
Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

101

TIME COMPLEXITY OF ALGORITHMSAND ITS

DIFFERENCE EQUATION REPRESENTATION

1
M.RAJU,

2
B.SELVARAJ and

3
M.THIYAGARAJAN

1 Department of Science and Humanities, Nehru Institute of Engineering and Technology, Coimbatore,
Tamil Nadu, India – 641105.

2Dean, Department of Science and Humanities, Nehru Institute of Engineering and Technology,
Coimbatore, Tamil Nadu, India – 641105.

3 Dean Research, Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India –
641105.

E-mail: 1rajumurugasamy@gmail.com,2professorselvaraj@gmail.com and3mthiyagarajan40@gmail.com

ABSTRACT

The fundamental problem encountered in all applications of computer science, can be classifiedintothe area
of searching, merging and sorting. In the analysis of large class of algorithms, we have to discuss the
solution of general recurrences based on divide and conquer algorithms. Graph algorithms are studied on
the building block heap and disjoint data structure. We investigate the complexity of both time and space in
the implementation of these algorithms. Results are expressed in terms of functions of number of steps
along with the data structure. We give in this paper the different expressions for these complexity
arguments appearingas solutions of specific types of difference equation expressions.

Keywords: Second Order Difference Equations, Forward Difference, Asymptotic And Oscillatory

Behaviors, Algorithms,Complexity, Numerical Data.

Subject classification 2010: 39A21, 11Y16.

1. INTRODUCTION

In our investigation, asymptotic,
oscillatory and bounded solutions of general second
order difference equations under advanced setup,
we come across specific conditions on the special
type of functions studied. This has given us to think
of one-one correspondence will be the particular
case of reciprocal equations of first type and even
degree. Already we come across the sequence
formed by the nthdegree of the roots of these
reciprocal equations to represent the time
complexity of algorithms. A systematic study has
been undertaken by theoretical computer science as
like Alfred V.Aho, John E.Hopcroft and Jeffrey
D.Ullman[3] along with Donald E.Knuth[5] on the
different classifications computer algorithms. In
particular, the time complexity and the space
complexity of the algorithms. There is no unified
approach for presenting particular variety of
algorithms regarding time complexity
specifications. We have proved the results using the
building blocks of data structure, queues and finite
graphs. Here we plays them to come under especial
difference equations solutions.

Algorithms can be evaluated by a variety
of criteria. Most often we shall be interested in the
rate of growth of the time or space required to solve

larger and larger instances of a problem. We would
like to associate with a problem an integer, called
the size of the problem, which is a measure of the
quantity of input data. The time needed by an
algorithm expressed as a function of the size of a
problem is called the time complexity of the
algorithm. The limiting behavior of the complexity
as size increases is called the asymptotic time
complexity.It is the asymptotic complexity of an
algorithm which ultimately determines the size of
problems that can be solved by the algorithm. If an
algorithm processes inputs of size n in time cn2 for
some constant c, then we say that the time
complexity of that algorithm is O(n2). A function
g(n) is said to be O(f(n)) if there exists a constant c
such that g(n)≤cf(n) for all nonnegative values of n.
One might suspect that the tremendous increase in
the speed of calculations brought about by the
advent of the present generation of the digital
computers would decrease the importance of the
efficient algorithms. However, just the opposite is
true. As computers become faster and we can
handle larger problems, it is the complexity of an
algorithm that determines the increase in problem
size that can be achieved with an increase in
computer speed.In the search of design analysis of
algorithms[3, Alfred V.Aho and et al.] represented

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

102

in particular the complexity of algorithms of
Fibonacci sequence and Search. These give the
complexity of the corresponding problems in the

form A2n and

n













 +

2

53
B respectively. Brief

sketch of the proofs of the complexity of the
algorithms along with the difference
equationssatisfied by them are presented,we
combine these complexities to represent in
difference equations having a connection with a
standard reciprocal equation in this paper.This is an
extension of the paper studied by B.Selvaraj and et
al.[7].The relation suggested by this study paves a
way to fit even order first type reciprocal equation
and their solutions. Here we consider the second
order neutral delay difference equationwith new
conditions. R.P.Agarwal[1], R.P.Agarwal and et
al.[2]. discussed the general theory of difference
equations. Many references to some applications of
the difference equations discussed by Walter
G.Kelley and Allan C.Peterson[4].

This paper is organized as follows: In section
2, we consider the general form of the difference
equation of order two and reciprocal equation of
even degree,connection between asecond order
difference equationand the corresponding reciprocal
equation are given in section 3. Section 4deals with
complexity of depth first-search algorithm. Last
section gives the conclusion of our contribution.

2. THE GENERAL FORM OF THE

DIFFERENCE EQUATION OF ORDER

TWO AND RECIPROCAL EQUATION

OF EVEN DEGREE

We consider second order neutral delay
difference equations of the form

()
() ,0,,

1432

2

=∆+∆

++−∆

++−−−−−−

−−

lnlnlnln

nnnnnn

xxxxf

xcxbxa
στ (1)

where an>0,bn>0,cn>0, τ≥ 3, σ≥ τ, for n ∈N = {0, 1,

2, ...}, l ∈{−s, ..., 0}, s = max {τ, σ},∆ is the
forward difference operator defined by ∆xn= xn+1−
xn and the continuous function f: R4→ R is defined
by
() () () () (),,,, δγβαδγβα IsHrGqFpf

nnnn
+++=

where pn>0, qn<0, rn<0, sn>0, F, G, H and I are
continuous functions F: R → R, G: R → R, H: R →
R, I: R → Rsuch that y1F(y1)>0, for y1≠ 0,
y2G(y2)>0, for y2≠ 0, y3H(y3)>0, for y3≠ 0,
y4I(y4)>0, for y4≠ 0, respectively.

We use the following notations
throughout, N = {0, 1, 2, ...}, the set of natural
numbers including zero;

N (a) = {a, a + 1, a + 2, ...}, where a ∈N.
We consider general reciprocal equation of

even degree of the form

0...
1

2

2

1

1
=+++++

−

−−

nn

nnn

xxxx λλλλ , (2)

where n=2m, m∈N-{0}.
Many authors [9, 10] have studied the

cases of pi≡ 0 and fis increasing, the author [8] has
studied the cases of qj≡ 0. Few authors [11] have
studied the cases of pi ≠ 0 in the first order
difference equations.

Definition 2.1:By a solution of equation (1), we
mean a real sequence {xn} which is defined for all k

≥ mink∈N(1){τk, σk} and satisfies equation (1) for

sufficiently large k ∈N (a), a ∈N. A nontrivial
solution {xn} of equation (1) is saidto be
nonoscillatory if it is either eventually positive or
eventually negative, and otherwise it is
oscillatory.An equation is oscillatory if all its
solutions are oscillatory.

Definition 2.2:If α is a root of the equation (2),
α

1

must also be a root. Hence the roots of the
reciprocal equation(2) occur in pairs.

3. CONNECTION BETWEEN A SECOND

ORDER DIFFERENCE EQUATION AND

THE CORRESPONDING RECIPROCAL

EQUATION

Consider the second order neutral delay

difference equation

()
.029

22310

3

1243

2

=∆+∆−

−++−∆

−

++−−

nn

nnnnn

xx

xxxxx

(3)

Here an= 10,bn= 3,cn=2, τ=3, σ=4, l = -4,

()

,292

292

312

312

−++

−++

∆+∆−−=

∆+∆−−

nnnn

nnnn

xxxx

xxxxf

pn=1, qn=-2, rn=-9, sn=2, F(xn+2)=xn+2, G(xn+1)= xn+1,
H(∆xn)=∆xn, I(∆xn-3)=∆xn-3.The corresponding
reciprocal equation is given as

.0291031092
23456

=+−+−+− xxxxxx (4)
 By solving the equation (4), we get the roots are as

2

31
,

2

53
,

2

1
,2

i
x

±−±
= .

Therefore, the solution of equation (3) is given as

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

103

,sincos

2

53

2

53

2

1
2

65

4321

θθ nAnA

AAAAx

nn

n

n

n

++













 −
+













 +
++=

where

()

.
33

1
tan,1

2

3

2

1

,,

1

2
2

216215

π
θ −=







 −
==














+







 −
=

−=+=

−

r

CCiACCA

4. COMPLEXITY OF DEPTH FIRST-

SEARCH ALGORITHM

Section 1:

 The Fibonacci sequence,defined by, F0=0,
F1=1, Fn+2=Fn+1+Fn, n≥0 satisfy the condition that

12 −−

≤≤
n

n

n

F φφ if n is a positive integer and if

()51
2

1
+=φ . We will see shortly that the quantity,

φ , is intimately connected with the Fibonacci

numbers.

Theorem 4.1.1. A number divides both Fm and Fn
if and only if it is a divisor of Fd, where
d=gcd(m,n); in particular, gcd(Fm, Fn)=Fgcd(m,n).

We define the generating function G(z) as

follows:
G(z)=F0+F1z+F2z

2+F3z
3….

By the theorem 4.1.1., we have F0=1, F1=F2=1,
Fi=Fi-1, i≥3.
Therefore, G(z)=z+z2+2z3+….

⟹ (1-z-z2)G(z)=F0+(F1-F0)z+(F2-F1-F0)z
2+….

⟹G(z)=
2

1 zz

z

−−

.

We can now manipulate G(z) and find out
more about the Fibonacci sequence. The

denominator 2
1 zz −− is a quadratic equation with

the two roots ()51
2

1
±=φ ; after a little calculation

we find that G(z) can be expanded by the method of
partial fraction into the form

()














−
+

−
=

zz
zG

φφ ˆ1

1

1

1

5

1
, where

()511ˆ
2

1
−=−= φφ .

The quantity
zφ−1

1
is the sum of the infinite

geometric series ...1
22
+++ zz φφ , we have

() ()....ˆˆ1...1

5

1 2222
−−−−+++= zzzzzG φφφφ .

We now look at the coefficient of zn, which must be
equal to Fn, and we find that

()nn

n
F φφ ˆ

5

1
−= .

Section 2

Procedure SEARCH(v)

Begin
1. Mark v “old”;
2. For each vertex w on L[v] do
3. If w is marked “new” then

Begin
4. Add (v,w) to T;
5. SEARCH(w)
 End

End
Fig.4.2.1. Depth-first search.

Algorithm 4.2.1.Depth-first search of an

undirected graph.
Input: A graph G=(V,E) represented by adjacency
lists L[v], for v∈V.
Output: A partition of E into T, a set of tree edges,
and B, a set of back edges.
Method: The recursive procedure SEARCH(v) in
Fig.4.2.1. adds edges (v,w) to T if vertex w is first
reached during the search by an edge from v. We
assume all vertices are initially marked “new”. The
entire algorithm is as follows:
 Begin

6. T ← φ:
7. For all v in V do mark v “new”;
8. While there exists a vertex v in V marked

“new” do
9. SEARCH(v)

end
All edges in E not placed in T are

considered to be in B. Note that if edge (v,w) is in
E, then w will be on L[v] and v will be on L[w].
Thus we cannot simply place edge (v,w) in B if we
are at vertex v and vertex w is marked “old” since
w might be the father of v.

Theorem 4.2.1.Algorithm 4.2.1.requires
O(MAX(n,e)) steps on a graph with n vertices and e
edges.
Proof: Line 7 and search for “new” vertices at line
8 require O(n) steps if a list of vertices is made and
scanned once. The time spent in SEARCH(v),
exclusive of recursive calls to itself, is proportional
to the number of vertices adjacent to v.
SEARCH(v) is called only once for a given v, since
v is marked “old” the first time SEARCH(v) is

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

104

called. Thus the total time spent in SEARCH is
O(MAX(n,e)), and we have the theorem.

Lemma 4.2.1. If (v,w) is a back edge, then in the
spanning forest v is an ancestor of w or vice versa.
Proof. Suppose without loss of generality that v is
visited before w, in the sense that SEARCH(v) is
called before SEARCH(w). Thus when v is
reached,w is still labeled “new”. All “new” vertices
visited by SEARCH(v) will become descendants of
v in the spanning forest. But SEARCH(v) cannot
end until w is reached, since w is on the list L[v].

Lemma 4.2.2. Let G=(V,E) be a connected,
undirected graph, and let S=(V,T) be a depth-first
spanning tree for G. Vertex a is an articulation
point of G if and only if either

1. a is the root and a has more than one
son,or

2. a is not the root, and for some son s of a
there is no back edge between any
descendent of s (including s itself) and a
proper ancestor of a.

Proof: It is easy to show that the root is an
articulation point if and only if it has more than one
son.
 Suppose condition 2 is true. Let f be the
father of a. By lemma 4.2.1.each back edge goes
from a vertex to an ancestor of the vertex. Thus any
back edge goes from a descendent v of s goes to an
ancestor of v. By the hypothesis of the lemma the
back edge cannot go to a proper ancestor of a.
Hence it goes to a or to a descendant of s. Thus
every path from s to f contains a, implying that a is
an articulation point.
 To prove the converse, suppose that a is an
articulation point but not the root. Let x and y be
the distinct vertices other than a such that every
path in G between x and y contains a. At least one
of x and y, say x, is a proper descendant of a in S,
else there is a path in G between x and y using
edges in T and avoiding. Let s be the son of a such
that x is a descendant of s(perhaps x=s). Either
there is no back edge between a descendant v of s
and a proper ancestor w of a, in which case
condition 2 is immediately true, or there is such an
edge (v,w). In the latter situation we must consider
two cases.
Case 1. Suppose that y is not a descendant of a.
Then there is a path from x to v to w to y that
avoids a, a contradiction.
Case 2. Suppose y is a descendant of a. Surely y is
not a descendant of s, else there is a path from x to
y that avoids a. Let s′ be the son of a such that y is
a descendant of s′. Either there is no back edge

between descendant v′ of s′ and a proper ancestor
w′ of a, in which case condition 2 is immediately
true, or there is such an edge (v′,w′). In the latter
case there is a path from x to v to w to w′ to v′ to y
that avoids a, a contradiction. We conclude that the
condition 2 is true.

Algorithm 4.2.2.Finding biconnected components.
Input: A connected, undirected graph G=(V,E).
Output: A list of the edges of each biconnected
component of G.

Method:

1. Initially set T to θ and COUNT to 1. Also,
mark each vertex in V as being “new”.
Then select an arbitrary vertex v0 in V and
calSEARCHB(v0) to build a depth-first
spanning tree S=(V,T) and to compute
LOW(v) for each v in V.

2. When vertex w is encountered at line 5 of
SEARCHB, put edge (v,w) on STACK, a
pushdown store of edges, if it is not
already there. After discovering a pair
(v,w) at line 10 such that w is a son of v
and LOW[w]≥v, pop from STACK all
edges up to and including (v,w). These
edges form a biconnected component of G.

Theorem 4.2.2.Algorithm 4.2.2.correctly finds the
biconnected components of G and requires O(e)
times if G has e edges.
Proof: The proof that step1 requires O(e) times is
a simple extension of that observation for
SEARCH(Theorem 4.2.1.). Step2 examines each
degree once, places it on a pushdown store, and
subsequently pops it. Thus step2 is O(e).

For the correctness of the algorithm,
Lemma 4.2.2.assures us that the articulation points
are correctly identified. Even if the root is not an
articulation point, it is treated as one in order to
emit the biconnected component containing the
root.

We must prove that if LOW[w]≥v, then
when SEARCHB(w) is completed the edges above
(v,w) on STACK will be exactly those edges in the
biconnected component containing (v,w).This is
done by induction on the number b of biconnected
components of G. The basis, b=1, is trivial since in
this case v is the root of the tree, (v,w) is the only
tree edge out of v, and on completion of
SEARCHB(w) all edges of G are on STACK.

Now, assume the induction hypothesis is
true for all graphs with b biconnected components,
and let G be a graph with b+1 biconnected
components. Let SEARCHB(w) be the first call of
SEARCHB to end with LOW(W)≥v, for (v,w) a

Journal of Theoretical and Applied Information Technology
 10

th
 November 2014. Vol. 69 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

105

tree edge.Since no edges have been removed from
STACK, the set of edges above (v,w) on STACK is
the set of all edges incident upon descendants of w.
It is easily shown that these edges are exactly the
edges of the biconnected component containing
(v,w). On removal of these edges from STACK, the
algorithm behaves exactly as it would on the graph
G′ that is obtained from G by deleting the
biconnected component with edge (v,w). The
induction step now follows since G′ has b
biconnected components.

Note: When e=2n, our result of complexity apply.

5. CONCLUTION AND FUTURE WORK

The time complexities of major types of

algorithms are given usually in difference equation

representation. Here a special type of difference

equation satisfied by three asymptotic sequences

may be takes as a representation of a complexity

issues in the computation of complexity algorithms.

In the future work, we give a generalize difference

equation which will answer complexity issues in

major types of algorithms studied under various

topics of research in computational methods.

REFRENCES:

[1]. R.P.Agarwal, Difference Equations and
Inequalities, Second edition, Marcel
Dekker,New York, 2000.

[2]. R.P.Agarwal, Martin Bohner, Said R. Grace,
DonalO’Regan, Discrete Oscillation Theory,
Hindawi, New York, 2005.

[3]. Alfred V.Aho, John E.Hopcroft and Jeffrey
D.Ullman, The design and analysis of
computer algorithms, Third impression,
Pearson education, India, 2008.

[4]. Walter G.Kelley and Allan C.Peterson,
Difference Equations - An Introduction
withApplications, 2nd edition, Academic
Press, San Diego, 2001.

[5]. Donald E.Knuth, The art of computer
programming-Fundamental Algorithms, Third
edition, Pearson education, India, 2005.

[6]. T.K.ManicavachagomPillay, T.Natarajan and
K.S.Ganapathy, Algebra, Eleventh edition,
S.Viswanathan(Printers & Publishers) pvt. Ltd.
India, 2002.

[7]. B.Selvaraj, M.Raju and M.Thiyagarajan, A
novel difference equation representation for
autoregressive time series, Journal of
Theoretical and Applied Information

Technology(JATIT), Accepted for publication
in Vol. 67, SEP. 2014.

[8]. EwaSchmeidel, An application of measures of
noncompactness in the investigation of
boundedness of solutions of second-order
neutral difference equations,April 4, 2013, Vol.
91, No.
1.http://www.advancesindifferenceequations.co
m/content/2013/1/91.

[9]. E.Thandapani and B.Selvaraj, Existence and
Asymptotic Behavior of Non Oscillatory
Solutions of Certain Nonlinear Difference
Equations, Far East Journal of Mathematical
Sciences (FJMS), 14 (1) 2004, pp. 9 – 25.

[10]. E.Thandapani and P.Sundaram, On the
asymptotic and oscillatory behavior of
solutions of second order nonlinear neutral
difference equations, Indian Journal of pure
and applied Mathematics, Vol. 26, No. 12,
1995, pp. 1149–1160.

[11]. Yu-Ping Zhao and Xi-Lan Liu, Asymptotic
behavior for nonoscillatory solutions of
nonlinear delay difference equations,
International Journal of Difference Equations,
Vol. 5, No. 2, 2010, pp. 266–271.

