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ABSTRACT 

 
The fundamental problem encountered in all applications of computer science, can be classifiedintothe area 
of searching, merging and sorting. In the analysis of large class of algorithms, we have to discuss the 
solution of general recurrences based on divide and conquer algorithms. Graph algorithms are studied on 
the building block heap and disjoint data structure. We investigate the complexity of both time and space in 
the implementation of these algorithms. Results are expressed in terms of functions of number of steps 
along with the data structure. We give in this paper the different expressions for these complexity 
arguments appearingas solutions of specific types of difference equation expressions. 
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1. INTRODUCTION 

In our investigation, asymptotic, 
oscillatory and bounded solutions of general second 
order difference equations under advanced setup, 
we come across specific conditions on the special 
type of functions studied. This has given us to think 
of one-one correspondence will be the particular 
case of reciprocal equations of first type and even 
degree. Already we come across the sequence 
formed by the nthdegree of the roots of these 
reciprocal equations to represent the time 
complexity of algorithms. A systematic study has 
been undertaken by theoretical computer science as 
like Alfred V.Aho, John E.Hopcroft and Jeffrey 
D.Ullman[3] along with Donald E.Knuth[5] on the 
different classifications computer algorithms. In 
particular, the time complexity and the space 
complexity of the algorithms. There is no unified 
approach for presenting particular variety of 
algorithms regarding time complexity 
specifications. We have proved the results using the 
building blocks of data structure, queues and finite 
graphs. Here we plays them to come under especial 
difference equations solutions. 

Algorithms can be evaluated by a variety 
of criteria. Most often we shall be interested in the 
rate of growth of the time or space required to solve 

larger and larger instances of a problem. We would 
like to associate with a problem an integer, called 
the size of the problem, which is a measure of the 
quantity of input data. The time needed by an 
algorithm expressed as a function of the size of a 
problem is called the time complexity of the 
algorithm. The limiting behavior of the complexity 
as size increases is called the asymptotic time 
complexity.It is the asymptotic complexity of an 
algorithm which ultimately determines the size of 
problems that can be solved by the algorithm. If an 
algorithm processes inputs of size n in time cn2 for 
some constant c, then we say that the time 
complexity of that algorithm is O(n2). A function 
g(n) is said to be O(f(n)) if there exists a constant c 
such that g(n)≤cf(n) for all nonnegative values of n. 
One might suspect that the tremendous increase in 
the speed of calculations brought about by the 
advent of the present generation of the digital 
computers would decrease the importance of the 
efficient algorithms. However, just the opposite is 
true. As computers become faster and we can 
handle larger problems, it is the complexity of an 
algorithm that determines the increase in problem 
size that can be achieved with an increase in 
computer speed.In the search of design analysis of 
algorithms[3, Alfred V.Aho and et al.] represented 
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in particular the complexity of algorithms of 
Fibonacci sequence and Search. These give the 
complexity of the corresponding problems in the 

form A2n and 

n
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53
B respectively. Brief 

sketch of the proofs of the complexity of the 
algorithms along with the difference 
equationssatisfied by them are presented,we 
combine these complexities to represent in 
difference equations having a connection with a 
standard reciprocal equation in this paper.This is an 
extension of the paper studied by B.Selvaraj and et 
al.[7].The relation suggested by this study paves a 
way to fit even order first type reciprocal equation 
and their solutions. Here we consider the second 
order neutral delay difference equationwith new 
conditions. R.P.Agarwal[1], R.P.Agarwal and et 
al.[2]. discussed the general theory of difference 
equations. Many references to some applications of 
the difference equations discussed by Walter 
G.Kelley and Allan C.Peterson[4]. 

This paper is organized as follows: In section 
2, we consider the general form of the difference 
equation of order two and reciprocal equation of 
even degree,connection between asecond order 
difference equationand the corresponding reciprocal 
equation are given in section 3. Section 4deals with 
complexity of depth first-search algorithm. Last 
section gives the conclusion of our contribution. 

 

2. THE GENERAL FORM OF THE 

DIFFERENCE EQUATION OF ORDER 

TWO AND RECIPROCAL EQUATION 

OF EVEN DEGREE 

 

We consider second order neutral delay 
difference equations of the form 
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where an>0,bn>0,cn>0, τ≥ 3, σ≥ τ, for n ∈N = {0, 1, 

2, ...}, l ∈{−s, ..., 0}, s = max {τ, σ},∆ is the 
forward difference operator defined by ∆xn= xn+1− 
xn and the continuous function  f: R4→ R is defined 
by 
( ) ( ) ( ) ( ) ( ),,,, δγβαδγβα IsHrGqFpf

nnnn
+++=  

where pn>0, qn<0, rn<0, sn>0, F, G, H and I are 
continuous functions F: R → R, G: R → R, H: R → 
R, I: R → Rsuch that y1F(y1)>0, for y1≠ 0, 
y2G(y2)>0, for y2≠ 0, y3H(y3)>0, for y3≠ 0, 
y4I(y4)>0, for y4≠ 0, respectively.  

We use the following notations 
throughout, N = {0, 1, 2, ...}, the set of natural 
numbers including zero;  

N (a) = {a, a + 1, a + 2, ...}, where a ∈N. 
We consider general reciprocal equation of 

even degree of the form 
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where n=2m, m∈N-{0}. 
Many authors [9, 10] have studied the 

cases of pi≡ 0 and fis increasing, the author [8] has 
studied the cases of qj≡ 0. Few authors [11] have 
studied the cases of pi ≠ 0 in the first order 
difference equations.  

 
Definition 2.1:By a solution of equation (1), we 
mean a real sequence {xn} which is defined for all k 

≥ mink∈N(1){τk, σk} and satisfies equation (1) for 

sufficiently large k ∈N (a), a ∈N. A nontrivial 
solution {xn} of equation (1) is saidto be 
nonoscillatory if it is either eventually positive or 
eventually negative, and otherwise it is 
oscillatory.An equation is oscillatory if all its 
solutions are oscillatory.  

 

Definition 2.2:If α is a root of the equation (2), 
α

1

must also be a root. Hence the roots of the 
reciprocal equation(2) occur in pairs. 
 

3. CONNECTION BETWEEN  A SECOND 

ORDER DIFFERENCE EQUATION AND 

THE CORRESPONDING RECIPROCAL 

EQUATION  
 
Consider the second order neutral delay 

difference equation 
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(3)  

Here an= 10,bn= 3,cn=2, τ=3, σ=4, l = -4,  
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pn=1, qn=-2, rn=-9, sn=2, F(xn+2)=xn+2, G(xn+1)= xn+1, 
H(∆xn)=∆xn, I(∆xn-3)=∆xn-3.The corresponding 
reciprocal equation is given as 

.0291031092
23456

=+−+−+− xxxxxx  (4) 
 By solving the equation (4), we get the roots are as 
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Therefore, the solution of equation (3) is given as 
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4. COMPLEXITY OF DEPTH FIRST-

SEARCH ALGORITHM  

 

Section 1: 

 The Fibonacci sequence,defined by, F0=0, 
F1=1, Fn+2=Fn+1+Fn, n≥0 satisfy the condition that 

12 −−

≤≤
n

n

n

F φφ if n is a positive integer and if 

( )51
2

1
+=φ . We will see shortly that the quantity,

φ , is intimately connected with the Fibonacci 

numbers. 
 
Theorem 4.1.1. A number divides both Fm and Fn 
if and only if it is a divisor of Fd, where 
d=gcd(m,n); in particular, gcd(Fm, Fn)=Fgcd(m,n). 

 
We define the generating function G(z) as 

follows: 
G(z)=F0+F1z+F2z

2+F3z
3…. 

By the theorem 4.1.1., we have F0=1, F1=F2=1, 
Fi=Fi-1, i≥3. 
Therefore, G(z)=z+z2+2z3+…. 

⟹        (1-z-z2)G(z)=F0+(F1-F0)z+(F2-F1-F0)z
2+…. 

⟹G(z)=
2

1 zz

z

−−

.                       

We can now manipulate G(z) and find out 
more about the Fibonacci sequence. The 

denominator 2
1 zz −− is a quadratic equation with 

the two roots ( )51
2

1
±=φ ; after a little calculation 

we find that G(z) can be expanded by the method of 
partial fraction into the form  
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The quantity 
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1
is the sum of the infinite 

geometric series ...1
22
+++ zz φφ ,  we have  
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We now look at the coefficient of zn, which must be 
equal to Fn, and we find that 
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Section 2 

 

Procedure SEARCH(v) 

Begin 
1. Mark v “old”; 
2. For each vertex w on L[v] do 
3. If w is marked “new”  then  

Begin 
4.         Add (v,w) to T; 
5.         SEARCH(w) 
             End 

End 
Fig.4.2.1. Depth-first search. 
 

Algorithm 4.2.1.Depth-first search of an 

undirected graph. 
Input: A graph G=(V,E) represented by adjacency 
lists L[v], for v∈V. 
Output: A partition of E into T, a set of tree edges, 
and B, a set of back edges. 
Method: The recursive procedure SEARCH(v) in 
Fig.4.2.1. adds edges (v,w) to T if vertex w is first 
reached during the search by an edge from v. We 
assume all vertices are initially marked “new”. The 
entire algorithm is as follows: 
 Begin 

6. T ← φ: 
7. For all v in V do mark v “new”; 
8. While there exists a vertex v in V marked 

“new” do 
9. SEARCH(v) 

end 
All edges in E not placed in T are 

considered to be in B. Note that if edge (v,w) is in 
E, then w will be on L[v] and v will be on L[w]. 
Thus we cannot simply place edge (v,w) in B if we 
are at vertex v and vertex w is marked “old” since 
w might be the father of v. 
 
Theorem 4.2.1.Algorithm 4.2.1.requires 
O(MAX(n,e)) steps on a graph with n vertices and e 
edges. 
Proof: Line 7 and search for “new” vertices at line 
8 require O(n) steps if a list of vertices is made and 
scanned once. The time spent in SEARCH(v), 
exclusive of recursive calls to itself, is proportional 
to the number of vertices adjacent to v. 
SEARCH(v) is called only once for a given v, since 
v is marked “old” the first time SEARCH(v) is 
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called. Thus the total time spent in SEARCH is 
O(MAX(n,e)), and we have the theorem. 
 
Lemma 4.2.1. If (v,w) is a back edge, then in the 
spanning forest v is an ancestor of w or vice versa. 
Proof. Suppose without loss of generality that v is 
visited before w, in the sense that SEARCH(v) is 
called before SEARCH(w). Thus when v is 
reached,w is still labeled “new”. All “new” vertices 
visited by SEARCH(v) will become descendants of 
v in the spanning forest. But SEARCH(v) cannot 
end until w is reached, since w is on the list L[v]. 
 
Lemma 4.2.2. Let G=(V,E) be a connected, 
undirected graph, and let S=(V,T) be a depth-first 
spanning tree for G. Vertex a is an articulation 
point of G if and only if either 

1. a is the root and a has more than one 
son,or 

2. a is not the root, and for some son s of a 
there is no back edge between any 
descendent of s (including s itself) and a 
proper ancestor of a. 

Proof: It is easy to show that the root is an 
articulation point if and only if it has more than one 
son.  
 Suppose condition 2 is true. Let f be the 
father of a. By lemma 4.2.1.each back edge goes 
from a vertex to an ancestor of the vertex. Thus any 
back edge goes from a descendent v of s goes to an 
ancestor of v. By the hypothesis of the lemma the 
back edge cannot go to a proper ancestor of a. 
Hence it goes to a or to a descendant of s. Thus 
every path from s to f contains a, implying that a is 
an articulation point. 
 To prove the converse, suppose that a is an 
articulation point but not the root. Let x and y be 
the distinct vertices other than a such that every 
path in G between x and y contains a. At least one 
of x and y, say x, is a proper descendant of a in S, 
else there is a path in G between x and y using 
edges in T and avoiding. Let s be the son of a such 
that x is a descendant of s(perhaps x=s). Either 
there is no back edge between a descendant v of s 
and a proper ancestor w of a, in which case 
condition 2 is immediately true, or there is such an 
edge (v,w). In the latter situation we must consider 
two cases. 
Case 1. Suppose that y is not a descendant of a. 
Then there is a path from x to v to w to y that 
avoids a, a contradiction. 
Case 2. Suppose y is a descendant of a. Surely y is 
not a descendant of s, else there is a path from x to 
y that avoids a. Let s′ be the son of a such that y is 
a descendant of s′. Either there is no back edge 

between descendant v′ of s′ and a proper ancestor 
w′ of a, in which case condition 2 is immediately 
true, or there is such an edge (v′,w′). In the latter 
case there is a path from x to v to w to w′ to v′ to y 
that avoids a, a contradiction. We conclude that the 
condition 2 is true. 
 
Algorithm 4.2.2.Finding biconnected components. 
Input: A connected, undirected graph G=(V,E). 
Output: A list of the edges of each biconnected 
component of G. 

Method: 

1. Initially set T to θ and COUNT to 1. Also, 
mark each vertex in V as being “new”. 
Then select an arbitrary vertex v0 in V and 
calSEARCHB(v0) to build a depth-first 
spanning tree S=(V,T) and to compute 
LOW(v) for each v in V. 

2. When vertex w is encountered at line 5 of 
SEARCHB, put edge (v,w) on STACK, a 
pushdown store of edges, if it is not 
already there. After discovering a pair 
(v,w) at line 10 such that w is a son of v 
and LOW[w]≥v, pop from STACK all 
edges up to and including (v,w). These 
edges form a biconnected component of G. 
 

Theorem 4.2.2.Algorithm 4.2.2.correctly finds the 
biconnected components of G and requires O(e) 
times if G has e edges. 
Proof: The proof that step1 requires O(e) times is 
a simple extension of that observation for 
SEARCH(Theorem 4.2.1.). Step2 examines each 
degree once, places it on a pushdown store, and 
subsequently pops it. Thus step2 is O(e). 

For the correctness of the algorithm, 
Lemma 4.2.2.assures us that the articulation points 
are correctly identified. Even if the root is not an 
articulation point, it is treated as one in order to 
emit the biconnected component containing the 
root. 

We must prove that if LOW[w]≥v, then 
when SEARCHB(w) is completed the edges above 
(v,w) on STACK will be exactly those edges in the  
biconnected component containing (v,w).This is 
done by induction on the number b of biconnected 
components of G. The basis, b=1, is trivial since in 
this case v is the root of the tree, (v,w) is the only 
tree edge out of v, and on completion of 
SEARCHB(w) all edges of G are on STACK. 

Now, assume the induction hypothesis is 
true for all graphs with b biconnected components, 
and let G be a graph with b+1 biconnected 
components. Let SEARCHB(w) be the first call of 
SEARCHB to end with LOW(W)≥v, for (v,w) a 
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tree edge.Since no edges have been removed from 
STACK, the set of edges above (v,w) on STACK is 
the set of all edges incident upon descendants of w. 
It is easily shown that these edges are exactly the 
edges of the biconnected component containing 
(v,w). On removal of these edges from STACK, the 
algorithm behaves exactly as it would on the graph 
G′ that is obtained from G by deleting the 
biconnected component with edge (v,w). The 
induction step now follows since G′ has b 
biconnected components. 
 
Note: When e=2n, our result of complexity apply. 
 

5. CONCLUTION AND FUTURE WORK  
 

The time complexities of major types of 

algorithms are given usually in difference equation 

representation. Here a special type of difference 

equation satisfied by three asymptotic sequences 

may be takes as a representation of a complexity 

issues in the computation of complexity algorithms. 

In the future work, we give a generalize difference 

equation which will answer complexity issues in 

major types of algorithms studied under various 

topics of research in computational methods.  
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