
Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

318

ABSTRACT

Software maintainability is one important aspect in the evolution of a software product. Several coupling

measures have been introduced to identify and measure the design complexity of an object oriented (OO)

systems. The coupling metrics proposed in this paper recognizes the complexity between inheritance and

interface programming. This paper presents measurements of Coupling between Object (CBO) in object

oriented programming. The metric values of class and interface inheritance diagrams have been compared

to prove whether maintainability is improved to use and beneficial for the software developers.

Keywords: Software Maintainability, Software Metrics, Object Oriented Systems, Interface, Coupling,

Java

1. INTRODUCTION

Maintainability is defined as the ease

with which changes can be made to the software

system. These changes are required for the

correction of faults, adaptation of the system to a

meet a new requirement, addition of new

functionality, removal of existing functionality

or corrected when errors or deficiencies occur

and can be perfected, adapted or action taken to

reduce further maintenance costs.

Maintainability includes the notion of flexibility

portability and transferability (from one

development team to another). Maintainability of

measure and monitor is an important task for

mission-critical applications where changes can

be made based on the tight time-to-market

schedules and it is also important for IT to

remain responsive business-driven changes to

overcome the future needs [1]. It is also essential

to keep maintenance costs under control.

Software quality measurement is about

quantifying to what extent software or system

acquiring its desired characteristics. This can be

evaluated through qualitative or quantitative

approach or combining both approaches. In both

cases, for each desirable characteristic, there are

a set of measurable attributes the existence of

which in a piece of software or system tends to

be interrelated and associated to this

characteristic. For example, an attribute

associated with portability is the number of

target-dependent statements in a program. The

Software quality can be determined accurately

using the Quality Function Deployment

approach.

Software metric is defined as “a

quantitative measure of the degree to which a

system, component, or process possesses a given

attribute.”Software metrics can be categorized

into direct measure and indirect measure. Direct

measure of the software engineering process

includes cost and effort applied. Direct measures

of the product include lines of code (LOC)

produced, execution speed, memory size, and

defects reported over some set period of time.

Indirect measure of the product includes

functionality, quality, complexity, efficiency,

reliability, maintainability [24]. Thus software

DETERMINING SOFTWARE MAINTAINABILITY OF JAVA

INTERFACES USING QUANTITATIVE APPROACH

1
N.BASKAR,

2
A.V.RAMANI

1Research Scholar in Computer Science, SRMV College of Arts and Science, Coimbatore, India.
2Associate Professor, Department of Computer Science, SRMV College of Arts and Science, Coimbatore, India.

E-mail: 1n_bas@rediffmail.com ,
 2avvramani@yahoo.com

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

319

maintainability comes under indirect software

measure.

An interface is a named collection of

method definitions (without implementations).

Interfaces are prototype for a class. Interfaces

can be used like classes in declarations and

signatures. An interface can also include constant

declarations. Object references in Java may be

specified to be of an interface type. They must

either be null, or be bound to an object that

implements the interface. With interface

construct, object oriented programming features

a good concept with high potential code

reusability. Today interfaces are heavily used in

all disciplines. Interfaces are advisable to be used

in large type of applications because the

interfaces make the application easier to extend,

modify and integrate new features. Interfaces in

OO programming contain names and signatures

of methods and attributes, but it does not contain

method implementations. Interfaces are used to

organize code and provide a solid boundary

between the different levels of abstraction.

The concept of interfaces has been

measured in java programming by Fried

Stiemann and Co [2] who denotes the usage of

interfaces compared to classes are in the ratio of

4:1.Ken Pugh [3] states that obtaining

commonality among classes makes it more

effective for object oriented programming .He

also explores the commonality in using

inheritance and using interfaces in object

oriented programming.

In this paper, the usage of interfaces is
increased and the benefits of using interfaces are
shown by coupling measures.

2. ESTABLISHING THRESHOLD FOR

SOFTWARE MAINTAINABILITY

Software evolution has its own path other
than that happening in natural biological world.
The differences lie in the influential factors and
how the factors interact in their evolutions. The
software evolution is indivisible from software
maintainability. The significant factors in

software evolution can be computed as being
equivalent to those of software maintainability so
that the results of factor interaction are denotable
by the probabilities of occurrence of
maintenance behaviors. So according to
ISO/IEC14764:2006, 2006 [4], software
maintainability is all about change management
and categorizes maintenance as following,

• Corrective Maintenance: If there is any fault

after delivering the software projects they

used to rectify the existing faults.

• Adaptive Maintenance: They used to adapt it

to a changed or changing environment after

the delivery of the software project;

• Perfective Maintenance: To improve

performance or maintainability Any change

to a software project after being delivered;

• Preventive Maintenance: Any change to a

software project after being delivered to

detect and correct any potential fault.

Therefore, it is reasonable to reckon

different types of maintenance as the key factors

influencing software maintainability and thereby

software evolution.

3. OBJECT ORIENTED PROGRAMMING

AND METRICS

Object oriented software is a more
recent and important quality software than that of
the old-style procedural software/program [7].
With the wide spread object oriented technology
the subject of software engineering has received
much attention over the last two decades [8] [9].
Object oriented design and development are very
important and popular concepts in today's
development environment. Object oriented
design and development requires a different
approach to design implementation and to the
software metrics compared to standard set of
metrics.

Object oriented metrics can be applied

to analyze source code as an indicator of quality

attributes. The source code may be any OO

language. Metrics are very essential and

important to measure object oriented software

programming [10]. The development of software

metrics for object oriented technology /

programming has received more attention. A

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

320

large number of metrics have been developed by

researchers and numerous tools are available to

help assess design quality and to collect metrics

from software programs, designs, quality and

maintenance etc [11][12][13][7]. Many object

oriented metrics proposed in literature survey

lack theoretical proof and some have not been

validated. These are the general metrics that are

evaluating the object oriented programming

concepts are: methods, classes, coupling and

cohesion.

Degree of coupling between objects is a

proposed OO metric. A higher degree of

coupling between objects complicates

application maintenance because object

interconnections and interactions are more

complex. The higher the degree of uncoupled

object, the more objects can be reused within the

same applications and also within other

applications. Uncoupled objects should be easier

to augment due to the lower degree of

interaction. Testability is likely to degrade with a

more highly coupled system of objects. Object

interaction complexity associated with coupling

can lead to increased error generation during

development.

Average number of uses dependencies per object

= total number of arcs / total number of objects.

A network is a collection of points, called

vertices vertices, and a collection of lines, called

arcs.

arcs = max (number of uses arcs) - in an object

uses network

arcs - attached to any single object in a uses

network.

Chidamber and Kemerer's [23] metrics

suite for OO Design is the deepest research in

OO metrics investigation. They have defined six

metrics for the OO design. That the author

described the approach of coupling between

object classes (CBO) metric is used.CBO is

defined as the count of the classes to which this

class is coupled. Coupling is defined as two

classes are coupled when methods declared in

one class uses methods or instance variables of

the other class. [Chidamber and Kemerer 1994]

Excessive coupling between object

classes is harmful to modular design and

prevents reuse. The more independent a class is

easy to reuse it in another application. In order to

improve modularity and promote encapsulation,

inter-object class couples should be kept to a

minimum. The larger the number of couples, the

higher the sensitivity to changes in other parts of

the design, and therefore maintenance is more

difficult. A measure of coupling determines the

testing of various parts of a design is complex.

Very few metrics are presented for object

oriented interfaces. In this paper, a measurement

has been proposed to calculate the reusability of

interfaces in object oriented programming.

4. SOFTWARE MAINTAINABILITY

PREDICTION FOR JAVA INTERFACES

A model for software product quality
has been formulated by associating a set of
quality-carrying properties with each of the
structural forms that are used to define the
statements and components of a programming
language. Software quality models are tools that
lead to reliability enhancement activities to high
risk modules for maximum effectiveness and
efficiency. A software quality model predicts a
quality factor such as the number of faults in a
module, time for effective action. Software
product and process metrics forms the basis of
fault predictions. A software quality model
includes the measurement of the properties of
stability, analyzability, changeability and
testability as sub-characteristics of a software
product. Each sub-characteristic can be measured
properly by many methods of metrics and each
method of metrics can be applied to more than
one sub-characteristic. By Multiplication Rule of
Statistics, the indexes of all properties can be
multiplied to produce a joint statistics of all the
properties combined. Software product is the
health status of a completed software product at
the time of delivery.

Today Component Based Software
Development (CBSD) is getting accepted in
industry as a new effective development
paradigm. It emphasizes the design and

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

321

construction of software system using reusable
components. CBSD is capable of reducing
development costs and improving the reliability
of an entire software system using components.
The major advantages of CBSD are in-time and
high quality solutions. Higher productivity,
flexibility and quality through reusability,
efficient maintainability, and scalability are some
additional benefits of CBSD. It is also used for
measuring the interfaces of the JAVA.

Software measurement plays an
important role in finding the quality and
reliability of software products. The
measurement activities require appropriate tools
to calculate relevant metric values. At present
large number of metric tools are available for
software measurement [5]. The main objective of
this paper is to find the reusability of interfaces
in object oriented programming.

4.1 Measurement and Metrics

 Measurement is the technology that
allows the software professional to make visible
progress in improving the software related
factors. Measurement is not only a performance
factor that leads to behavioral changes but it is
also used to improve the factors that are being
measured [6]. Measurement is necessary for the
software development process to be successful.

4.2 Object Oriented Interfaces

 The concept of an interface is old.
Software engineering has been using interfaces
for more than 25 years. Nowadays interfaces are
heavily used in all disciplines especially in
object oriented programming [14]. Object
oriented programming features become a good
concept with high potential code reusability in
the field of interface construct. Interfaces are
used to organize code and provide a solid
boundary between the different levels of
abstraction [15] [16]. It is good to use interfaces
in large type of applications because interfaces
make the software/program easier to extend,
modify and integrate new features.

 An interface is a prototype for class. With
the construct of an interface java allows a
concept of high potential for producing a
reusable code. Interfaces in object oriented
programming just contain names and signatures
of methods and attributes, but no method
implementations. Interfaces are implemented by
classes. The inheritance hierarchy of interfaces is

independent than that of class inheritance tree.
Therefore object oriented languages like java
gives higher potential to produce reusable code
than abstract classes [17] [18] [19].

• Defining an Interfaces
Syntax
public interface InterfaceName

{

 // method signatures

}

Example:

public interface Measurable

{

 double getMeasure();

}

Purpose:

To define an interface and its method signatures.

The methods are automatically public

• Implementing the Interfaces

public class ClassName

 implements InterfaceName1,

 InterfaceName2, ...

{

// methods

 // instance variables

}

Example:

public class BankAccount

implements Measurable

{

 // Other BankAccount methods

 public double getMeasure()

 {

 // Method implementation

 }

 }

Purpose:

To define a new class that implements the
methods of an interface

4.3 Reusability

Reusability is always an interesting topic
with shining promise. Reusable code is an
effective combination 2 concept.

• Properly defined interface definitions and

• Efficiently defined class structure and
inheritance.

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

322

 In this paper, the authors followed the
first concept of reusability and measured the
metric for interface reusability by giving a new
formula. One benefit of defining interface is that
every class that implements an interface must be
inline with the interface's functional
requirements. Large amount of code sharing
occurs within each implementation classes.
Based on the class structure designed at the
development time the implementation classes are
organized according to their interface group type
and inheritance allowed to access common logic.

 Reusability is an important factor for the
software community people because it is the
ability to reuse a number of software artifacts in
terms of requirements, architecture, plans, cost
estimates, designs, source code, data elements,
interfaces, screens, user manuals, test plans and
test cases. Software reusability is an
experimental one under the impact of new tools
and programming languages. The measurement
of software/program and the software
development process are much needed for
software professionals attempting to improve
their software process. Reusability of software
increase productivity and quality and reduce the
cost [6][20][21]. So in this paper, the reusability
is measured for object oriented programming
interfaces using the new formula.

In literature, relatively little information

has been published on metrics. Those metrics
would provide limited insight into the quality
and usability of the interface [22].

So the proposed approach is to derive a
formula for calculating the reusability of
interfaces accurately. Deeper an interface in
hierarchy leads to greater the reusability of
inherited methods. When the depth of inheritance
(DIT) of an interface increases the reusability of
an interface also increases. So DIT of an
interface has positive impact with the reusability
of an interface. Reusability of interfaces are
calculated by the following two ways:

(i) Reusability of interfaces is calculated by
using the formula:

(RI)= Total Number of links to interfaces –

 Number of interfaces………..………. (1)

Where RI-Total Reusability of interface diagram.

(ii) The reusability of interfaces in a diagram is
calculated by using the formula:-

Total Reusability of a diagram:
RI=RI1+RI2+……+RIn.……………..……….(2)

Where R- Reusability and I1.....In are Interfaces

In each diagram the reusability of an
interface is calculated by using the formula and
all interface reusability must be added to find the
total reusability of interface diagram. By this
way the values are calculated. First, it is not
always the case that the reuse promoted by a
given composition mechanism is going to lead to
better maintainability. While the use of a specific
mechanism can somehow contribute to modules
reuse, it might also require developers to make
various undesirable changes in their
implementation. Second and more importantly,
there are no metrics that enable to quantify the
complexity properties of composition code. As a
result, it is not possible to objectively assess to
extent the intrinsic characteristics of composition
mechanisms exert positive or negative influences

on software reuse and maintenance. The
class/metrics for reusability are

CBO: Coupling between object
NOC: Number of children’s.
NASSocC: Number of associations between
classes.
NDepIN: Number of dependencies in.
NDepOut: Number of dependencies out.
DIT: Depth of Inheritance Tree.

5. RESULTS

 The results are compared between
inheritance and interface coupling measures. The
metrics discussed above are applied for both
class inheritances and interface inheritance UML
diagrams. The figure 1 is a vehicle classification
class inheritance diagram. The figure 2 is a
vehicle classification interface diagram.

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

323

Figure 1: Vehicle Classification using Class Inheritance

The above said class inheritance Figure 1 is introduced with possible number of interfaces and is
represented in Figure 2.

Vehicle

String: Name

 Integer: Wheels count

getdata ()

displaydata ()

Light Motor

int: speed limit

int: capacity

getdata ()

displaydata ()

Heavy Motor

int: speed limit

int: capacity

String: permit

getdata ()

displaydata ()

Gear Motor Non Gear Motor

Int gear count

getdata ()

displaydata ()

getdata ()

displaydata ()

Passengers

 Int : sitting

getdata ()

displaydata ()

Goods

getdata ()

displaydata ()

<<Interface >>

LightMotor

Getspeedcap()

<<Interface >>

Vehicle

Getdata()

Displaydata()

Getnamewc()

<<Interface>>

Heavy Motor

Getspeedper()

Gear Motor

Int:gearcount

Getdata()

Displaydata()

Getnamewc()

Nongearmotor

Getdata()

Displaydata()

Getnamewc()

Passengers

Getdata()

Displaydata()

Getnamewc()

Goods

Getdata()

Displaydata()

Getnamewc()

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

324

Figure 2: Vehicle Classification using Interfaces

For the above said two diagrams the coupling
metrics are measured and tabulated in Table 1.
By comparing the table values for both the
diagrams the interface values are reduced for
almost all metrics. And it is more efficient and
accurate one.NOC is number of children in
interface.

Table 1: Coupling Measures for Figure 1 & 2

C
la

s
s

Metrics/

Classes C
B

O

NAS

SocC

NDe

pIN

NDep

Out
NOC

D
IT

Vehicle 2 2 2 0 2 0

Light

Motor
3 3 2 1 2 1

Heavy

Motor
3 3 2 1 2 1

Gear

Motor
1 1 0 1 0 2

Non

gear

motor

1 1 0 1 0 2

Passeng

er
1 1 0 1 0 2

Goods 1 1 0 1 0 2

In
te

rf
a
c
e

Vehicle 1 1 1 0 1 0

Light
Motor

2 2 1 0 1 0

Heavy

Motor
2 2 1 0 0 0

Gear

Motor
1 1 0 1 0 1

Non
gear

motor

1 1 0 0 0 1

Passeng
er

0 0 0 0 0 0

Goods 0 0 0 0 0 0

Figure 3: Coupling Measures for Figure 1 & 2

Figure 3 shows interface values are reduced for

almost all metrics.

6. CONCLUSION

Proposed method reduces coupling in

object oriented programming. Developers

develop high quality program with the help of

coupling. The benefits of this proposed approach

are the increased flexibility and reduction of

development cost. The most important in the

software development is the reusability. Efficient

metrics are used for the comparison of

inheritance and interface concepts in object

oriented programming. Interface concepts are

better than class for increased usability and for

maintenance. Object oriented programming

software is more reusable than functionally

decomposed software. As software is being

developed, it is very important to keep an eye on

the various parameters. The two UML object

oriented diagrams are used to validate the

formula. Hence, this approach is an eye-opener

to measure reusability of interface diagram.

REFERENCES

[1] Boehm B. , “Software Engineering
Economics”, Prentice Hall (1981).

[2] Fried Stiemann, Wolf Siberski and Thomas
Kuhne, “ Towards the Systematic Use of
Interfaces in Java Programming”, 2nd Int.

0

1

2

3

4

5
CBO

NASSocC

NDepIN

NDepOut

NOC

DIT

Class Interface

Journal of Theoretical and Applied Information Technology
 20

th
 November 2014. Vol. 69 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

325

Conf. on the Principles and practice of
Programming in Java PPJ 2003, P.No:13-17.

[3] Ken Pugh,” Interface Oriented Design”,
Chapter 5, 2005.

[4] Cem Kaner, and Walter P. Bond, “Software
Engineering Metrics: What Do They
Measure and How Do We Know?”, 10TH
INTERNATIONAL SOFTWARE
METRICS SYMPOSIUM, METRICS,
2004.

[5] Bakar N.S.A.A. & Boughton .C,"Using a
Combination of Measurement Tools to
Extract Metrics from Open Source Projects",
Proceedings of Software Engineering and
Applications of 2008.

[6] Capers Jones," Applied Software
Measurement-Global Analysis and
Productivity Quality", 3rd Edition.

[7] Santonu Sarkar, Member, IEEE, Avinash C.
Kak, and Girish Maskeri Rama," Metrics for
Measuring the Quality of Modularization of
Large-Scale Object-Oriented Software,
IEEE Transactions on Software
Engineering, Vol. 34, No. 5, Sep-Oct 2008.

[8] Pradeep Kumar Bhatia, Rajbeer Mann," An
Approach to Measure Software Reusability
of OO Design ", Proceedings of 2nd
International Conference on Challenges &
Opportunities in Information
Technology,COIT-2008,RIMT-IET,March
29,2008.

[9] Terry .C. and Dikel .D.,"Reuse Library
Standards Aid Users in Setting up
Organizational Reuse Programs",Embedded
System Programming Product News,1996.

[10] Linda H. Rosenberg,"Applying and
InterpretingObject Oriented Metrics",
Presented at the Software Technology
Conference, Utah, April 1998.

[11] El Hachemi Alikacem, Houari A. Sahraoui,
"Generic Metric Extraction
Framework",IWSM/Metrickon, Software
Measurement Conference 2006.

[12] NevilleI. Churcher, Martin J. Sheppered,
ACM Software Engineering Notes, Vol.20,
Issue 2, P.No:69-75, April 1995.

[13] Rudiger Lincke, Jonas Lundberg and Welf
Lowe,"Comparing Software Metrics
tools",ISSTA '08,July 20-24,2008.

[14] FriedRich Steimann, Philip Mayer, Andreas
MeiBner,"Decoupling Classes with Inferred
Interfaces ", Proceedings of 2006 ACM,

Symposium on Applied Computing,
Pg.No:1404-1408.

[15] Matthew Cochran,"Coding Better: Using
Classes Vs. Interfaces", January 18th, 2009.

[16] Dirk Riehle and Erica Dubach,"Working
With Java Interfaces and Markus Mohenen,
"Interfaces with Default Implementations in
Java", AachenUniversity of Technology.

[17] ISRD GROUP,"Introduction to Object
Oriented Programming through
JAVA",TATA Mc Graw Hill, Pg.No:109.

[18] Markus Mohnen,"Interfaces with Default
Implementations in Java",Technical Report,
RWTH Aachen,April 2002.

[19] Christopher L. Brooks, Christopher G.Buell,
"A Tool for Automatically Gathering
Object-Oriented Metrics", IEEE, 1994.

[20] Etzkorn W.E., Hughes, Jr W.E. and Davis
C.G. ,"Automated reusability quality
analysis of OO legacy software",
Information and Software Technology,
Volume 43 , Issue 5, April 2001,P.No:295-
308.

[21] Khan R.A., K.Mustafa and S.A.Ahson,
"Software Quality - Concepts And
Practices", P.No:140.

[22] http://yunus.hun.edu.tr/~sencer/oom.html
[23] Classes-How to Separate Interfaces from

Implementations", P.No:35-46, Published in
Java Report 4, 1999.

[24] Roger S.Pressman,"Software Engineering a
Practitioner's Approach”,
 6th Edition.

