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ABSTRACT 

A general theorem on a mth order difference equation is presented.  Specific illustration is given to support 
our claim.  This leads to a creation of noise removal operator which can remove additive and multiplicative 
noises presenting in any digital image.  Samples are shown to explain this new creation of mask in the field 

of image analysis and machine vision. 
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1. INTRODUCTION 

        While giving illustration for our main 
research, we find the coefficients of the consecutive 
terms of the sequence satisfying a relation form 
elements of the matrix.  These elements omitting n 
and higher powers.  That is treating only the 

constants form a new matrix of order 3 3,×  whose 

elements added up to zero.  This can be identified 
as an operator representing a mask to filter noise in 
a corrupted image by adopting like sobel operator.  
This is one of the techniques analyzed by Gonzalez 
and Woods [9].  Also this technique is adopted in 
the machine vision by Milan Sonka, Vaclav 
Hilavac and Roger Boyle [7].  The general theory of 
difference equations was discussed thoroughly by 
R.P.Agarwal [1].  Oscillatory properties were studied 
by R.P. Agarwal et.al. [2]. In the natural sciences, 
technology and population dynamics, difference 
equations find a lot of applications. In [5], [6], we 
can find the applications of the difference equations.  
This paper deals with the role of difference equations 
in image analysis. 

      In the following section, we present some basic 
concepts and results which are concerned with our 
research.  

 

 

2. BASIC CONCEPTS AND RESULTS 

         The difference equation can be taken as a 
maximum entropy in the image content in the 
process of edge detection.  We are concerned with 
the oscillatory behavior of the high order nonlinear 
functional difference equation of the form  
    

( ) ( )( ) ( ) ( )( )( )2 2
0,

m r n y n q n f y g n
α

−  ∆ ∆ − =        

                                                          (1.1)                       

 where ( )
0

1

s n

r s
α

−∞

=

< ∞∑ .                          (1.2)                                             

The following conditions are assumed to hold:  

(i) α is the ratio of any two positive odd integers.  

(ii) {r(n)} , {q(n)} are real valued positive            

       sequences.  

(iii) {g (n)} is a real valued increasing sequence     

        with g (n) < n, for n ≥ n0  and ( )lim .
n

g n
→∞

= ∞
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(iv) f : R→R is a continuous function such 

that xf(x)>0 and f′(x)≥0, for 0x ≠  and  

−f(−xy)≥f(xy)≥f(x)f(y), for xy > 0.     (1.3)                                             

Here Δ is the forward difference operator 

defined by ( ) ( ) ( )1 .y n y n y n∆ = + −
 

 

2.1.   Oscillatory Solution 

By a solution of equation (1.1), we 

mean a real sequence ( ){ }y n which is defined 

for ( ){ }
0

min
i

n g i
≥

≥ and satisfies equation (1.1) for 

large n.  A solution {y(n)} is said to be 
oscillatory if it is neither eventually positive nor 
eventually negative. Otherwise it is called non-
oscillatory. A difference equation is said to be 
oscillatory if all of its solutions are oscillatory. 
Otherwise, it is non-oscillatory.  

 

2.2.   Entropy  

          An entropy provides an excellent tool to 
quantify the amount of information (or uncertainty) 
contained in a random observation regarding its 
parent distribution (population).  A large value of 
entropy implies the greater uncertainty in the data.  
As proposed by Shannon [10], entropy of an 
absolutely continuous random variable X having 

pdf ( )X
xφ  is defined as  

( ) ( )( )( )

( ) ( )( )

log

log

X

X X

S

H X E x

x x dx

φ

φ φ

= −

= −∫  

where ( ){ }: 0 .
X

S x xφ= >  

2.3.   Sobel Edge Detector 

        The sobel edge detector uses the masks in 
figures to approximate digitally the first derivatives 

x
G and

y
G .  In other words, the gradient at the 

center point in a neighborhood is computed as 
follows by the sobel detector: 

( )

( ) ( )

( ) ( )

1

2 2 2

1

2 2

7 8 9 1 2 3

2

3 6 9 1 4 7

2 2

2 2

x y
g G G

z z z z z z

z z z z z z

= +

 + + − + +   
=  

+ + + − + +      

2.4.   Spatial Filtering and Mask 

     Neighborhood processing consists of 1. defining 
a center point, (x, y); 2. performing an operation 
that involves only the pixels in a predefined 
neighborhood about that center point; 3. letting the 
result of that operation be the “response” of the 
process at that point; and 4. repeating the process 
for every point in the image.  The process of 
moving the center point creates new 
neighborhoods, one for each pixel in the input 
image.  The two principal terms used to identify 
this operation are neighborhood processing and 
spatial filtering, with the second term being more 
prevalent. 

      The linear operations consist of multiplying 
each pixel in the neighborhood by a corresponding 
coefficient and summing the results to obtain the 
response at each point (x, y).  If the neighborhood 

is of size ,m n mn× coefficients are required. The 

coefficients are arranged as a matrix, called a filter, 
mask, filter mask, kernel, template, or window, 
with the first three terms being the most prevalent.  
For reasons that will become obvious shortly, the 
terms convolution filter, mask, or kernel, also are 
used.  The process consists simply of moving the 

center of the filter mask w from point to point in an 

image, f .  At each point (x, y), the response of the 

filter at that point is the sum of products of the filter 
coefficients and the corresponding neighborhood 
pixels in the area spanned by the filter mask.                  

2.5.   Image Filtering and Restoration  

 

 Any image acquired by optical, electro-
optical is likely to be degraded by the sensing 
environment.  The degradations may be in the form 
of sensor noise, blur due to camera misfocus, 
relative object-camera motion, random atmospheric 
turbulence, and so on.  Image restoration is 
concerned with filtering the observed image to 
minimize the effect of degradations.  The 
effectiveness of image restoration filters depends 
on the extent and the accuracy of the knowledge of 
the degradation process as well as on the filter 
design criterion.  A frequently used criterion is the 
mean square error.  It is reasonable local measure 
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and is mathematically tractable.  Other criteria such 
as weighted mean square and maximum entropy are 
also used. 

 Image restoration differs from image 
enhancement in that the latter is concerned more 
with accentuation or extraction of image features 
rather than restoration of degradations.  Image 
restoration problems can be quantified precisely, 
whereas enhancement criteria are difficult to 
represent mathematically. Consequently, restoration 
techniques often depend only on the class or 
ensemble properties of a data set, whereas image 
enhancement techniques are much more image 

dependent. 

2.6.  Histogram Processing and Function 

Plotting 

     Intensity transformation functions based on 
information extracted from image intensity 
histograms play a basic role in image processing, in 
areas such as enhancement, compression, 
segmentation, and description.   

     The histogram of a digital image with intensity 
levels in the range [0, L-1] is a discrete function 

( ) ,

k k
h r n=  where 

k
r is the kth intensity value and 

k
n  is the number of pixels in the image with 

intensity
k
r .  It is common practice to normalize a 

histogram by dividing each of its components by 
the total number of pixels in the image, denoted by 
the product MN, where, as usual, M and N are the 
row and column dimensions of the image.  Thus, a 
normalized histogram is given by 

( ) , 0,1, 2,....., 1.k

k

n
p r k L

MN
= = −   ( )k

p r  is an 

estimate of the probability of occurrence of 

intensity level 
k
r  in an image.  The sum of all 

components of a normalized histogram is equal to 

1.    

    Histograms are simple to calculate in software 
and also lend themselves to economic hardware 
implementations, thus making them a popular tool 
for real-time image processing.  The core function 
in the toolbox for dealing with image histograms is 

,imhist  which has the following basic syntax: 

( ),h imhist f b= where f  is the input image, h  is 

its histogram, ( )kh r  and b is the number of bins 

used in forming the histogram.  We obtain the 

normalized histogram simply by using the 

expression ( ) ( ),bp imhist f numel f= .   

3. OSCILLATORY BEHAVIOR OF 

DIFFERENCE OPERATOR IN IMAGE 

PROCESSING 
 

        We have the criterion for oscillatory sequence 
in the form of difference equation satisfied by the 
equation (1.1). 

Theorem 2.1 Suppose that conditions (i)-(iv), (1.2) 
and (1.3) hold.  Assume that there exists a real valued 

increasing sequence ( ){ }nξ such that ( ) ( ) ,g n nξ<  

for 
0
.n n≥   If the first order delay difference equation 

( ) ( ) ( )

( )
( )

( )( )
2

3

2

1 11

0

m

g n

s n

z n c n n q n

f sr s f z g nα
α

−

−
−

=

∆ − −

   
=    

  
∑

         (2.1)                    

is oscillatory, then the equation (1.1) is oscillatory. 

Proof: Suppose to the contrary, assume that  ( ){ }y n  

be a non-oscillatory solution of equation (1.1).  Also 

assume that ( ) 0y n >  and ( )( ) 0,y g n >  for 

0
0.n n≥ ≥  

Then from (1.1), we have    

( ) ( )( )2 2

0
0,

m

r n y n n n
α

−  ∆ ∆ ≥ ≥ 
          

(2.2)           

There exists a 
1 0
n n≥  such that 

( ) ( )( ){ } ( ){ } ( ){ }2 2 2
, ,

m

r n y n y n y n
α

−  ∆ ∆ ∆ ∆   

are eventually monotone and one-signed for 
1
.n n≥   

There are four possible cases to consider. 

(i) ( ) ( )2
0, 0y n y n∆ > ∆ > and  

( ) ( )( )3 2

1
0, .

m

r n y n n n
α

−  ∆ ∆ > ≥       

(ii) ( ) ( )2
0, 0y n y n∆ > ∆ <  and  

( ) ( )( )3 2

1
0, .

m

r n y n n n
α

−  ∆ ∆ > ≥       

(iii) ( ) ( )2
0, 0y n y n∆ < ∆ <  and  

( ) ( )( )3 2

1
0, .

m

r n y n n n
α

−  ∆ ∆ < ≥      
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 (iv) ( ) ( )2
0, 0y n y n∆ < ∆ >  and  

( ) ( )( )3 2

1
0, .

m

r n y n n n
α

−  ∆ ∆ > ≥           

Case (i): 

Since Δy (n) > 0 and Δ
2
y (n) > 0, there exists a 

n2 ≥ n1 and a positive constant k, 0<k<1 such 
that   

( ) ( )

( ) ( )( )

1

1

2

2
, .

y n knr n

r n y n n n

α

α
α

−

∆ ≥

 ∆ ≥ 

               (2.3) 

Summing up (2.3) from 
2
n  to n-1, we can find a 

3 2
n n≥ with ( ) 2

g n n≥  for all 
3

n n≥ such that 

( )( ) ( )
( )

( )( )

2

1 1

1

3
,

g n

s n

y g n k sr s

z g n n n

α

α

−
−

=

 
≥   

 

≥

∑
                

                                                               (2.4)                           

Where ( ) ( ) ( )2
.z n r n y n

α

 = ∆   

From (1.1), we can get 

 
( ) ( )( ) ( )

( ) ( )( )( )

32

3

.

m

r n y n n n

q n f y g n

α
−

 ∆ ∆ ≥ − 
                                                                              

                                                              (2.5) 

Using (2.4) and (1.3) in (2.5), we get, 

( ) ( ) ( )

( )
( )

( )( )
2

3

2

1 11

0

m

g n

s n

z n c n n q n

f sr s f z g nα
α

−

−
−

=

∆ − −

   
≥    

  
∑

 
where ( ) 3

, .c f k n n= ≥                          (2.6)                                                               

Now the inequality (2.6) has eventually positive 
solution {z (n)}.  

By a well-known result (see [6]), the difference 
equation (2.1) also has an eventually positive 
solution which contradicts our assumption that 
(2.1) is oscillatory.  

Case (ii): 

Clearly ( ) ( )0, 0v n v n> ∆ <  for  
3

n n≥ where 

( ) ( ).v n y n= ∆  

Now for 
2
,s n n≥ ≥ we can see that 

( ) ( )( ) ( ) ( )( ) ,r s v s r n v n

α α

−∆ ≥ −∆  from which, 

we can obtain  

( )( ) ( )
( )

1

3
,

r g n

v g n b r n nατ

∞ −

=

≥ ≥∑             (2.7)                       

where b is a positive constant. 

Using (1.3) and (2.7) in the inequality 

( ) ( )( ) ( ) ( )

( )( ) ( )( )( )

2 2

,

m r n y n q n f k

f g n f v g n

α
−  ∆ ∆ ≥ 

  

we can get  

( ) ( )( ) ( )

( )( ) ( )
( )

2 2

1

,

m

r g n

r n y n cq n

f g n f r

α

ατ

−

∞ −

=

 ∆ ∆ ≥ 

 
  
 
∑

  

where c = f(k)f(b). 

From the above inequality, we can easily get 

( )
( )

( )

( ) ( )( ) ( )
( )

1

1

2

4

1

1

1 m

s n

r g n

v n c n n
r n

q n f g n f r

α

α

α

ατ

∞

−

=

∞ −

=

 
 ≤ − −    

 

  
   
   

∑

∑

 

3
n n≥ . 

This implies ( ) ,v n as n→−∞ →∞  which is a 

contradiction. 

Case (iii): 

This case cannot hold. 

In fact, if  ( ) 0y n∆ <  and ( )2
0,y n∆ <  then we 

have ( )lim ,
n

y n
→∞

= −∞  which is a contradiction to 

the fact that ( ) 0.y n >  

Case (iv): 

For 
0
,n s n≥ ≥ we have ( ) ( ) ( )

1

.

n

u s

y n y s y u

−

=

− = ∆∑  

This implies, ( ) ( ) ( )( ).y s n s y n≥ − −∆  

Replacing s and n by g(n) and ( )nξ  

respectively, we obtain  

( )( ) ( ) ( )

( )( ) 2 1
, .

y g n n g n

y n n n n

ξ

ξ

≥ −  

 −∆ ≥ ≥ 

 

Let ( ) ( ) 0.y n z n−∆ = >  and proceeding as in 

the proof of case (ii), we can easily get  

( )
( )

( )

( ) ( ) ( )

1
1

3

21
m

n n
z n

r n q n f n g n b

α
α

ξ

− − 
 ∆ ≤ −    − +     

 

This implies, ( )lim ,
n

z n

→∞

= −∞  which is a 

contradiction to the fact that ( ) 0z n > and this 

completes the proof of the theorem. 
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        In the next section, the application of our 

result for 4m = is illustrated.  

  

4. APPLICATION  

      Consider the fourth order difference equation  

( )( )( )
( )

( )
( )2

2

2 6 2

2

2

8 2 5 2

2 0.

y n

n n

n y n

e

y n e

−

+ +

∆ ∆ −

− =

          (4.1)                              

Here ( ) 6
r n n= .    

Also,  

( ) ( ) ( )
0 0 0

1
11 1 1

3
6 2

n n n

s n s n s n

r s s s
α

−

−− − −

−

= = =

= = < ∞∑ ∑ ∑   

and ( ) 2g n n n= − < . 

We can easily see that all conditions of Theorem 
2.1 are satisfied and hence all the solutions of 
equation (4.1) are oscillatory. One of such 

solution is ( ) ( )1 .
n

y n = −   

Equation (4.1) can be written as 
 

( ) ( )

( ) ( )

( )
( )

( )2

2 2

4 3

2 2

2 1

2 2

2 2

4 4 4 12 10

6 12 8 4 4 2

8 2 5 2

2 0.

n n

n n

y n

n

n n y n n y

n n y n n y

n n

n y y n e

e

+ +

+ +

−

+ + − + +

+ + + − + +

+ +

+ − − =

                  

                                                                           
(4.2) 
                                                             
From the equation (4.2), we can see that constants 

form a matrix of order3 3× , given by      

                       

0 10 0

2 0 8

0 4 0

− 
 
− 

 
 

 

which is used as an operator in the removal of noise 
whose coefficients are added up to zero.  This is 
explained as follows: 

 

4.1. Data Analysis and Results: 

                               

Figure 1 shows the removal of additive and 
multiplicative noises in cameraman digital 
image using our operator and Figure 2 shows 
removal using sobel operator. 

                              

                                 

         
 
                   Figure 1: Original Image 

 

 
                              Figure 2 : SK Operator Image 

 
                                               

 
                                 Figure 3 : Sobel Operator Image 

 
We get a pixel value for the images with noise 

and after the removal of noise through sobel 
operator and our operator. 
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 Figure 4 and Figure 5 show the histograms of 
sobel operator and our operator 

 
                          Figure 4: Sobel Operator Histogram                     
     

                          Figure 5: SK Operator Histogram                                           
 
        From the frequency distribution of the pixel 
value presented in the histogram, we insist that our 
filtering operator raise to give more information on 
the edge detection, removal of noise and other 
parameters pertaining to consequent components of 
the complete image, better reveal by our operator.     

Algorithm to draw histogram and coding for 
filtering the noise using 1. Sobel operator 2. New 
operator are as follows: 

 
% histogram coding 
cd=imread('cameraman source.gif'); 
cd = -2.9:0.1:2.9; 
y = randn(10000,1); 
figure(1), hist(y,cd); 
 
% filtering the noise 

% sobel operator 
1. ic=imread('cameraman source.GIF'); 

 px=[-1 0 1;-1 0 1;-1 0 1]; 
icx=filter2(px,ic); 
py=px'; 
icy=filter2(py,ic); 
edge_s=sqrt(icx.^2+icy.^2); 
figure, imshow(edge_s/255) 
 

% new operator 
2. ic=imread(' cameraman source.GIF'); 

px=[0 -10 0;-2 0 8;0 4 0]; 
icx=filter2(px,ic); 
py=px'; 
icy=filter2(py,ic); 
edge_s=sqrt(icx.^2+icy.^2); 
figure, imshow(edge_s/255) 
 

 
 
 
  From the table of histogram one can find the 

distribution of pixel value in three phases of the 
image reproduction.  This enhances edges and bring 
some objects in the original by appealing to n digit 
coefficients.  We can give this mask for minuet 
images.  

Similarly, we have done with ‘lena image’ 
also.  The following figures illustrate our work for 
lena image. 

                    
 
  

              
                    

 
       
   

                          Figure 6: Original Image 
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                                  Figure 7: SK Operator Image 

        

 
                      Figure 8: Sobel Operator Image 

                                       
  

            
                        Figure 9: Sobel  Operator Histogram                
 

   

               
                        Figure 10: Sobel  Operator Histogram                                      

 

4.2   PSNR Value: 

 
         PSNR or peak-to-noise ratio is used to 
evaluate the quality of the watermarked image after 
embedding the secret message in the image.   
        The PSNR value more than 30dB shows that 
the watermarked image quality is acceptable to 
human eyes. Basically, the larger the PSNR value, 
the better the quality of the watermarked image is. 
It means that the distortions created on the 
watermarked image is not really perceptible and 
difficult to be detected by the human visual system. 
        On the other hand, if the PSNR value is less 
than 30dB, the watermarked-image is most likely to 
give some 'noise' on the image. This 'noise' 
becomes perceptible to human eyes and so the 
watermarked-image is considered to have lesser 
quality. 
 
       The MATLAB code below leads to compare 
the original (host) image and the watermarked 
image and then gives the PSNR value. 

 

% matlab code; 
clear all; close all; clc; 
 
[filename1,pathname]=uigetfile('*.*','Select the 
original image');  
image1=imread(num2str(filename1)); 
 
[filename2,pathname]=uigetfile('*.*','Select the 
watermarked image');  
image2=imread(num2str(filename2)); 
 
figure(1); 
imshow(image1); title('Original image');  
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figure(2); 
imshow(image2); title('Watermarked image');     
 
[row,col] = size(image1) 
size_host = row*col; 
 
o_double = double(image1); 
w_double = double(image2); 
s=0; 
 
for j = 1:size_host; % the size of the original image 
s = s+(w_double(j) - o_double(j))^2 ;  
end 
 
mes=s/size_host; 
psnr =10*log10((255)^2/mes); 
display 'Value of',psnr 
 
           Table 1: Image Quality Tested (PSNR)   

 

 
 

       As the psnr ratio of our operator is greater than 
sobel operator, we conclude our operator is capable 
of removing noise in this particular image and we 
show in general context of blunt images.  This we 
feel may help diagnostic techniques in medical 
imaging and other video imagery.              

 

5. CONCLUTION  

 
While presenting an illustration for our main 

result derived on general order difference equation, 
we could create a new mask which is better in 
removing additive and multiplicative noises.  
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