12,13}⋃ 
{2,5}={1,2,3,5,6,7,12,13},AbstractState(7)={+,+,+,
+},ActiveSemanticSlice(p,SIGN)={1,2,3,5,6,12,13
},DyanSemanticSlice(p,7,SIGN)=ActiveSemanticS
lice(p,SIGN)={1,2,3,5,6,12,13}. 
 

Statement 7 is not added as it is not changing the 

abstract property of p. 
 

3.3. Complexity analysis 
The space requirement of our algorithm is 

O(n2) and is mainly due to the storage of the 
Control Flow Graph Gp. It can be easily shown that 
the other data structures used by our algorithm 
requires maximum O(n) space . Some of the data 
structures we use are reused or disposed when not 
required(e.g.RefSet, Active CallSlice[4]) resulting 
in efficient use of space.  

The time complexity of finding dynamic 
syntax slices is linear in terms of the number of 
statements of the program[ 4].The complexity for 
finding semantic relevancy only depends on the 
comparison between  the abstract state of the 
currently executed statement and the previous 
executed statement, which depends on the no of 
variables in a program and no of abstract states 
possible for a given property which is a constant. 
Calculation of semantic dependency depends on the 
maximum no of operators possible in an 
expression.  

 

3.4. Comparison with related work 

The advantage of this algorithm is that, it 
does not use a trace file for storing the execution 
history. Our algorithm extract slices of Object 
Oriented Programs by capturing all features of 
object Oriented Programming in some run time 

reusable and disposable data structures which are 
updated with execution of each statement in the 
program resulting in efficient use of space.  

A pure dynamic slicing algorithm on 
abstract properties of variable in Object Oriented 
Programs is scarcely reported in literature. The 
dynamic slicing algorithm in [4] only finds out the 
slices based on the underlying syntax of the 
program. The static slicing algorithms reported in 
[9,11] has main disadvantage of maintaining trace 
files for storing the execution trace which may be 
unbounded in presence of loops. Our algorithm 
does not use trace file as the recent semantic slice is 
already captured in the data structures. Our 
algorithm can find both syntax based and property 
based dynamic slices and can be more helpful in 
interactive application like debugging and testing 

 

4. CONCLUSION 

In this paper we present an algorithm for 
property based dynamic slicing of Object Oriented 
Programs. We first use the basic concepts of the 
inter-procedural dynamic slicing algorithm [4] and 
remodel it to extract slices of Object Oriented 
Programs with introduction of some additional data 
structures. 

Since the syntax based data dependencies 
and control dependencies are already addressed and 
the syntax slice is always a super set of semantic 
slice, the generated slice will be useful in 
interactive applications like debugging and testing. 
Our algorithm also not required to store any 
execution trace as it immediately updates the 
required data structures. The slices on defined 
properties of program variables are already 
available before a slice is asked for resulting in 
faster response time. As opposed to any slicing 
algorithms our algorithm generated both syntax  
and property based dynamic slices of object 
oriented  programs.       
The future scope of this paper lies in investigating 
property based dynamic slicing in distributed 
system and designing a testing tool for the proposed 
slicing algorithm. 
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