
Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

200

MULTI OBJECTIVE TEST CASE MINIMIZATION

COLLABORATED WITH CLUSTERING AND MINIMAL

HITTING SET

1
R.BEENA,

2
Dr.S.SARALA

1Research Scholar, Dept. of Information Technology, Bharathiar University, Coimbatore.

2Assistant Professor, Dept. of Information Technology, Bharathiar University, Coimbatore

E-mail:
1beenamridula@yahoo.co.in, 2sriohmau@yahoo.co.in

ABSTRACT

Software testing aspires to explore and validate the attribute and potentiality of a program to authenticate
and cross-verify the requisite results obtained. The broader bifurcation of testing is Precision Testing and
Reliability Testing. Regression testing is part of reliability testing as it testifies the changes or
modifications pursued to the software have not curtailed the functionality of the software by introducing
any bugs. It is a kind of quality assurance to the modifications carried out. The pivotal role of regression
testing is comprehended whenever modification towards development of software takes place. Re-
execution of large test suites is perhaps an enigma many a times due to the paucity of resources. Here arises
the need for a novel technique to minimize the test suite in order to remove the redundant test cases. With
this focus to provide an innovate and time-effective strategy to remove the redundant test cases, this paper
presents a multi-objective test suite minimization by considering maximum statement coverage and
minimum execution time. This article also concentrates on incorporating a multi objective minimization
technique using clustering approach and minimal hitting set. Here, the identification of appropriate clusters
is achieved, through the weighted distance function for mixed variable type and the minimal hitting set is
obtained using HS_DAG (Hitting Set Directed Acyclic Graph) algorithm. The results of this experiment

exhibit that the algorithm proposed works with adequate efficacy in minimizing the test cases.

Keywords: Regression Testing, Test Case Minimization, Similarity, Minimal Hitting Set, Clustering,

HS_DAG algorithm

1. INTRODUCTION

Software Testing has its indispensable role to
assure the quality of any software developed. The
“process of analysing a software item to detect the
differences between existing and required
conditions (that is defects/ errors/ bugs) and to
evaluate the features of the software item” is what
Software Testing means with reference to
ANSI/IEEE 1059 standards. Testing becomes a
mandatory process in the cycle of software
development. It is pursed usually for three
significant reasons namely, Quality Improvement,
Verification and Validation, besides, Estimation of
Reliability. The noteworthy fact, here is the utility
of the same techniques developed two/ three
decades ago in software testing. Software reliability
has prime relationship with several aspects of
software that includes the structure in addition to
the quantity of testing it has been subjected to. The
strategies practiced in software testing assure the

correctness or precision of the software; testify the
performance of the software; confirm the reliability
of the software; besides, reinstating the security
parameter of the software.

The significant maintenance of Software
Development Life Cycle, above all, confides in the
perusal of Regression Testing. Here, the re-
execution of test cases from the existing test suites
to assure that the modifications done to the existing
software have no adverse effects [1] becomes
mandatory to assure the quality of the software.
Perhaps, the ideal regression testing is performed
with a perspective to rerun all the test cases.
However, the time and cost constraints permit the
rerun based on regression testing techniques
exclusively for the subset of test cases. It is
noteworthy, that the types of regression testing
include test case minimization, test case selection
and test case prioritization [2]. While the test case
minimization technique [3] serves to eliminate the

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

201

redundant test cases, the test case selection
techniques [4] work towards the reduction of the
size of a test suite. On the other facet, test case
prioritization techniques [5] focus towards the
ordering of test cases besides the prior detection of
faults, if any.

Generally, Regression Test suites progress over
time in connection to the increment of new test
cases to supplement additional functionalities or to
set-right the defects explored. At the same time the
hefty size of the test suite may become a threat
because they turn to be an unmanageable
predicament which may involve a big budget to
curtail them. This problem perhaps could turn more
vulnerable, if the test suite is based on either

complicated machinery or manual effort.

Following Rothermel et al. [6], the test case
minimization is defined as follows:

Given: A test suite, T, a set of test requirements
{r1,r2,…,rn}, that must be satisfied to provide the
desired adequate testing of the program, and
subsets of T, T1,T2,…,Tn, one associated with each
of the ris such that any one of the test cases tj
belonging to Ti can be used to achieve requirement
ri.

Problem: Find a representative set, T’, of test cases
from T that satisfies all ris.

The testing criterion is satisfied when every test
requirement in {r1,r2,…,rn}is satisfied. A test
requirement, ri, is satisfied by any test case, tj, that
belongs to the Ti, a subset of T. Therefore, the
representative set of test cases is the hitting set of
the Tis. Furthermore, in order to maximize the
effect of minimization, T’ should be the minimal
hitting set of the Tis. The minimal hitting set
problem is an NP-complete problem as is the dual
problem of the minimal set cover problem.

Existing approaches to regression test suite
minimization have been single-objective
approaches that have sought to optimize a single-
objective function. This paper presents a multi
objective formulation for Test Suite Minimization
problem.

The multi-objective test suite minimization problem
[7] is to select a subset of test suite, based on
multiple objective functions. That is, given a test
suite S, a vector of M objective functions, the
problem is to find a subset S’ of S such that S’ is a

Pareto optimal set with respect to M. The proposed
work is based on multi-objective test suite
minimization by considering statement coverage
and execution time. The aim is to achieve
maximum statement coverage in minimum
execution time. Therefore, the problem can be
stated as to find a subset of the test suite S with
statement coverage SC and execution time ET such
that no other subset of S can achieve more
statement coverage SC without spending more time
than ET.

The need for a novel strategy which could be
comfortable as well as cost effective to run the test
cases form the vital foundation for the objectives of
this paper stated subsequently.

• A multi-dimensional test suite minimization
with a special consideration to the statement
coverage and execution time act as the twin
objectives of this article.

• Clustering technique is practised for the test
case minimization and elimination of
redundancies between test cases in this paper.
In addition, weighted distance function for
clustering using mixed variable type is
elucidated with adequate explanation.

• The application of a minimal hitting set
algorithm HS_DAG is shown effective in
exploring and minimizing the test suite
substantiated through the results obtained.

To state the precise sketch of this paper, Section 2,
outlines the works related to the conceptualization
of this paper, Section 3 describes the multi-
objective test suite minimization problem, Section 4
projects the experiments combined with results and
Section 5, gives a final notation of the entire
research.

2. RELATED WORK

This section of the paper, enunciates the list of
publications that bear relevant and specific
information in connection to the research pursued
on multi objective test case minimization strategies
to enhance statement coverage within an effective
time span. Even though there appears a wide range
of researches performed in the same territory only
quite a few closely revolve around the crux of this
research. The subsequent list evidently proclaims
such publications with some relevance to the novel
strategy proposed in this paper to devise a multi

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

202

objective test case minimization strategy with the
help of HS_DAG algorithm.
An innovative greedy algorithm titled, Delayed-
Greedy algorithm is deployed in [8] with a view to
select a minimal cardinality subset of a test suite
that covers all the requirements covered by the test
suite. This algorithm is developed as a result of a
close observation of the Test suites reused and
updated recurrently corresponding to the evolution
of the software. Perhaps, these test cases in the test
suite are expected turn redundant in connection to
the modifications of the software over a period of
time. An obvious comprehension of the resource
and time constraints to re-execute the large test
suites, led to the devising of Delayed-Greedy
algorithm.

The exploration of redundant test cases from a test
suite based on some criterion is pursued in [9].
Further, this knowledge opens an avenue for a
novel test suite minimization technique that
identifies redundancy in a given test suite based on
multiple coverage criteria for example function,
function call stack, line and branch coverage of
given test cases. The noteworthy observation here
is the specific criterion that functions as the base for
the reduction techniques.

Several strategies for selecting a smaller number of
test cases by reordering the test tests are elucidated
in [10]. Besides, there is an illustration on the
technique using a proof-of-concept pursued using
mutation testing, achieving approximately a 33%
reduction in size, and a corresponding reduction in
the cost of regression testing, with a cost of only
one extra run of the test case set. A suggestion for
the extensive application of this test strategy is
advised to measure the efficacy of test cases
through data flow testing and branch testing and a
trial with statement coverage to gain positive
results.

The prime aspiration of [11] is test-suite
composition and test-suite reduction. Here, an
experiment on impact of the test-suite reduction on
the effectiveness of fault-localization techniques is
dealt in detail. Through the application of various
test suite minimisation techniques to a set of
programs, the impact of the size reduction on the
effectiveness of coverage-based fault localisation
techniques are strategically assessed.

While the effectiveness in the execution of certain
coverage criteria in test suite reduction is based
dual strategies namely, Percentage Size Reduction

and Percentage Fault Detection Reduction the
empirical evaluation of [12] compares five different
criteria for the minimization of test suites for GUI
intensive applications: event coverage, event
interaction coverage, function coverage, statement
coverage and call-stack coverage. The results
obtained in [12] indicate the minimal probability of
fault detection that aid in the observation of
coverage criteria that take a lead role in test suite
reduction.

In [13] a model-based regression test suite(RTS)
reduction method based on Extended Finite State
Machine (EFSM) dependence analysis is proposed.
This method reduces the size of the RTS by
examining various interaction patterns covered by
each test case in the given RTS. It is stated that the
automatic identification of the original model and
the modified model as a set of elementary model
modification.

A 50x faster method called in providing
comparable results designed from the combined
static slicing and delta debugging to automatically
minimize the sequence of failure-inducing method
calls is presented by [14]. Perhaps, 11x faster result
produced in connection to the combination of
slicing and delta-debugging are exhibited

Through the application of either a dynamic call
tree or a calling context tree, the test reduction
component fixes the subsets of the original tests
that cover the paths of the same call tree. In [15],
tool is proposed that constructs tree-based models
of a program’s behaviour during testing and
employs these trees while reordering and reducing a
test suite.

[16] explores a cluster-based test case prioritization
technique, by clustering test cases based on their
dynamic runtime behaviour. This application is
evaluated on seven test suites ranging in size
from154 to 1061 test cases. Besides, the paper
demonstrates that clustering can out-perform un-
clustered coverage based technologies and
discusses an automated process that can be used to
determine the yield of this research.

In [17], a branch-and-reduce algorithm is used to
solve the Minimum Hitting Set Problem and use a
recently developed technique called measure and
conquer to perform analysis on the algorithm.
Through the application of this strategy besides,
quasi-convex programming at the point of

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

203

T1 � {S1, S3, S8, S9}

T2 � {S2, S3, S5, S6, S7, S10}

T3 � {S1, S4, S6, S7, S8}

T4 � {S3, S5, S6, S9, S10}

T5 � {S1, S2, S4, S5, S7, S9, S10}

T6 � {S1, S4, S6, S8, S10}

T7 � {S2, S3, S4, S5, S7, S8, S10}

T8 � {S1, S4, S6, S7, S9}

T9 � {S2, S4, S8, S9}

T10 �{S1, S2, S5, S6, S7, S10}

optimizing the analysis results, minimum hitting set
problem is put under trial for better results.

A branch-and-reduce algorithm to solve the
Minimum Hitting Set Problem is proposed in [18]
besides it application in recently developed
technique called measure and conquer to perform
analysis on the algorithm. By applying such
technique and quasi-convex programming when
optimizing the analysis results, it is proved that the
algorithm can solve the Minimum Hitting Set
Problem in O(1.23801n) and polynomial space. The
concept of minimal diagnoses was originally
proposed in [18] and [19] for systems where each
component has only two possible behavioural
modes, i.e., a normal fault-free mode and a faulty
mode.

In [20] an algorithm titled, STACCATO, devised to
generalize the minimal hitting-set is presented. This
algorithm is exhibited as a potential one to diagnose
the behavioural modes and consecutively compute
a logical formula that characterizes all diagnoses.
Staccato uses a heuristic function, borrowed from a
lightweight, statistics-based software fault
localization approach, to guide the MHS search.

3. MULTI OBJECTIVE TEST CASE

MINIMIZATION

Test suite minimization appeals to be a mandatory

requisite in connection to the growth of the

regression test-suite of an existing software system

to an extreme level where there may not be any

possibility for the execution of the entire test-suite

[6]. To reduce the size of a test suite the

redundancy of test cases in the test suite has to be

curtailed. The prime focus of this paper is to exhibit

a novel approach to the practice of minimization

techniques in general. The collaborated multi-

objective test case minimization pursued through

the clustering approach and minimal hitting set that

utilizes the history of test cases in proportion to the

execution time is advised here. The multi-objective

test case minimization is pursued with the

exploration of appropriate clusters where the

weighted distance function for mixed variable type

is employed and the minimal hitting set is obtained

using HS_DAG algorithm.

The algorithm of HS-tree functionality to compute

the minimal hitting set with the embedding of

Directed Acyclic Graph, DAG is termed as

HS_DAG algorithm. To simplify the description

when there is a collection of ordered sets HS_DAG

algorithm determines the strategic selection of a

specific choice from the collection rather than

going for a random or an arbitrary choice. Actually,

this prominent perspective has helped in the

deployment of HS_DAG algorithm aspiring more

reliability and accuracy in the choice of test-suite

reduction.

To state precisely, the proposed work minimizes

the number of test cases in the test-suite in

association with the subsequent objectives

Objective 1: Maximized coverage of statements.
Objective 2: Minimized span (time) of execution.

The example given in Figure 1 represents a Test
Suite that comprises ten test cases and their
statement coverage. Here, T1 to T10 represent the
individual test cases and S1 to S10 exhibit the
statements covered.

Figure 1: Test Cases with Statement Coverage

3.1 The Architecture Proposed for Test Case

Minimization

The detailed plan of the strategic minimization

pursued in this research is depicted in Figure 2.

This empirical research is planned in four

segments. The first segment focuses on the data

matrix form of test cases with statement coverage

and execution time, the second segment

concentrates on the similarity between the test cases

found based on the statements covered and its

execution time using the weighted distance function

for the mixed type variable. At the same time in the

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

204

third segment, similar test cases are clustered using

a threshold θ (for example 0.6). Normally

clustering is carried out in two steps namely,

making the distance matrix and applying the

clustering algorithm. Finally, in the fourth segment,

the exploration of a minimal hitting set for the

cluster of test cases obtained from phase 3 with the

support of HS_DAG algorithm is pursued.

Figure 2: Architecture for Test Case Minimization

3.2 Algorithm for Test Case Minimization

Figure 3 represents the algorithm deployed in this
study to minimize the Test Cases. In this tetra-
faceted study, the initial facet observes the
formation of data matrix of the test cases with
statement coverage and execution time. The
consecutive facets identify the similar test cases
with reference to the statement coverage besides
restricting the execution time with the help of
weighted distance function for the mixed type
variable. Moreover, the clustering of similar test
cases using a threshold θ (for example 0.6) is also
given equal importance. Noticeably, the twin
Clustering steps involve the making of distance
matrix and applying the clustering algorithm. In the
final facet of the study, the minimal hitting set for
the clustered test cases obtained from the previous
facet using the HS_DAG algorithm.

Input : Test Suite comprising SC, ET

Output : Minimized Test Suite
begin
 Step 1 : Form a data matrix of test cases
 considering SC and ET
 Step 2 : Generate similarity matrix between the
 test cases.
 Step 3 : Cluster similar test cases.
 Step 4 : Find the minimal hitting set.
end

Figure 3: Algorithm REG_MIN

3.3 Data Matrix Representation

In connection to the 10 test cases ranging from T1
to T10 and the statement coverage S1 to S10, in
proportion to the execution time of each test case is
presented as data matrix which is shown in Table 1.
The coverage of a statement by a test case is

represented as 1 otherwise it is marked as 0.

Table 1: Test Cases exhibiting Statement Coverage and

Execution Time

Moreover, the graphical representation of this data
matrix is explicitly presented in Figure 4.

Test

Case/

Faults S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1

0

Exec

ution

Time

ET

(ms)

T1 1 0 1 0 0 0 0 1 1 0 0.75

T2 0 1 1 0 1 1 1 0 0 1 0.81

T3 1 0 0 1 0 1 1 1 0 0 0.89

T4 0 0 1 0 1 1 0 0 1 1 0.49

T5 1 1 0 1 1 0 1 0 1 1 0.97

T6 1 0 0 1 0 1 0 1 0 1 0.91

T7 0 1 1 1 1 0 1 1 0 1 0.85

T8 1 0 0 1 0 1 1 0 1 0 0.64

T9 0 1 0 1 0 0 0 1 1 0 0.72

T10 1 1 0 0 1 1 1 0 0 1 0.34

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

205

Figure 4: Statement Coverage and Execution Time
Graph of the Test Cases

3.4 Generation of Distance Matrix

The generation of distance matrix from the data
procured is pursued with the help of the SC and ET.
The statements covered by the test cases are
represented as a asymmetric binary digit. A 1 in the
cell represents that the test case covers the
corresponding statement, otherwise 0. The
execution time for each test case is represented as a
discrete value. Therefore, a weighted distance
function for mixed variable type is required. The
weighted distance function is given in Equation 1.

����	, ��� � 	
∑ ������			�����
�
���

∑ ������		
�
���

 -------- (1)

The Weight δij(f) and distance dij(f) is computed
depending on the value of f. For asymmetric binary
value f, the weight δij(f) = 0,if xif or xjf is missing or
xif = xjf = 0, Otherwise, Weight δij(f)

 = 1.

If f is asymmetric binary, the distance dij(f) = 0 if
xif = xjf , or dij(f) = 1. If f is a discrete value, then the
distance function is calculated using Equation 2.

����	
 � 	

����	���

�������	
������
				-------- (2)

For example consider the test cases T1 and T2 in
Table1.

Here, i = T1 and j = T2

δij(S1)

= 1, δij(S2)

= 1, δij(S3)

= 1, δij(S4)

= 0,

δij(S5)

= 1, δij(S6)

= 1, δij(S7)= 1, δij(S8)

= 1,

δij(S9)

= 1, δij(S10)

= 1, δij(ET)= 1

dij(S1) = 1, dij(S2) = 1, dij(S3) = 0, dij(S4) = 0,

dij(S5) = 1, dij(S6) = 1, dij(S7) = 1, dij(S8) = 1,

dij(S9) = 1, dij(S10) = 1

dij(ET) =
)34.097.0(

|81.075.0|

−

−

= 0.095238

From Equation 1, the value of d(T1,T2) is obtained

as 0.809524. Similarly the distance between all the

test cases are calculated and listed in Table 2.

3.5 The Clustering of Test Cases

The generation of distance matrix in fact
authenticates the clustering process of the test
cases. The clustering of test cases is made easy with
the obtaining of the threshold value of the distance
measured between the test cases. For instance, if
the distance between the test cases is identified less
than the threshold value of 0.6, then the
corresponding test cases are clustered. Generally,
the distance between the destination test case and
other test cases are compared for a threshold value.
If the distance is less than the threshold, then that
test case is also joined in that cluster. For example,
consider the test case T2, the distance between T2

and T4 is 0.438492 which satisfies the threshold.

Next consider the test case t4 which is now
compared with other test cases. The distance
between T4 and T10 satisfies the threshold; hence
T2, T4 and T10 are clustered. Figure 5 exhibits the
test cases that are clustered with T2.

Figure 5: Clustering Procedure of Test Cases

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

206

The various clusters for a threshold value of 0.6

generated from Table 2 are given in Figure 6. A

total of seven clusters were formed such as {T1,

T6, T8}, {T1, T9}, {T2, T4, T10}, {T2, T5, T7,

T9}, {T2, T5, T7, T10}, {T2, T5, T8}, {T3, T8}.

Figure 6: Clustered Test Cases

Table 2: Distance between the Test Cases

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1
0 0.809524 0.652778 0.676587 0.734921 0.531746 0.615873 0.646825 0.578231 0.865079

T2
0.809524 0 0.712698 0.438492 0.525397 0.715873 0.340388 0.626984 0.814286 0.305115

T3
0.652778 0.712698 0 0.863492 0.612698 0.171958 0.606349 0.342404 0.65873 0.652557

T4
0.676587 0.438492 0.863492 0 0.67619 0.740741 0.657143 0.693122 0.818342 0.582011

T5
0.734921 0.525397 0.612698 0.67619 0 0.609524 0.419048 0.502646 0.599647 0.444444

T6
0.531746 0.715873 0.171958 0.740741 0.609524 0 0.609524 0.553571 0.662698 0.656085

T7
0.615873 0.340388 0.606349 0.657143 0.419048 0.609524 0 0.757576 0.578483 0.580952

T8
0.646825 0.626984 0.342404 0.693122 0.502646 0.553571 0.757576 0 0.640873 0.608466

T9
0.578231 0.814286 0.65873 0.818342 0.599647 0.662698 0.578483 0.640873 0 0.860317

T10
0.865079 0.305115 0.652557 0.582011 0.444444 0.656085 0.580952 0.608466 0.860317 0

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

207

Figure 7: HS_DAG Tree

3.6 Generation of Minimal Hitting Set

Let C = (c1,c2. . . ,cn) be a collection of sets. The
set H is a hitting set of C if the intersection of H
and any set in C is non-empty. A hitting set is
minimal if the removal of any element will destroy
the hitting set. A hitting set is said to be minimum
if it has the smallest size over all hitting sets.
Reiter’s work [12] is taken into account for proper
definitions and algorithm. An improved version of
Reiter’s algorithm is offered by Greiner et al. [4].
Hitting sets are defined over a set of sets with the
property that the intersection of a hitting set with
every given set is not empty.

Reiter [12] introduced an algorithm for computing
hitting sets that has been improved later by Greiner
et al. [4]. The algorithm uses the given sets
c1,c2,…cn and constructs a directed acyclic graph
(DAG) in a breadth first manner. After the
construction of the DAG the minimal hitting sets
correspond to some vertices of the DAG which are
labelled with a X and other vertices are labelled
with O. The algorithm needs not to compute all
possible hitting sets. Instead the user can specify

the maximum cardinality of the obtained hitting
sets. For practical applications especially in cases
where the size of the input is large, such a boundary
value is of great use. If there is more than one
minimal set, we have to choose any one as our
minimal hitting set. There are two cases to select
the minimal hitting set.

Figure 7 shows the HS_DAG tree for the clusters of
test cases given in Figure 6. The hitting sets are
{T1, T2, T3} {T1, T2, T8} {T1, T3, T4, T5} {T1,
T4, T5, T8} {T1, T4, T7, T8}.When finalizing the
minimal hitting set, two cases are taken into
consideration.

Case 1: Among the four hitting sets obtained by
HS_DAG algorithm, we consider the hitting sets
{T1, T2, T3} {T1, T2, T8} as our hitting sets
because the number of test cases in these hitting
sets are minimum when compared with other sets.

Case 2: From the two hitting sets {T1, T2, T3} and
{T1, T2, T8},we have to select one set as the final
minimal hitting set for which we consider the total
execution time of these hitting sets. The total

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

208

execution time of {T1, T2, T3} is 2.45 msand the
total execution time of {T1, T2, T8} is 2.20 ms.
Here we consider {T1, T2, T8} as our minimal
hitting set because it covers all the statements in
minimum time.

3.7 Performance Analysis

The percentage reduction will be used as a measure
for comparative analysis. The formula to find the
reduction percentage is given in Equation 3.

Reduction = size of reduced test suite / size of

 unreduced test suite* 100 --- (3)

According to the example, the size of the test suite
after reduction is 30%. The reduction in size before
and after minimization is given in Figure 8.

a

Figure 8: Size of the Test Suite before and after

Reduction

4. EXPERIMENTS AND RESULTS

REG_MIN algorithm is implemented using C
language. We conducted experiments with five
programs of varying sizes and complexity levels to
measure the extent of test suite size reduction
obtained by the proposed algorithm. The
Experimental programs are mentioned in Table 3.

Table 3: Experimental Programs

Program LoC # Test

Cases

Calculator (CAL) 139 94

Vehicle Management
System (VMS)

256 38

Inventory Control System
(ICS)

314 47

Library Management
System (LMS)

402 53

College Information
System (CIS)

560 61

The sizes of reduced suites produced by REG_MIN

algorithm for each of the experimental programs

are shown in Figure 9.

Figure 9: Minimized Test Suites

The size of the test suite before minimization is

100% and the size after minimization is calculated

using equation 3.The reduced size is given in

Figure 10.

Figure 10: Test suite reductions through REG_MIN

algorithm

4 Conclusion and Future Work

Regression testing, that involves test case
prioritization, test suit reduction or minimization

100

30

0

20

40

60

80

100

Original Size Reduced Size

Size of the Suite

94

38
47

53
61

55

21

34
42

49

0

20

40

60

80

100

CAL VMS ICS LMS CIS

Original Size Reduced Size

0

20

40

60

80

100

CAL VMS ICS LMS CIS

Initial Size % Reduced Size %

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

209

and regression test selection significantly revolves
around the criteria that determine the selection and
execution of the test cases. This paper feasibly
edifies the test-suite minimization through multi-
objective technique explicitly through HS_DAG
algorithm. It addresses the test-suite minimization
from the perspective of minimization of test effort
proportionately connected to the maximized
optimal statement coverage. Automation of
minimized test-suite from HS_DAG can save
considerable effort and resources in testing of the
software application in the industry. Testing criteria
are not generic for all the software applications and
are tester specific. In short, more testing criteria are
not chosen here for this research to prevent
ambiguity and to maintain precision and accuracy
of results. However, this strategy shall be advised
for large data also. To state precisely, the cost in
terms of time requirement to run a test case is an
apparent premise in regression testing. Therefore,
the entire research discussed in the paper elucidates
the requisite modifications to rectify the existing
techniques in running a test suite. Above all, the
architecture proposed here to execute this research
has obviously accomplished the objectives of this
study. In fact, the results obtained opens a wide
avenue for the further enhancement of this multi-
objective test case minimization technique executed
through HS_DAG algorithm as discussed in this
article.

REFERENCES

[1] W.E. Wong, J.R. Horgan, S. London, and H.
Agrawal. A study of effective regression
testing in practice.In Proceedings of the
Eighth International Symposium on Software
Reliability Engineering, pages 230–238,
November 1997.

[2] Shin Yoo and Mark Harman. Regression
testing minimisation, selection and
prioritisation: A survey. Journal of Software
Testing, Verification and Reliability, 2011.

[3] M.J. Harrold, R. Gupta, and M.L. Soffa, “A
methodology for controlling the size of a test
suite”,ACM Transactions on Software
Engineering and Methodology, Vol. 2, No. 3,
1993,pp. 270−285.

[4] Graves, T.L., Harrold, M.J., Kim, J.M., Porter,
A., and Rothermel, G. 2001. An empirical
study of regression test selection techniques.
ACM Transactions on Software Engineering
and Methodology. 10(2), 184-208.

[5] S. G. Elbaum, A. G. Malishevsky, and G.
Rothermel. Prioritizing test cases for
regression testing. In International

Symposium on Software Testing and
Analysis, pages 102–112. ACM Press, 2000.

[6] Rothermel G, Harrold M, Ronne J, Hong C.
Empirical studies of test suite reduction.
Software Testing, Verification and Reliability,
December 2002; 4(2):219–249.

[7] Shin Yoo and Mark Harman. Using hybrid
algorithm for pareto efficient multi-objective
test suite minimisation. Journal of Systems
and Software,83(4):689–701, 2010.

[8] Tallam, Sriraman, and Neelam Gupta. "A
concept analysis inspired greedy algorithm for
test suite minimization." ACM SIGSOFT
Software Engineering Notes. Vol. 31. No. 1.
ACM, 2005.

[9] Prasad, Saran, et al. "Regression Optimizer A
Multi Coverage Criteria Test Suite
Minimization."International Journal of
Applied Information Systems (IJAIS)
,Foundation of Computer Science FCS, New
York, USA Volume 1– No.8, April 2012.

[10] Offutt J, Pan J, Voas J. Procedures for
reducing the size of coverage-based test sets.
Proceedings of the 12th International
Conference on Testing Computer Software,
ACM Press, 1995; 111–123.

[11] Yu Y, Jones JA, Harrold MJ. An empirical
study of the effects of test-suite reduction on
fault localization. Proceedings of the
International Conference on Software
Engineering (ICSE 2008), ACM Press, 2008;
201–210.

[12] McMaster S, Memon AM. Fault detection
probability analysis for coverage-based test
suite reduction. Proceedings of the 21st IEEE
International Conference on Software
Maintenance (ICSM’07), IEEE Computer
Society, 2007.

[13] Chen Y, Probert RL, Ural H. Regression
test suite reduction using extended
dependence analysis. Proceedings of the 4th
International Workshop on Software Quality
Assurance (SOQUA 2007), ACM Press, 2007;
62–69.

[14] Leitner A, Oriol M, Zeller A, Ciupa I,
Meyer B. Efficient unit test case
minimization. Proceedings of the 22nd
IEEE/ACM international conference on
Automated Software Engineering (ASE
2007), ACM Press, 2007; 417–420.

[15] Smith A, Geiger J, Kapfhammer GM,
Soffa ML. Test suite reduction and
prioritization with call trees. Proceedings of
the IEEE/ACM International Conference on

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

210

Automated Software Engineering (ASE
2007), ACM Press, 2007.

[16] Y. Shin, M. Harman, P. Tonella and A.
Susi, “Clustering Test Cases to Achieve
Effective and Scalable Prioritisa-tion
Incorporating Expert Knowledge,” ACM

International Conference on Software Testing

and Analysis (IS-STA 09), Chicago, 19-23 July
2009, pp. 201-212.

[17] Shi, Lei, and Xuan Cai. "An exact fast
algorithm for minimum hitting set." In
Computational Science and Optimization

(CSO), 2010 Third International Joint

Conference on, vol. 1, pp. 64-67. IEEE, 2010.
[18] R. Reiter, “A theory of diagnosis from first

principles,”Artif. Intell.,vol. 32, no. 1, pp. 57–
95, Apr. 1987.

[19] J. de Kleer and B. Williams, “Diagnosing
multiple faults,”Artif. Intell.,vol. 32, no. 1, pp.
97–130, Apr. 1987

[20] Nyberg, Mattias. "A generalized minimal
hitting-set algorithm to handle diagnosis with
behavioral modes." Systems, Man and

Cybernetics, Part A: Systems and Humans,

IEEE Transactions on 41, no. 1 (2011): 137-
148.

