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ABSTRACT 

 
For several years, many studies attempt to discover biological processes of disease mechanisms. 
Nevertheless, they are still far from completeness of understanding. This problem is caused by the 
complexity of complex diseases. To solve this problem, many computational methods have been developed 
to predict uncovered disease genes. A lot of genetic information from protein interaction network, gene 
expression, and genetic sequences has been integrated. With these approaches, a large number of candidate 
genes are produced increasingly. Therefore, a technique that can select only relevant genes is needed. 
Ranking techniques have been developed to prioritize the candidate genes. Still, the results are inconsistent 
among different methods. These incompatibilities might be caused from different types of features. In this 
study, we performed a prioritization analysis for investigating network topology features for predicting 
disease-related genes. Four standard network topological features were calculated on a protein-protein 
interaction network and examined with 46 groups of diseases. The features were ranked independently 
according to their values for a disease. Then, the performance of disease gene classification with each 
feature was calculated. The results showed high classification performance in three diseases with different 
network features. The closeness centrality showed a superior ability to classify disease genes in overall 
disease groups. Selecting relevant features can greatly improve the performance in disease gene 
classification. 

Keywords: Feature Prioritization, Disease Gene Identification, Protein-Protein Interaction Network, 

Network Topology Features 
 

1. INTRODUCTION  

 
To improve disease treatment, 

understanding of disease mechanisms need to be 
fulfilled. However, it is difficult because of the 
complexity of complex disease. A way to get 
insight into the mechanisms is to find key genes 
that are important to the diseases. Disease gene 
identification has been widely studied to better 
understanding biological mechanisms for diseases 
and to improve medical treatments [1-5]. Many 
computational methods have been developed to 
identify disease-related genes and integrated several 
types of biological data, e.g., protein-protein 
interaction, gene expression data, functional 
annotation, sequence analysis features, text mining 
[6-9]. In addition, these approaches were based on 
concept of gene similarity. Genes, that show similar 
phenotypes, or are direct partners, are often shared 
similar functions [10, 11]. With this concept, novel 

disease genes were predicted by finding the 
similarity between a candidate gene and a known 
disease gene. The similarity can be computed from 
several types of biological data.  

The standard information used to compute 
the similarity is the topological features from 
biological network. Several network centrality 
measures, such as degree, hub, betweenness, 
closeness, and eigenvector centrality metrics, were 
calculated in the biological network. Candidate 
genes that show similar values in term of network 
centrality as the known disease genes might be 
considered as promising targets for the disease. 
However, a large number of candidate genes have 
been predicted. To find only relevant genes, 
prioritization methods were developed to rank these 
candidate genes and select only high ranking genes 
to be promising targets. Tranchevent et al. [12] and 
Aerts et al. [13] developed a gene prioritization 
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method based on the similarity concept using more 
than 10 genomic data source. Candidate genes were 
ranked independently according to the separate data 
source and finally these rankings were combined 
into a final ranking. Some method used gene 
information and functional relationship between 
genes to reconstruct a functional network to rank 
positional candidate genes [8].  

Instead of using simple nearest neighbors, 
Kohler et al. [14] used global network distance 
measure, random walk analysis to define 
similarities in protein-protein interaction network to 
prioritize candidate disease genes. Shi et al. [15] 
used random walk analysis to find functional 
association between microRNA targets and disease 
genes in protein-protein interaction network and 
constructed bipartite miRNA-disease network to 
analyze the properties of miRNA regulation of the 
disease gene. Li et al. [16] developed a framework 
to construct disease-specific drug-protein 
interactions by integrating gene/proteins and drug 
connectivity from protein interaction network and 
text mining technique. The initial seed proteins 
were improved by expanding using ranked protein 
interaction data in the online predicted human 
interaction database and a developed nearest-
neighbor protein interaction expansion method. The 
expanded proteins were ranked based on a scoring 
model. Genome-wide association study (GWAS) 
discovers correlation between genetic variants and 
diseases or traits [17, 18]. Several studies 
prioritized candidate genes generated from GWAS 
data [5, 19-21]. Ballouz et al. [5] used domain-
based sequence homology analysis to infer function 
of genes and used candidate gene from GWAS. 
These studies used standard and developed features 
from several genomic data source to rank candidate 
disease genes obtained from GWAS or 
experimental results. However, the features might 
be irrelevant to the specific disease identification.  

Several methods have been developed to 
find a set of relevant genes for a specific disease. 
However, some methods were complicated and 
difficult to implement. In addition, the ranked 
results from several methods seem to be redundant. 
In this study, we developed a simple analysis using 
a standard network topology features to analyze the 
features and diseases. Our prioritization analysis 
based on the protein-protein interaction network 
and GWAS data to investigate the relationship of 
the isolated standard centrality features and disease 
genes. The analysis was performed with each 
disease separately. This analysis is useful to find 
out relevant features for a specific disease. It could 

be a good source of guidance that could further 
improve classification performance to obtain 
accurate disease gene.   

2. MATERIAL AND METHOD 

To investigate the relationship of 
centralities and disease genes, the sets of proteins 
related to a disease were prepared and the protein-
protein interaction network was reconstructed. 
Then the centrality measures were computed in the 
network. In this section, we described the data 
source, centrality measures, ranking processes, and 
performance measurement. 
 

2.1 Data source and gold standard 

Disease genes were obtained from GWAS 
catalog (http://www.genome.gov/ gwastudies/) [22] 
and used as gold standard. Only diseases containing 
more than 50 related genes were investigated in our 
study. In this study, protein-protein interaction 
network was reconstructed from STRING database 
version 9.05 [23]. Highly scored interactions 
(greater than 900) from the database were selected 
to obtain only reliable interactions in our analysis. 
The network consists of nodes representing proteins 
and edges representing interactions between two 
proteins. 

 

2.2 Centrality measures  

Network topology properties were 
calculated in this reconstructed protein-protein 
interaction network. The network topology 
described the relationship of a protein and other 
proteins in the network. We investigated four 
standard topology features consisting of degree, 
closeness, betweenness, and Kleinberg’s centrality. 
Note that in this study we named Kleinberg’s 
centrality as hub. Several researches have 
demonstrated that these centralities are related to 
the essentiality of protein in networks [24-26]. The 
definitions of these centralities are as follows: 

An undirected graph G = (V, E) consists of 
a set of nodes V and a set of edges E. Each node i, 

j∈ V represents a protein, and each edge e(i, j) ∈ E 
represents an interaction between two proteins i and 
j. Let A  be the adjacency matrix of the network. 

Thus ( , )A i j = 1 when there is a connecting edge 

between node i and node j, and ( , )A i j = 0 

otherwise. The degree centrality CD (i) of node i is 
the number of its incident edges and is given by 

 

                         ( ) ( , )D

j

C i A i j=∑                   (1). 
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The closeness centrality CC(i) for a node i 
is given by 

                                

1
( )

( , )
C

j

N
C i

d i j

−

=

∑
                      (2), 

in which ( , )d i j  is the shortest distance 

from node i to node j, and N is the number of nodes 
in the network. 

The betweenness centrality (CB) measures 
the frequency that a node is in the shortest part of 
all of the pairs of nodes. The CB is given by 

  

          
( , , )

( )
( , )

B

i j

i k j
C k

i j

δ

δ
=∑∑ , i j k≠ ≠       (3), 

in which ( , )i jδ  denotes the total number 

of the shortest paths between i and j, and ( , , )i k jδ  

denotes the total number of the shortest paths 
between i and j that pass through k. The sum is 
composed of all of the pairs (i, j) of nodes in the 
network.  

 
The Kleinberg’s centrality, or hub, 

computes the principal eigenvector of A*t(A), 
where t(A) denotes the transposition of matrix A. 
The i

th component of the principal eigenvector is 
defined as Kleinberg’s centrality CK(i) of node i. 
The eigenvector centrality is based on the 
assumption that an important node is usually 
connected to important neighbors. Therefore, each 
node’s centrality is determined by the centrality 
values of the neighboring nodes. This value is 
higher if the node is connected to high-scoring 
nodes.   

 

2.3 Ranking of centrality score  

Each protein positioned in the protein-
protein interaction network was calculated the 
centrality values according to the definition 
described in previous section. Therefore, a list of 
each centrality measure and corresponding proteins 
were constructed.  These values were ranked in 
descending order. It means that the higher value of 
centrality measure, the more important is the 
protein in protein-protein interaction network. The 
centrality values of the four centrality measures 
were ranked independently. These centrality values 
were used as features of each protein. For a disease, 
a protein was labeled as 1 if it is in a protein set of 
the considered disease defined by GWAS, while 
another protein that is not a member in any disease 
gene sets was labeled as -1.    

Table 1: List of 46 groups of diseases which have disease 

genes members more than 50 proteins. 

Number Disease name 

1 Systemic lupus erythematosus 

2 Multiple sclerosis 

3 Cholesterol 

4 Red blood cell traits 

5 Vitiligo 

6 Type 1 diabetes 

7 Attention deficit hyperactivity disorder 

8 
Prostate cancer (gene x gene 

interaction) 

9 Breast size 

10 Obesity-related traits 

11 Inflammatory bowel disease 

12 Type 2 diabetes 

13 Blood pressure 

14 Dental caries 

15 Celiac disease 

16 Height 

17 Asthma 

18 Metabolite levels 

19 Ulcerative colitis 

20 
Visceral adipose tissue/subcutaneous 

adipose tissue ratio 

21 Bipolar disorder 

22 
Visceral adipose tissue adjusted for 
BMI 

23 Bone mineral density 

24 Body mass index 

25 Major depressive disorder 

26 HDL cholesterol 

27 Prostate cancer 

28 Triglycerides 

29 LDL cholesterol 

30 Schizophrenia 

31 Chronic kidney disease 

32 Protein quantitative trait loci 

33 Coronary heart disease 

34 Rheumatoid arthritis 

35 Pulmonary function (interaction) 

36 Cognitive performance 

37 Breast cancer 

38 Menarche (age at onset) 

39 Platelet counts 

40 Parkinson's disease 

41 Response to statin therapy 

42 Crohn's disease 

43 Urate levels 

44 Pulmonary function 

45 
Crohn’s disease, Ulcerative colitis and 

IBD 

46 Combined all disease genes 
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2.4 Performance measurement  

With the four centrality measures and label 
sets of all proteins, classification of disease genes 
could be performed. Performance of the 
classification could be estimated by receiver 
operating characteristic (ROC) curve. The curve 
was depicted by the true positive rate (TPR) and 
false positive rate (FPR). The true positive rate is 
defined as follows: 

                       
TP

TPR
TP FN

=

+

                        (4), 

where TP is the number of true positive and FN is 
the number of false positive. The false positive rate 
is defined as follows: 

                       
FP

FPR
FP TN

=

+

                       (5), 

where FP is the number of false positive and TN is 
the number of true negative. At a cut-off of 
centrality values, TPR and FPR were calculated.  

By varying the cut-offs through the 
centrality values, the ROC curve was generated. 
The area under the curve (AUC) was calculated and 
estimated as the performance of the disease gene 
classification. For a disease, the AUC of a 
centrality measure was calculated. The same 
scheme was applied to all centrality measures.  
 

3. RESULT AND DISCUSSION 

 
In this section, the results of our analysis 

are described. Table 1 shows the list of 46 groups 
of diseases that have disease gene in the group 
greater than 50 genes. 

 
3.1 Three diseases obtaining high performance  

Performance of disease gene classification 
for each disease was measured by the AUC. This 
calculation was done for each feature separately. 
Therefore, for a disease classification, we can 
compare these four standard centrality measures 
and observe which centrality measure is suitable for 
the specific disease. The same scheme was 
performed for all diseases with all different 
centralities. Selecting only high performance results 
with the AUC value greater than 0.7, we yielded 5 
entries consisting of 3 different diseases, Celiac 
disease, Rheumatoid arthritis, and Inflammatory 
bowel disease. The results show in Table 2. 
Interestingly, 3 out of 5 centralities found in this 
selection was the closeness centrality and the other 
centralities were the hub and degree centrality. 
Celiac disease yielded good classification results 
with closeness, hub, and degree centrality. Network 
topologies might be suitable to indicate important 

proteins for Celiac disease. Figure 1, 2, and 3 
illustrate the ROC curve of the Celiac disease, 
rheumatoid arthritis, and inflammatory bowel 
disease, respectively. 

Table 2: The diseases and centrality measures showing 

high values of AUC (more than 0.7). 

Disease Centrality 
Measure 

AUC 

Celiac disease Closeness 0.7386 

Rheumatoid arthritis Closeness 0.7248 

Celiac disease Hub 0.7152 

Inflammatory bowel disease Closeness 0.7111 

Celiac disease Degree 0.7015 

 
 

3.2 Celiac disease and network topologies  

We further investigated the relationship 
between all four network topologies and Celiac 
disease genes. As shown in Table 2, Celiac disease 
was presented with three centralities. Another 
centrality that missed in Table 2 for the disease is 
the betweenness centrality. Similarly, in Table 3, 
the classification result of the betweenness 
centrality showed a bit inferior AUC than 0.7 (the 
AUC of 0.69). To verify the result, we compared 
with a random technique. The random labels with 
the same number of positive and negative sets were 
assigned and the scheme for measuring 
performances was performed for all centrality 
measures. The results showed that, in random case, 
the AUCs were approximately close to 0.5. The 
complete results are shown in Table 3. 

Table 3: AUC of Celiac disease with different centrality 
measures comparing with randomness. 

Centrality 
Measures 

Celiac disease Randomness 

Degree 0.7015 0.4951 

Closeness 0.7386 0.5051 

Betweenness 0.6906 0.5006 

Hub 0.7152 0.4759 
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Figure 1: ROC of the Celiac disease with different 

centrality measures 

 
Figure 2: ROC of the Rheumatoid arthritis with different 

centrality measures 

 
Figure 3: ROC of the inflammatory bowel disease with 

different centrality measures 

3.3 Centrality evaluation  

To find the best centrality measure, the 
relationship between these standard centralities and 
the 46 groups of diseases was observed. The 
fraction of diseases that have the AUC values of 
their disease gene classification with a centrality 
measure greater than a cut-off value was calculated. 
The percentages are shown in Table 4. We 
observed five cut-off values consisting of 0.5, 0.55, 
0.60, 0.65, and 0.7 for all diseases and centrality 
measures. In the overall ranges of the AUC cut-off 
values, the closeness centrality yielded the best 
percentage comparing with other centrality 
measures. At an AUC cut-off value of 0.5, all 
centrality measures showed the same percentages 
of 95.65%. For a higher AUC cut-off value of 0.55, 
the closeness centrality showed the best percentage 
followed by the degree, betweenness, and 
Kleinberg’s centrality, respectively. At the AUC 
cut-off value of 0.7, there are only 6.52% of 
diseases with the closeness centrality obtaining the 
AUC greater than the cut-off value, while the 
degree and Kleinberg’s hub obtained the same 
percentage of 2.17 and there is no disease obtaining 
the AUC greater than the cut-off value with the 
betweenness centrality.        

Table 4: The percentage of diseases in overall 46 groups 

of diseases with centrality measures. Diseases that have 

area under the curve higher than the cut-off value were 
counted. 

Cut-

off 

Degree 

(%) 

Closeness 

(%) 

Betweenness 

(%) 

Hub 

(%) 

0.50 95.65 95.65 95.65 95.65 

0.55 76.09 78.26 73.91 71.74 

0.60 45.65 52.17 45.65 45.65 

0.65 17.39 32.61 17.39 15.22 

0.70 2.17 6.52 0.00 2.17 

 

4. CONCLUSION AND DISCUSSION 

 

Translating new genomic information to real 
medical treatment is a challenge task that needs to 
get insight into disease mechanisms [27]. 
Nowadays, the opportunities to understand a 
complete causal pathway of disease mechanisms 
are limited by the different combinations of 
multiple variants [4]. To increase such 
opportunities, several computational methods were 
developed to predict new disease genes using 
multiple data source. However, a number of 
candidate genes were proposed to concern in 
diseases in several studies. To obtain only 
promising candidate genes, the prioritization 
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methods were applied. The prioritization can 
perform well if the scores or features for ranking 
are reasonable. In this study, we examined four 
different network topology features consisting of 
the degree, closeness, betweenness, and 
Kleinberg’s centrality with 46 groups of diseases 
aggregated from GWAS databases. The centrality 
measures were calculated in the protein-protein 
interaction network.  Performances of disease gene 
classification of a disease with different centrality 
features were measured. Selecting only high 
performance (AUC greater than 0.7), we yielded 5 
entries of 3 diseases and 3 features. Celiac disease 
with closeness centrality showed the best 
performance. Investigating overall diseases in our 
system, we found that the closeness centrality was 
the best feature for the classification. The results 
showed that, using a stringent threshold of AUC, 
the closeness centrality still yielded a superior 
ability. This result might be a good suggestion to 
use this feature for disease prediction.  

A limitation of this analysis is that only 
isolated feature was employed for analyzing a 
specific disease. Even the closeness showed the 
best result, the other features, e.g., the degree and 
betweenness centrality also yielded a good 
classification’s performance. In many cases, using 
only single feature might be not enough to perform 
the classification. Fusion multiple performance 
features might be a good option to improve the 
classification performance that could be developed 
in further study. In conclusion, this study 
demonstrated a prioritization analysis to rank 
features that is valuable to perform to reduce 
irrelevant features. Therefore, the results from this 
analysis could be a good suggestion to select 
features for a disease-gene classification.     

 

ACKNOWLEDGEMENT 

 

This research is supported by the Faculty of Applied 
Science, King Mongkut’s University of Technology 
North Bangkok, Thailand, under grant number: 
5742104. 

 

REFERENCES: 

  

[1] D. Botstein and N. Risch, “Discovering 
genotypes underlying human phenotypes: past 
successes for mendelian disease, future 
approaches for complex disease”, Nature 

Genetics, Vol. 33 Suppl, No. 2003, pp. 228-
237. 

 

[2] H. G. Brunner and M. A. van Driel, “From 
syndrome families to functional genomics”, 
Nature Reviews Genetics, Vol. 5, No. 7, 2004, 
pp. 545-551. 

[3] X. Xiao, J. L. Min, P. Wang and K. C. Chou, 
“Predict drug-protein interaction in cellular 
networking”, Current Topics in Medicinal 

Chemistry, Vol. 13, No. 14, 2013, pp. 1707-
1712. 

[4] A. C. Janssens and C. M. van Duijn, 
“Genome-based prediction of common 
diseases: advances and prospects”, Human 

Molecular Genetics, Vol. 17, No. R2, 2008, 
pp. R166-173. 

[5] S. Ballouz, J. Y. Liu, M. Oti, B. Gaeta, D. 
Fatkin, M. Bahlo and M. A. Wouters, 
“Candidate disease gene prediction using 
Gentrepid: application to a genome-wide 
association study on coronary artery disease”, 
Molecular Genetics & Genomic Medicine, 
Vol. 2, No. 1, 2013, pp. 44-57. 

[6] L. Miozzi, R. M. Piro, F. Rosa, U. Ala, L. 
Silengo, F. Di Cunto and P. Provero, 
“Functional annotation and identification of 
candidate disease genes by computational 
analysis of normal tissue gene expression 
data”, PLoS One, Vol. 3, No. 6, 2008, pp. 
e2439. 

[7] E. A. Adie, R. R. Adams, K. L. Evans, D. J. 
Porteous and B. S. Pickard, “Speeding disease 
gene discovery by sequence based candidate 
prioritization”, BMC Bioinformatics, Vol. 6, 
No. 2005, pp. 55. 

[8] L. Franke, H. van Bakel, L. Fokkens, E. D. de 
Jong, M. Egmont-Petersen and C. Wijmenga, 
“Reconstruction of a functional human gene 
network, with an application for prioritizing 
positional candidate genes”, Am J Hum Genet, 
Vol. 78, No. 6, 2006, pp. 1011-1025. 

[9] H. Al-Mubaid and R. K. Singh, “A text-
mining technique for extracting gene-disease 
associations from the biomedical literature”, 
Int J Bioinform Res Appl, Vol. 6, No. 3, 2010, 
pp. 270-286. 

[10] H. N. Chua, W. K. Sung and L. Wong, 
“Exploiting indirect neighbours and 
topological weight to predict protein function 
from protein-protein interactions”, 
Bioinformatics, Vol. 22, No. 13, 2006, pp. 
1623-1630. 

[11] H. Hishigaki, K. Nakai, T. Ono, A. Tanigami 
and T. Takagi, “Assessment of prediction 
accuracy of protein function from protein--
protein interaction data”, Yeast, Vol. 18, No. 
6, 2001, pp. 523-531. 



Journal of Theoretical and Applied Information Technology 
 10

th
 November 2014. Vol. 69 No.1 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
7 
 

[12] L. C. Tranchevent, R. Barriot, S. Yu, S. Van 
Vooren, P. Van Loo, B. Coessens, B. De 
Moor, S. Aerts and Y. Moreau, 
“ENDEAVOUR update: a web resource for 
gene prioritization in multiple species”, 
Nucleic Acids Res, Vol. 36, No. Web Server 
issue, 2008, pp. W377-384. 

[13] S. Aerts, D. Lambrechts, S. Maity, P. Van 
Loo, B. Coessens, F. De Smet, L. C. 
Tranchevent, B. De Moor, P. Marynen, B. 
Hassan, P. Carmeliet and Y. Moreau, “Gene 
prioritization through genomic data fusion”, 
Nat Biotechnol, Vol. 24, No. 5, 2006, pp. 537-
544. 

[14] S. Kohler, S. Bauer, D. Horn and P. N. 
Robinson, “Walking the interactome for 
prioritization of candidate disease genes”, Am 

J Hum Genet, Vol. 82, No. 4, 2008, pp. 949-
958. 

[15] H. Shi, J. Xu, G. Zhang, L. Xu, C. Li, L. 
Wang, Z. Zhao, W. Jiang, Z. Guo and X. Li, 
“Walking the interactome to identify human 
miRNA-disease associations through the 
functional link between miRNA targets and 
disease genes”, BMC Syst Biol, Vol. 7, No. 
2013, pp. 101. 

[16] J. Li, X. Zhu and J. Y. Chen, “Building 
disease-specific drug-protein connectivity 
maps from molecular interaction networks and 
PubMed abstracts”, PLoS Comput Biol, Vol. 
5, No. 7, 2009, pp. e1000450. 

[17] J. N. Hirschhorn and G. Lettre, “Progress in 
genome-wide association studies of human 
height”, Horm Res, Vol. 71 Suppl 2, No. 
2009, pp. 5-13. 

[18] G. Lettre and J. D. Rioux, “Autoimmune 
diseases: insights from genome-wide 
association studies”, Human Molecular 

Genetics, Vol. 17, No. R2, 2008, pp. R116-
121. 

[19] M. J. Li, P. C. Sham and J. Wang, “Genetic 
variant representation, annotation and 
prioritization in the post-GWAS era”, Cell 

Res, Vol. 22, No. 10, 2012, pp. 1505-1508. 
[20] K. Wang, M. Li and H. Hakonarson, 

“Analysing biological pathways in genome-
wide association studies”, Nat Rev Genet, Vol. 
11, No. 12, 2010, pp. 843-854. 

[21] P. Holmans, E. K. Green, J. S. Pahwa, M. A. 
Ferreira, S. M. Purcell, P. Sklar, M. J. Owen, 
M. C. O'Donovan and N. Craddock, “Gene 
ontology analysis of GWA study data sets 
provides insights into the biology of bipolar 
disorder”, Am J Hum Genet, Vol. 85, No. 1, 
2009, pp. 13-24. 

[22] L. A. Hindorff, P. Sethupathy, H. A. Junkins, 
E. M. Ramos, J. P. Mehta, F. S. Collins and T. 
A. Manolio, “Potential etiologic and 
functional implications of genome-wide 
association loci for human diseases and traits”, 
Proc Natl Acad Sci U S A, Vol. 106, No. 23, 
2009, pp. 9362-9367. 

[23] D. Szklarczyk, A. Franceschini, M. Kuhn, M. 
Simonovic, A. Roth, P. Minguez, T. Doerks, 
M. Stark, J. Muller, P. Bork, L. J. Jensen and 
C. von Mering, “The STRING database in 
2011: functional interaction networks of 
proteins, globally integrated and scored”, 
Nucleic Acids Res, Vol. 39, No. Database 
issue, pp. D561-568. 

[24] K. Park and D. Kim, “Localized network 
centrality and essentiality in the yeast-protein 
interaction network”, Proteomics, Vol. 9, No. 
22, 2009, pp. 5143-5154. 

[25] G. del Rio, D. Koschutzki and G. Coello, 
“How to identify essential genes from 
molecular networks?” BMC Syst Biol, Vol. 3, 
No. 2009, pp. 102. 

[26] K. Plaimas, R. Eils and R. Konig, “Identifying 
essential genes in bacterial metabolic 
networks with machine learning methods”, 
BMC Syst Biol, Vol. 4, No. 2010, pp. 56. 

[27] M. J. Khoury, M. Gwinn, P. W. Yoon, N. 
Dowling, C. A. Moore and L. Bradley, “The 
continuum of translation research in genomic 
medicine: how can we accelerate the 
appropriate integration of human genome 
discoveries into health care and disease 
prevention?” Genet Med, Vol. 9, No. 10, 
2007, pp. 665-674. 

 

 


