ANALYSIS OF DC-DC CONVERTER WITH MULTIPLIER
CELLS FOR HIGH VOLTAGE GENERATION

K.J ANOOP, SAPAM ROSHINI DEVI, Dr. V. RAJINI

1Associate Professor, Saveetha School of Engineering, EEE Department, Member, IEEE
2Student, EEE Department, Saveetha School of Engineering
3Professor, Department of EEE, SSN College of Engineering

Email: 1 anoopkj7@gmail.com, 2 roshini.sapam4@gmail.com, 3 rajiniv@ssn.edu.in

ABSTRACT

This paper emphasizes the design of a DC-DC converter to produce high voltage from a low input DC voltage by using multiplier cells instead of a transformer. The low input DC voltage is converted to AC with the help of four switches operating in two different frequencies. Further, this AC voltage is given to the voltage multiplier cells for desired high output DC voltage. The output DC voltage produced has high efficiency, high voltage gain, low ripple, low switching losses and less noise. Two independent frequencies operate in this system, one is known as modulating frequency and the other is alternating frequency which work in high level and low level respectively. A prototype of the proposed model is constructed and the output is compared with the simulated model. The model is again reconstructed by a feedback control for constant output with variable input voltages.

Keywords: Voltage Multiplier, Multilevel Inverter, DC-DC Converter, High Voltage Gain, feedback Controller

1. INTRODUCTION

Renewable energy methods such as solar, wind, fuel cell etc., are being developed nowadays as they are inexpensive and powerful energy sources [1], [2]. Since the voltage generated from these sources are rather low level, boost converters or transformers are required for high output voltage [3], [4]. Unlike transformers, DC-DC Converters eliminates the requirement of the heavy core, the bulk of insulation and high leakage reactance. Without using the transformers, there are many types of dc-dc boost converters that can be used for increasing the voltage level of the system.

The use of high step up dc-dc converters and the voltage multipliers have been increasing in industries due to its advantages. Most of the time, they are used in order to produce a high output voltage from a low voltage source and always increase the system efficiency. These types of converters are applicable in the high intensity discharge lamp ballasts, battery backup systems for uninterruptible power supplies and widely used in the renewable energy applications such as fuel-cell energy-conversion systems[5]-[8]. High step up dc-dc converters are important because the system requires a sufficiently high step up conversion with high efficiency. Theoretically, the boost converter can provide a high step up voltage gain with an extremely high duty cycle [9]-[12].

In the proposed system, the voltage multipliers are used to produce a high potential dc voltage from a lower voltage ac source. The voltage multiplier can be divided as voltage doublers, triplers, quadruplers etc. The classification depends on the ratio of output voltage to the input voltage. The proposed system using voltage multipliers which is known as Cockcroft-Walton (CW) voltage multiplier to increase the output voltage level and also having the ratio of output voltages to input depending on the number of stages.

2. INVESTIGATIONS ON SELECTIVE CASCADED DC-DC CONVERTERS

Here, two Conventional step up dc-dc converters without transformer with high voltage gain were presented and compared with the proposed topology. An n-stage diode-capacitor multiplier circuit is proposed [13] in Fig. 1(a) for getting high voltage gain. This system has the advantage of increasing the number of stages without disturbing the main circuit. But the stress on the capacitor increase as the stages increases. Fig.1 (b) shows an n-stage cascade boost converter
which has the advantages similar to the above [14]. However, the voltage stress on the capacitors at the higher stages are more.

3. PROPOSED CONVERTER WITH MULTIPLIER CELLS

This paper emphasis the design, simulation and development of a high voltage dc power generation using Cockcroft Walton voltage multiplier cell and also on the study of hardware construction.

Providing the advantages of high voltage ratio, low voltage stress on the diodes and capacitors, compactness, and cost efficiency, the conventional Cockcroft-Walton (CW) voltage multiplier is very popular among high-voltage dc applications [15]. However, the major drawback is that a high ripple voltage appears at the output when a low-frequency (50 or 60 Hz) utility source is used.

Fig. 2 shows the proposed converter with n-stage CW voltage multiplier boost-type structure. The proposed converter provides higher voltage ratio than that of the conventional CW voltage multiplier. Thus, the proposed converter is suitable for power conversion applications where high voltage gains are desired. The different voltages can be taken out through tapping at every stage of CW voltage multiplier circuit. The advantages of this circuit is that the voltage across each stage of the cascade is equal to only twice the peak input voltage.

The proposed converter has less switching stresses, switching losses and EMI noise since it operates in continuous conduction mode (CCM).

4. ANALYSIS OF PROPOSED CONVERTER

The conventional Cockcroft-Walton (CW) voltage multiplier with three stages is shown in fig.3. A low level voltage source such as battery, solar cell or fuel cell can be given as the input for the proposed system. The boost inductor operates as inverter and produces an a.c output voltage, where this voltage is again given to the voltage multiplier which will increase several time more than the input voltage. It has the ratio of output voltages to input voltage depending on the number of stages. During the operation of the system, the two frequencies, one operate at high frequency and
another operate relatively at low frequency. This converter comprises of one boost inductor L_s and four switches S_{m1}, S_{m2}, S_{c1} and S_{c2}. S_{m1} (S_{c2}) and S_{m2} (S_{c1}) work in opposite mode and the operating frequencies of f_{m1} and f_{c1} are given as f_{sm} and f_{sc} respectively.

4.1 Principle of Operation

In the proposed system, the output voltage is increased several times more than the input voltage with the help of voltage multiplier. It is assumed that all the circuit elements are ideal and there is no power loss in the system. The output DC voltage produced has high efficiency, high voltage gain, low ripple, low switching losses and less noise.

Each capacitor voltage in the CW voltage multiplier is given by

$$V_{cx} = \begin{cases} V_c/2 & \text{for } x=1 \\ V_c & \text{for } x=2, 3, \ldots, n \end{cases}$$

(1)

Where, V_c = voltage of the xth capacitor

$$V_c = \text{steady-state voltage of } V_{c2} - V_{cn}$$

For the n-stage CW voltage multiplier, the output voltage is equal to the total voltage of all even capacitors and can be expressed as

$$V_0 = nV_c$$

(2)

Substituting equation (2) into equation (1), the above capacitor voltage can be expressed as

$$V_{cx} = \begin{cases} V_0/2n & \text{for } x=1 \\ V_0/n & \text{for } x=2, 3, \ldots, n \end{cases}$$

Where, V_0 = steady-state voltage of the output.

4.2 Modes of Operations

The operation of the proposed converter can be divided into two parts according to the polarity of current to the CW circuit. There are positive conducting interval and Negative conducting interval according to the switching positions. The conducting states of the switches are shown in table 1.

<table>
<thead>
<tr>
<th>Conducting States Strategy</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{sc}</td>
<td>d_{sm}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4.2.1 Mode I

S_{m1}, S_{c1} are turned on, and S_{m2}, S_{c2}, and all CW diodes are not conducting. The boost inductor is charged by the input DC source, the group of capacitors $C1, C3$ and $C5$ are floating, and the group of capacitors $C2, C4$ and $C6$ are supply the load as shown in Fig. 4.

4.2.2 Mode II

S_{m2} and S_{c1} are turned on, and S_{m1} and S_{c2} are turned off, and the current i_y is positive. The boost inductor is discharged and input DC source transfer energy to the CW voltage multiplier through different even diodes. In Mode II-A, $D6$ is conducting, thus, $C2, C4$ and $C6$ are charged while $C1, C3$ and $C5$ are discharged by i_y. Mode II-A Operation of Proposed Converter is shown in fig. 5.
4.2.3 Mode III
Sm2 and Sc2 are turned on, Sm1, Sc1 and all CW diodes (D1 to D6) are not conducting. The boost inductor is charged by the input DC source, the even-group capacitors C2, C4 and C6 supply the load and the odd-group capacitors C1, C3 and C5 are floating as shown in the figure 8.

4.2.4 Mode IV
Sm1 and Sc2 are turned on, Sm2 and Sc1 are turned off, and the current iy is negative. The boost inductor is discharged and input DC source transfer energy to the CW voltage multiplier through different odd diodes. In figure 9, Mode IV-A, D5 is conducting, thus C1, C3 and C5 are charged by iy, while even capacitors C2 and C4 are discharged, and C6 supply load current.

In figure 10, Mode IV-B, D3 is conducting, thus, C2 is discharged and C1 and C3 are charged by iy, C6 and C4 supply load current and C5 is floating.

In figure 11, Mode IV-C, D1 is conducting, thus, C1 is charged by iy, while all even capacitors C2 is discharge, C4 and C6 are supply load current, and C3 and C5 are floating.
5. SIMULATION RESULTS OF PROPOSED CONVERTER

The proposed model is simulated using MATLAB/Simulink and the specifications for the simulation circuit are given in table 2.

<table>
<thead>
<tr>
<th>Specifications of the Simulation Circuit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>155V</td>
</tr>
<tr>
<td>Input DC Voltage</td>
<td>12V</td>
</tr>
<tr>
<td>fsm</td>
<td>60kHz</td>
</tr>
<tr>
<td>fsc</td>
<td>1kHz</td>
</tr>
<tr>
<td>Resistance</td>
<td>1kΩ</td>
</tr>
<tr>
<td>Inductance</td>
<td>1.5mH</td>
</tr>
<tr>
<td>Capacitance</td>
<td>470µF</td>
</tr>
<tr>
<td>Resistive Load</td>
<td>1kΩ</td>
</tr>
<tr>
<td>Number of stages, n</td>
<td>3</td>
</tr>
</tbody>
</table>

The comparison of gain in the conventional dc-dc converters and the proposed is shown in figure 12.

The MATLAB/Simulink circuit of the proposed dc-dc converter is given figure 13. Figure 14 shows the switching pulses given to the IGBT switches. The voltage across the switches are shown in figure 15. Sm1, Sm2 works with 1 kHz and Sc1, Sc2 works with 16 kHz frequency. The output voltage waveform of the proposed converter for 0.5 duty cycle with an input voltage of 12V is 138V shown in the figure 16.
6. EXPERIMENTAL RESULTS

An open loop prototype was built to verify the validity of the proposed converter is shown in figure17. This circuit can be used for the application of constant output voltage if the input from the battery or renewable energy sources are constant. It operates in continuous conduction mode so that switch stress and the EMI noise can be reduced. It produces high output voltage, high efficiency and low ripple voltage.

![Figure 17: Prototype of the Proposed Model (Open Loop)](image)

The table 3 shows the specifications of the hardware model.

<table>
<thead>
<tr>
<th>Components</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost Inductor</td>
<td>Ls</td>
<td>1.5mH</td>
</tr>
<tr>
<td>Power Switches</td>
<td>Sm1,Sm2,Sc1,Sc2</td>
<td>IGBT</td>
</tr>
<tr>
<td>Capacitors</td>
<td>C1-C6</td>
<td>470µF</td>
</tr>
</tbody>
</table>

![Figure 18: Output Voltage of the Prototype](image)

The Hardware output voltage is measured using High resolution Digital Storage Oscilloscope (Agilent Technologies) and shown in the figure 18. The output of the Prototype is agreeing with the Simulation output.

![Figure19: Prototype of the Proposed Model (Closed Loop)](image)

Normally the input voltage from battery or renewable energy sources will not be constant hence, the output voltage also. For getting constant output voltage the prototype is modified with closed loop control is shown in figure19.

![Figure20: Output Voltage at each Stage of Capacitor](image)
The closed loop control of the prototype gives same output voltage with another input is shown in figure 21. The input voltage is varied by a potentiometer and the output is noted. The error in the output with the reference is calculated and given the feedback to the switching circuit for getting a constant output voltage.

Figure21: Constant Output Voltage with an Input of 7.85V

7. CONCLUSION

The paper explains a dc–dc converter using Cockcroft Walton Multiplier cells for getting high voltage gain. The stress on the switches, capacitors and diodes are not affected when the number stages increases hence, high voltage can be generated by the proposed model. The analysis, principle of operation and the mode of operation were discussed. The Simulation has been done with MATLAB/Simulink are compared with the experimental results. Obviously, the simulation results well agree with the experimental results. However, the voltage ripple exists practically in all capacitors, the voltage multipliers will increase the low input voltage to high dc output voltage level.

REFERENCES:

