
Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

716

SAIVMM: SELF ADAPTIVE INTELLIGENT VMM

SCHEDULER FOR SERVER CONSOLIDATION IN CLOUD

ENVIRONMENT

S.SURESH
1
, S.SAKTHIVEL

2

1Associate Professor, Department of Computer Science and Engineering, Adhiyamaan College of

Engineering, Hosur-635109, Tamil Nadu, India
2Professor, Department of Computer Science and Engineering, Sona College of Technology, TPTC Main

Road,Salem-636005, Tamilnadu, India

E-mail: 1ssuresh.siv.72@gmail.com , 2sakvel75@gmail.com

ABSTRACT

Cloud computing is an on-demand resource provisioning technology and server virtualization act as a
driving force of cloud. Virtualization consolidates multiple physical machines into one machine, thereby
cut cost and improves efficiency of data center. However, as all virtual machines (VM) share the same
physical resources, contention for shared resources cause significant variance in observed system response
time and throughput. Diverse and unpredictable workloads in cloud environments, needs resource
allocations to be continuously optimized to ensure the hosted services meet their service level objectives
(SLO). However, the current VMM algorithms are more oriented with providing fair access to the VMs;
Lack the ability to adaptively determine the effects of changing resource allocations on the performance of
the hosted IT services. Furthermore, as hardware getting evolved and multi core processor technology has
increased density of processor cores in a computer at a faster rate, effective usage of the resources becomes
a great challenge to software. This is a major bottleneck in cloud applications where performance plays a
vital role for user acceptance. Taking this all into account, the paper propose a novel system using meta-
heuristic combinatorial search techniques that automatically regulates the VMM CPU scheduler related to
the applications on-the-fly with dynamic changes in the environment to maximize throughput and minimize
response time. We used this resource allocation algorithm in an evaluation, consist of various scenarios
with synthetic workloads. Simulation based results indicate that proposed model improves CPU utilization
and make the best tradeoff between resource utilization and performance by 2% on average and up to 6%
compared to the default VMM scheduler configurations. The proposed model discussed in this paper can
readily be extended to a multi-tier cloud computing environment applications to reduce the overall
performance delay.
Keywords: Cloud computing, Virtualization, VMM Scheduling, Workload, Simulation

1. INTRODUCTION

Clouds are a large poll of hardware or software

resources that can be accessed on-demand like a
utility computing. These cloud services can be
provided without any knowledge of the physical
location of the servers and the systems that provide
the computing services. It is continuously gaining
popularity, due to its ease-of-use, on-demand
resource provisioning, pay per use business model,
and ability to support execution of applications of
diverse types. Virtualization act as a driving force
of cloud by simplifying load balancing, dealing
with hardware failures and easing system scaling
through server consolidation. Server consolidation
enables one to consolidate applications running on
possibly tens of thousands of servers each
significantly underutilized on the average; Thus by

running multiple virtual machines on the same
physical resources, virtualization promises a more
efficient usage of the available hardware in cloud
data centers. However, as all VMs share the same
physical resources, contention for shared resources
cause significant variance in the observed system
response time and throughput. A recent survey [1]
of datacenter applications show that some of the
most common workloads targeted for virtualization
are parallel computing applications, databases, web
hosting, mail exchange and file hosting. These are
multi-threaded that uses CPU, memory and
Input/output (I/O) heavily. Thus, the success of
next generation cloud computing infrastructures
depends on how effectively these infrastructures,
instantiate and dynamically maintain computing
platforms, constructed out of cloud resources and
services. This meet varying resource and service

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

717

requirements of cloud costumer applications are
characterized by Quality of Service (QoS)
requirements.

Everything is delivered to cloud users as
services. In these regard, two important problems
are frequently encountered with deploying IT
applications in cloud. The first is overload or under
load. A simple solution for this problem is to assign
resources to VMs in static manner. However, static
allocation becomes inefficient under varying load.
The second problem is QoS. As cloud hosted
services and applications are user oriented, QoS has
a great impact on growth and acceptability of cloud
computing paradigm. However, providing QoS
requires a solid model that needs detailed insights
of computing centers. Indeed, it is very difficult to
dynamically allocate resources for multitier
applications. i.e. How to effectively increase
resource utilization and meet service level an
objective (SLOs) in a shared virtualization
environment is a great challenge. So it is a large
challenge for the scheduler that can achieve the
goal of good fairness, efficient workload balancing,
and minimal wasted CPU time, when allocating the
physical CPU time to VMs. Thus the scheduler
with a good adaptiveness can make a better trade
off among these factors, and can change its strategy
for VMs with the different workload properties.
Besides the reduction in infrastructure and ongoing
operating costs, this work also has societal
significance as it decreases carbon-dioxide
footprints and energy consumption by modern IT
infrastructures.

Virtualization solutions ranging from VMware,
KVM and XEN can be implemented within a
cloud; each has its strength and weakness. The,
performance of a hosted application is sensitive to
the hypervisor scheduler configuration parameters
on which the application is running. However, the
exact relationship between the value of the
scheduler configuration parameters of the VM, and
the application performance metrics such as
response time or throughput is not obvious.
Therefore, determining the appropriate parameter
values that would provide certain SLA for an
application is a hard problem due to dynamic nature
of the workload; thus most of the time the
parameters are left as default values. Subsequently,
existing tools for performance and resource
management of virtualized infrastructures lack the
ability to dynamically determine the effects of
changing resource allocations on the performance
of hosted IT services.

Modern virtualization and middleware
technologies create many possible ways for

resource allocation and system reconfiguration by
adding or removing virtual CPU cores to VMs or
by changing the hypervisor scheduling parameters.
Similarly, application servers provide means to
create application server clusters and add or remove
cluster nodes. There are advantages and drawbacks
in the mentioned dynamic configuration options.
Some of them can be used on-the-fly, but they
require a special system setup or introduce high
reconfiguration overhead. Thus, the proposed self-
adaptive resource allocation algorithm, focus on
adding or removing virtual CPUs to an application
server cluster; that can achieve the goal of good
fairness, efficient workload balancing, and minimal
wasted CPU time.

As hardware support continues to be added and
adopted to bring the performance of virtualized
systems closer to that of native execution, the
virtualization of these computing resources is not
substantial. With respect to Moore’s Law, Chip
Multi-Threading (CMT) is becoming increasingly
important because of multi-core CPUs that combine
multiple processor cores inside a single physical
CPU. Thus, the increasing number of processing
cores has become a promising way of improving
the performance of servers by quickly adapt to
cores changing capabilities, resulting in numerous
performance and other benefits compared to
existing techniques. Thus, it can be used to improve
the scheduling of consolidated servers by allowing
the cores of a chip to be dynamically partitioned
among guest virtual machines. Compared to
conventional scheduling/multiprocessor scheduling,
dynamic partitioning provides higher throughput,
lower transaction latency, and more isolation. Yet it
can quickly adapt to bursts in demand and it also
has changing capabilities of the underlying
hardware.

Virtualization delivers dramatic resource usage
and cost cutting, but overall data center efficiency
metrics may still not be what they should, with
respect to the state-of-art hardware and software
advancements. Thus, this research aims at
presenting the evaluation done on, how does
application response time in cloud get impacted
with adaptive CPU resource allocation with
changing customer workloads? When should a
reconfiguration be triggered for achieving effective
resource usage without compromising SLAs? How
rapidly and at what level be the reconfiguration
triggered?

Evaluating new scheduling techniques under
various, controllable and repeatable conditions are
impossible in real Cloud. Because, system level
scheduling implementation requires deep

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

718

understanding on hardware architecture, as well as
low level programming and debugging.
Consequently, it makes qualitative evaluation of
scheduling algorithm difficult and requires
significant effort. In addition, the proposed
algorithms are sometimes affected by the existing
system architecture [3]. In order to address this
problem, the cloud virtualization environment, is
simulated to evaluate the performance of the
defined algorithm using CSIM simulation toolkit,
and C/C++ library that allows assembling a
complete virtualization system with flexible
configurations. Although the framework’s
components are constructed using the CSIM model,
the users of the framework are not required to know
CSIM or its underlying concepts. All they need is
to use CSIM library, type in parameters say
workload distribution, and write a C/C++ function
to express the scheduling function.

In summary, the contribution of this paper is
multifold and our works are as follows: i) Study on
server virtualization and its various solutions.
ii) Study on state of the art work in VMM
scheduling. iii) Conducting two performance case
studies that focus on how the performance is
affected by the amount of CPU allocation.
iv) Construct an adaptive system that automatically
adjust the VMM CPU scheduler based on the
workload fluctuations to give guarantee QoS using
combinatorial heuristic search techniques.
v) The best CPU scheduler configuration for each
synthetic workload with a given target amount of
users was determined. vi) Investigate and evaluate
more scheduler configurations. vii) The
performance of various scheduling algorithms in
various configurations was measured.

The rest of the paper is organized as follows.
Section 2 provides some background information
and basic concepts related to server virtualization,
chip multithreading, workload forecasting, and
meta-heuristic search techniques. Section three
deals with review of literature. Section four
presents resource influence on VM and state-of-the-
art VMM schedulers. Section five illustrates the
soundness of proposed mechanisms to be built into
the systems to enable self-management, for the case
of cloud. Section 6 and 7 presents experimental
methodology, setup, and the discussion of results.
Section 8 presents the conclusion and suggestions
for future research.

2. BACKGROUND

This section presents some background

information and definitions on server virtualization

and its solutions, chip multithreading,
combinatorial search techniques and control
decisions regarding workload forecasting that helps
to understand the conceptual decisions made.

2.1 Server Virtualization

Server virtualization is an abstraction of
underlying physical hardware. It creates virtual
environments that allow running multiple
applications in separate virtual containers hosted on
single hardware that enables workload isolation and
makes consolidation possible. VMM, a software
layer, VMM separates underlying hardware from
the software running on top of it, creates a notion of
the hardware for a virtual machine. Thus, it creates
and manages processor, memory, and I/O units for
the virtual OS. The first and foremost application of
virtualization is server consolidation. It is a process
encapsulating the single server workloads into VMs
and running them in a shared hardware platform via
hypervisor. Server consolidation provides an
effective solution to parallelism and high utilization
of modern multi-core processors by running
multiple virtual machines on top of the single
platform with virtualization. Virtualization
Technology can be classified into three major
approaches[2,4], based on the performance, ease of
installation and administration, level of security
between each virtualization images, and supported
hardware platforms and methods of executing guest
OS code with / without hardware access.

2.1.1 Full virtualization

It is a type of virtualization in which hardware
is completely emulated via hardware and software
that allows operating systems, and its kernel to run
unmodified in a VM. It executes privileged guest
code in software, typically with just in time
translation for speed. Binary translation
virtualization technique solved this problem by
having the VMM, examine the binary instructions
before they were executed, and dynamically rewrite
sections of code that would try to execute a
privileged instruction so that the VMM would
maintain control of the system and emulate the
effect of the instruction. Here VMM runs itself as
an application inside the host OS, subsequently, all
resource allocations and scheduling facilities are
offered by the host OS. The VMM presents an
interface to VM that is indistinguishable from
physical hardware. Hardware virtualization support
in recent x86 CPUs support a privilege level
beyond supervisor mode, used by the hypervisor to
control guest OS execution. As every resource
request from the guest machine needs to go through

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

719

the VMM and hence, there is a lot of overhead on
the VMM. For example, if there is a request for
disk read/write operation, the request is routed via
VMM, which then validates the request and
transfers the requested data back to the guest OS.
This results an additional delay along with the
normal response latency and transfer time.
However, data prefetching and efficient scheduling
can help to improve the delay in such a case.

2.1.2 Para virtualization
This approach defines new hardware software

mixture architecture known as hypervisor, which is
similar to physical hardware emulated CPU,
memory and I/O instructions, that are replaced by
hypercalls. It reduces overhead inherent in dynamic
translation. By running directly on the machine, the
hypervisor has direct communication with the
hardware. It does not virtualize a total computer
environment, in the manner that previous approach
does. Thus, it allows the guest OS to execute
directly in user mode, by providing a software
interface (API), which is similar to the underlying
hardware allows the guest to use to perform
privileged functions. In that, the guests are aware
that they are virtualized and need modifications in
the guest device drivers. Here, the hypervisor
perform scheduling and resource allocation for all
VMs. Thus, it stimulates VMM directly, controls
scheduling of VCPUs on PCPUs rather than having
VCPUs execute as threads in a host OS that are
scheduled based on the host OS CPU scheduling
algorithm and makes work simpler. In addition, if
the virtualization layer supports direct
communication with the hardware through
available facilities like hardware assisted
virtualization (section 2.1.3), the calls can be
mapped directly to the hardware. Unlike the
previous approach, this technique has a lower
communication overhead as the hypervisor does not
completely intermediate the guest and the physical
hardware. Also, the performance of the
paravirtualized setup depending on the workload of
the guests, leads to instability in performance
swinging between the two ends of spectrum.

2.1.3 Hardware assisted virtualization:

It is a hardware extension which includes a
new CPU execution mode, guest mode, in addition
to the original mode provided by the vendors like
Intel and AMD. CPU execution in host mode
remains with full ring privileges (from ring 0 to 3);
however the rings in guest mode are deprivileged
for hypervisor trap and emulation. Thus, hardware
assisting processors give the guest OS the necessary

authority to have direct access to platform resources
without sharing control over the hardware.
Formerly, the VMM should emulate the hardware
to the guest OS while it retains control of the
physical platform. These new processors give both
the VMM and the guest OS the authority each
needs to run without hardware emulation or OS
modification. Thus, privileged instructions are
trapped in the hardware and redirected to
hypervisor, eliminating the need of ring
deprivileging used in the former solution;
Simplifying the hypervisor implementation, and
therefore supports unmodified guest OS
(Windows). Furthermore, hardware assisted
shadow page table for virtualizing memory
supports unmodified guest or hardware virtual
machine, to manage the translation from guest
linear memory address to host physical memory
address. Subsequently, key state information for
CPU and guest OS can be stored in the protected
memory which can be accessed only by the VMM,
protecting the integrity of the handoff process. All
trapped, emulated I/O devices and paravirtualized
I/O devices are enabled in hardware virtualization.
This provides virtual machines greater capabilities,
and scalability. As guest shares the page table
entries among all of its VCPUs, the hypervisor
needs to track the page table access for each VCPU.
The corresponding SPT entries are also shared
among these VCPUs.

2.2 Scheduling in a Hypervisor

Aforesaid, three virtualization approaches
infer, VMM is an important entity as it routes any
request by the guest to access the hardware. Thus, it
is very important to VMM to ensure that all the
guests are given reasonable access to the hardware
to ensure SLO to the guests. Such a SLO
mechanism is provided by scheduling the guests
appropriately. A scheduling mechanism guarantees
that a guest performs its transactions in its
scheduled time and allows all the guests to get a
reasonable chance to access the resources. This
kind of a scheduling provides equality in access and
it trades off the latency of the access. The VMM
gives a portion of the full physical machine
resources to each guest domain, thus multiple
guests must share the available resources.
Therefore, the VMM does not generally picture the
full power of the underlying machine to any single
guest. Instead, it allocates a portion of the resources
to each guest domain. It either attempts to partition
resources evenly or favors some guests over others
in a biased fashion. As the workload and demand
varies, it grants each guest OS a limited amount of

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

720

specified resource, like memory and allows each
guest OS only its fair share of other resource like
CPU. Similarly, it does not like all guests to have
access to every physical device in the system and
thus it exposes only the devices it wants each guest
to see. Sometimes, it even creates virtual devices
that have no corresponding underlying physical
device like virtual network interface. Thus, from
the perspective of VMM’s CPU scheduler, each
VM is represented by one or more virtual resources,
and the primary goal is to maintain proportional
share of CPU time allocation of each guest domain,
according to user defined SLA based on
unpredictable workloads. Thus, a core requirement
for an effective virtual machine scheduling
algorithm is the ability to dynamically provision its
various resources to its various users according to
their instantaneous needs and in fulfillment with
negotiated SLAs to afford an environment like
cloud.

2.3 Chip Multithreading (CMT) and Virtual

CPU (VCPU)

CMT is to combine the resources of multiple
CPUs in a single host system, in which all the
processors behave identically. CMT lets any
processes in the system can execute on any
processor. By providing additional CPU resources
to execute multiple threads simultaneously, it works
faster and more efficient than a single core
processor; it shares the processing load, improving
overall system performance. The system also can
shut down portions of the cores that aren’t in use,
saving power and generating less heat. In addition,
as each core on the chip has its own memory
controller, significantly improves memory
performance. Also, connecting the processor cores
together lets data flow freely and reduces latency
problems. Thus increasing number of processing
cores (Moore’s law) becomes a promising way of
improving the performance of servers.

Logical Domains technology provides flexible
assignment of hardware resources to domains, with
options for specifying physical resources for a
corresponding virtual resource. One of the
distinguishing features of logical domains
compared to other hypervisors is the assignment of
CPUs to individual domains. Each domain is
assigned an exclusive use of a number of CPUs,
also called threads. Within a domain, these are
called virtual CPUs (VCPUs) and the granularity of
assignment is a single VCPU.A domain can have
from one VCPU up to all the VCPUs on the server.
The number of CPUs in a domain can be
dynamically and none disruptively changed on the

fly and the change in the number of VCPUs in a
running domain takes effect instantly. The number
of CPUs can be managed routinely with the logical
domains, by dynamic resource manager, provided
by the respective tool. This method avoids the
frequent context switches that usual VMM must
implement to run several guests on a CPU and to
intercept privileged operations, has an impressive
benefit in terms of simplicity and reduction of the
overhead. Because each domain has dedicated
hardware circuitry, a domain can change its state
without causing a trap and emulation. Typically, a
virtual machine can be assigned multiple VCPUs
and an application with multiple processes or
threads can have considerable performance
improvements when multiple VCPUs are executed
on diverse physical CPUs. To improve the CPU
usage effectiveness in the CMT configuration
further, the CPU scheduler must implement a
global load balancing functionality that quickly
reassigns VCPUs among available physical CPUs.

2.4 Dynamic Resource Allocation

Dynamic resource allocations are quite
essential for adaptive computing. Generally, there
are two approaches namely proactive allocation and
reactive allocation. Reactive allocations are used to
adjust resources based on demand and recent
behavior. It is preferred more to handle momentary
fluctuations smoothly. Whereas, proactive resource
allocations involve taking up actions to make
resources available for upcoming load spikes. It is
good for managing resources in a multi-tenant
cloud where it is common to have hot spots at some
locations, while still having spare resources
scattered throughout the datacenter. Inability to
quickly use fragmented spare resources in a
datacenter during load spikes causes host level over
provisioning. When predictions are accurate, this
scheme provides very good performance.
Forecasting can be achieved by applying many
techniques [5]. However, we describe here two very
popular forecasting techniques namely weighted
moving averages, and exponential smoothing.
Moving Average: A simple and widely used
forecasting method is the simple moving average
(SMA), which makes the value to be forecasted for
the next period from the average number of
previous observations. With this technique only one
value can be forecasted at a time. This limitation
can be overcome by the weighed moving averages
where the value to be forecasted maintains an
almost constant value for quite a while before
changing significantly. The forecasted value is
computed as a weighed average of a given number

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

721

of the most recent observations. The weights are
chosen in a way that reacts the relative importance
of the newest/oldest observations. Exponential
Smoothing: Exponential smoothing technique is an
additional popular forecasting technique known for
its peculiarity for its peculiarity to make predictions
from time series data that exhibit upwards and/or
downwards trends. It computes Forcasted Value = ∂
x Previous Actual Value + (1-∂) x Previous
Forcasted Value. Where, ∂ is used to gauge the
relative importance that is associated with the
previous prediction as opposed to the earlier
observation (i.e., more weight is given to observed
values rather than to the predicted ones if ∂ is close
to 1 and vice versa).

2.5 Genetic Algorithms (GA)

As scheduling problems belong to
combinatorial optimization problems, one tends to
use optimization algorithms to find optimal
solutions, which have been studied from Simulated
Annealing, Genetic Algorithm, Hill Climbing and
Particle Swam. Compared to standard heuristics,
genetic algorithms [6, 7] are well suited for fine
tuning structures which are very close to optimal
solutions. GA is a computational model that
emulates biological evolutionary theories to solve
optimization problems. In computing terms, GA
maps a problem to a set of binary strings, each of
them representing a possible solution. The GA then
manipulates the most promising strings searching
for improved solutions, through a simple cycle of
four stages: i) creation of a "population"
(randomness) of strings, ii) evaluation of each
string (reproduction), iii) selection of "best" strings
using fitness function, and iv) genetic manipulation
(cross over) to create the new population of strings.
Here, the decision variables are the CPU usage
limits to be enforced on the co-located VMs. In this
work, a genetic algorithm based technique is
applied. It searches the space of various possible
CPU usage limits and finds a near to optimal
solution. It uses the negative of utility optimization
objective given in section 6 as the fitness function
since the GA is designed to minimize the fitness
function. As a result, it maximizes the system
utility. The genetic algorithm generates a new
population of candidate solutions and evaluates
their fitness values in various iterations. Through
the research, it is observed that genetic algorithm is
able to converge within 50 iterations or generations.

3. RELATED WORK

VMM resource allocation, scheduling, and
analysis of virtualization performance are some of

the most important problems in server consolidated
virtualization research in enterprise applications. In
specific, optimizing the performance of the
resource virtualization is an ongoing research area,
and there are several new techniques are proposed
to implement resource virtualization. Hence, the
related work is divided into the following groups:
(i) the performance behavior of the applications
running inside the virtual machines (ii) approaches
for optimizing the resource provisioning to improve
the performance of virtualization in the real systems
and (iii) approaches for dynamic resource
provisioning optimizing the performance of
virtualization using simulation.

Cherkasova et al. [8] have compared three
schedulers in XEN, SEDF (Simple Earlier Deadline
First), BVT (Borrowed Virtual Time), and Credit.
They studied that the credit scheduler used in XEN
are performance-oriented and do not accordance
with configured values for some workloads and
choosing the right parameters for individual virtual
machines is crucial in order to get the desired
application performance. Similarly a study is made
to this by Liu et al.[9] to develop a mechanism that
adaptively regulate these parameters, In which they
designed a feedback controller that takes care of
regulating the scheduling parameters of VM such
that each application gets its relative level of
performance. Govindan et al. [10] proposed an
algorithm to schedule the CPU of VMM that
considers the largest number of network packages
to minimize the delay of the packages caused by
virtualization, by creating an unfair advantage to
communication intensive applications over CPU
intensive ones. It enhances the performance even
under the high consolidated virtualized
applications, while still adhering to the high-level
resource provisioning goals in a reasonable manner.
Similarly, Ongaro et al [11] examined the impact of
the CPU scheduling on network I/O performance in
XEN and inferred that XEN privileged allocating
CPU resources to CPU-bound VMs rather than I/O-
bound VMs, and which could influence network
bandwidth and latency in unwanted ways. They
proposed few enhancements to boost the I/O
performance of VMs, which sort the domains in the
run queue based on their remaining credits and to
place all the I/O intensive domains in the same
domain that reduce the pre-emption of the event
channel notifier, improves the overall latency and
performance. In [12], author propose a coarse-
grained feedback control framework that works
based on transfer functions to model the dynamic
relationship between a performance metrics and
physical control features, for better performance

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

722

prediction. It dynamically allocates resources to
applications running in a virtualized environment.
Subsequently, for reconfiguration options focus on
the hypervisor’s cap and disk share parameters.
However, the valuation with RUBiS and TPC-W in
combination with a production trace driven
workload is hopeful. In [13], authors developed a
mathematical scheduler modeling to analyze and
empirically compare XEN’s scheduling algorithms
such as co proportional, proportional share
scheduling strategies that provide a convenient
infrastructure to quickly examine new idea based
algorithms. Chieu et al. [14] proposed a reactive
algorithm for dynamic VM provisioning of
Platform as Service and Software as Service
applications, whereas this current approach
considers adaptive reconfiguration of available
virtual instances, say increase or decrease their
resource capacity based on their request arrival rate
and performance metrics. Watson et al. [15]
proposed a probabilistic performance model using
quantile regression making it possible to predict the
response time of the web authentication benchmark
depending on the allocated resources at the virtual
machine level. However, the performance relevant
factors are rarely explicitly provided. In [16],
author developed a multi-level resource allocation
framework Mistral that adapt a VM’s CPU
capacity, by add or remove a VM, live-migrate a
VM between hosts and shutdown or restart a host.
This method considers performance, transient costs
and power consumption in its reconfiguration
algorithm. However, it is based on a simple multi-
tier application with read-only transactions and a
fixed web tier modeled with a layered queuing
network. Lim et al. [17] proposed a mathematical
model to characterize workload using multiple
resource usages. They characterize a host as a
collection of m resource queues. They also
characterize each application as a vector of size m,
where ith element is calculated as the amount of
time using ith resource divided by its runtime when
running in standalone mode. However, this model
is not practical. As per this model, running multiple
applications together not take longer than their
sequential execution. This is not true in virtualized
environments. Severe contention between two VMs
may lead to slowdown of more than twice. The
fundamental problem is how to obtain resource
vectors. Generally, resource usage is represented as
utilization or throughput. Measuring the amount of
time using I/O and network is unusual and not easy.
In [18], author proposed a novel system PAC,
which estimates VM’s performance on each host by
measuring difference between time series of VM

and host by periodically characterizing each virtual
machine as a repetitive time series of resource
consumption, and each host as a repetitive time
series of remaining resources. Consequently, it then
schedules the VM to a host with minimum
difference. For VM schedulers, the way to
characterize workload determines how to estimate
VM’s performance on each target, in the sense
either physical core or host. Thus, scheduling
decision is just a process of selecting the most
suitable objective based on evaluation. In [19],
author proposed the problem of optimal load
distribution of generic tasks on multiple
heterogeneous servers preloaded with special tasks
in a cloud computing environment. He formulated
it as a problem of multi-variable optimization based
on a queuing model. He developed algorithms to
find the numerical solution of an optimal load
distribution and the minimum average response
time of generic tasks. In [20], discussed the overall
view on several components while focusing on the
overhead of virtualization. They conducted diverse
experiments on two unlike virtualization platforms
and on a native machine. They also calculated the
virtualization overhead of some components like
network, memory and disks. Later, they proposed a
model which helps to estimate the performance of
virtualized machines based on linear regression.
In [21], author used Artificial Neural Network, a
machine learning technique to predict the
performance impact of real-time scheduling
parameters, VM deployment and workload type on
the system performance based on measurements
using various MATLAB benchmark tests. In [22],
author used analytical queuing models to quantify
the slowdown of virtualized applications in server
virtualization scenarios. However, it is shown that
using the total CPU time as distribution factor to
derive workload specific virtualization overhead,
typically results in an uneven estimation at best.
In [23], author presents a new approach for self-
adaptive resource provisioning in virtualized
environments based on online architecture level
performance models. He investigates the use of
such models as a means for online performance
prediction allowing to predict the effects of changes
in user workloads as well as to predict the effects of
particular reconfiguration actions, undertaken to
obey SLA efficient resource usage. By using
virtualization techniques, they applied these
allocation changes to evaluate the use of such
models for online performance prediction.
However, in the present research, the influences of
virtualization on system performance to integrate
the gained insights into the proposed performance

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

723

models are investigated. Guenter et al. [24],
developed energy aware on demand virtual machine
consolidation system focused on web, where SLAs
are defined in terms of the response time. They
applied weighted linear regression to forecast the
future workload and proactively optimize the
resource allocation. This approach is in line with
the Local Regression (LR) algorithm. In [25], the
authors present a new fuzzy controller for load
balancing in cloud computing, which requires two
input data like processor speed and assigned load of
VM and provides the balance load to reduce the
application response time. This method can be used
only for CPU intense applications where the SLA is
related to CPU speed. On the contrary, the
technique applied in this present research is more
general as it does not make any guess regarding the
CPU speed of the machines existing. Kraft et al.
[26], proposed two approaches based on queuing
theory to predict the I/O performance of
consolidated virtual machines. First, the trace based
approach which simulates the consolidation of
homogeneous workloads that is modeled as a single
queue with multiple servers having service times
fitted to a Markovian Arrival Process. Second, they
foresaw storage performance in mixed workload
consolidation scenarios. They generated linear
estimators based on mean value analysis. In
addition, they also created a closed queuing
network model, with service times fitted to a
Markovian Arrival Process. Both methods use
monitored measurements on the block layer that is
lower than typical applications run. Besides, they
pay attention on performance prediction without
considering the performance effects due to changes
in the workload amount. In [27], the authors
proposed a fuzzy controller for allocating
virtualized resources with respect to the application
response time. Both works consider only the
response time and its deviation from the SLO value
as input parameters to the controller. Instead, this
present paper combines the information regarding
the response time with the VCPU utilization. The
combination of these two parameters allows the
adaptive genetic controller to gain more knowledge
on the system load, thus results in a more accurate
CPU capacity allocation. In [28], author proposed
solution for the synchronization problem of a server
consolidation by modifying the XEN Credit
Scheduler, in which new priority TURBO added to
the scheduler to avoid the scheduling decisions that,
was made for synchronization. TURBO allows
need to synchronization VCPUs to preempt and
being picked up to run at the next time slice without
impacting overall system fairness; thus the threads

in the concurrent program can be synchronized.
Consequently, proposed scheduler works fine and
greatly enhances the performance in concurrent
workload by decreasing CPU allocation errors; but
it incurs minor performance drop in a parallel
workload due to the extra overhead of finding the
most urgent work from other PCPUs.

Thus, it is argued that earlier works have
missed a good opportunity of cost and performance
optimization by disregarding workload aware
resource allocation or scheduling in multi-core
systems. In addition, to the best of our knowledge,
no works exploit the genetic algorithm extensively.
Thus our approach taken by genetic algorithm
usually falls into two different categories, whereby
(1) the genetic algorithm is used to model the
behavior of a system, or (2) the genetic algorithm is
used to design a controller to act on the system at
run time in order to guarantee a specific QoS.

4. RESOURCE INFLUENCE ON

APPLICATION PERFORMANCE IN VM

AND THE STATE OF THE ART VMM

SCHEDULERS

As performance provision is the major concern

of VMM scheduler in cloud, this section provides
1) two quantitative case studies that focus on how
the VM performance is affected by adapting a
VM’s CPU capacity and 2) two qualitative case
studies of widely popular virtualization VMM
schedulers.

4.1 Performance Influencing Factors
As virtualization introduces dynamics and

increases flexibility, a variety of additional factors
can influence the performance of virtualized
systems. In [20, 29] having analyzed major
representative virtualization platforms, abstracted a
generic performance model of VM performance
influencing factors as shown in figure 1. Those are
virtualization type, hypervisor’s architecture,
resource management configuration and workload
profile. Though, several influencing factors are
grouped under the resource management
configuration, the CPU scheduling configuration
has a significant influence on the virtualization
platform’s performance and chief among them are
virtual CPUs allocated to a VM, the number of
VMs and resource over commitment. Managing
virtual CPU requires an additional management
layer in the hypervisor and the number of VMs has

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

724

a direct effect on how the available resources are
shared among all VMs.

4.2 PERFORMANCE STUDY

4.2.1 Impact of CPU allocation

As it was discussed earlier, CPU cores are one
of the main sources of performance interference as
shown in Figure 1. Even with such physical
isolation for the CPU, the typical relationship
between application performance and the CPU
allocation is difficult. Thus, this complexity is
demonstrated by executing two types of
experiments, targeted at the component and
application level in virtual machine environment by
setting CPU limit at different levels. The
performance of the CPU intensive applications
(kernel compilation) and virtualized applications
(OLTB) are measured while varying the VM’s CPU
limit from 1 core to 8 cores. All resource
allocations were kept high enough to ensure that
those are all not the bottleneck. All the experiments
were conducted on physical hardware configured
with AMD FX 8-Core Black Edition FX-9590. It
has 8 *4.7 GHz AMD Opteron 8 core processors
with 3MB L2, 6MB L3 cache each, 8 GB DDR2-
667 main memory, 100 GB of storage and
10/100/1000-BaseTEthernet connections. Both host
and virtual machine are configured with 8 VCPUs
and 4 GB RAM, 50GB HDD with Ubuntu 14.04
LTS (Trusty Tahr). The virtualization solutions
considered for the experiment is XEN 5.0. In all
solutions, hardware virtualization support is used to
virtualize 64-bit guests over a 64-bit host. For the
XEN machines, virtual NICs use the default
bridged network driver. Two types of benchmarks
[30, 31] namely Linux kernel compile, MySQL-
SysBench are used and are targeted at the
component and application level of influencing
factors.a) Linux kernel compile: The kernel build
benchmark unarchieved the Linux kernel source
archieve, and build a particular configuration. It
heavily used the disk and CPU. It executed many

processes, exercising fork(), exec(), the normal
page fault handling code, and thus stressing the
memory subsystem. It accessed many files and used
pipes, thus stressing the system call interface.
b) MySQL SysBench: It is a modular, cross platform
and multi-threaded benchmark tool for evaluating
OS parameters that are important for a system to
run a MySQL database under intensive load to
evaluate its performance. SysBench, which was run
on a separate client machine, was configured to
send multiple simultaneous queries to the MySQL
database with zero think time.A simple database
that fit entirely in memory is used. As a result,
these workloads both saturated the virtual CPU and
generated network activity, with very little disk I/O.
For various numbers of threads the experiment is
conducted and the results of both are given in the
Figure 2 and Figure 3.It shows the normalized
performance of these examinations. As seen from
the graph, both the benchmarks workloads behave
linearly, and the performance slope is different at
various CPU allocation ranges. While the kernel
compilation saturate quickly at 3 VCPUs,
SysBench performance, on the other hand, varies
almost linearly with CPU allocation. But at some
time the saturated point is visible because of
resource over provisioning. Thus, this data reveals
the fact that virtualized workloads can have quite
different performance curves with respect to
number of CPU allocation. The above analysis of
hypervisor’s behaviors demonstrates that resource
pools are one of the vital factors in the constitution
of virtualization overhead and current scheduling
scheme in conventional VMM the shows
bottlenecks on the massive advanced system with
heavier load i.e., more VMs and heavier stress as
shown in the experiment. Hence, in order to
maximum the hardware resource utilization, VM
management has become an important research
field of virtualization technology. Thus, VM
scheduling is crucial for the throughput of a system
and affects the overall system performance.

Figure 1: Performance Influence Factors of the

Virtualization Layer (Adapted from [20])

Figure 2: The performance Impact of Core Mappings

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

725

This leads to the conclusions that resources
allocated to a virtual machine directly have an
impact on the hosted application’s performance and
choosing appropriate control knobs to handle
resource allocation for a VM is critical to ensure
desirable performance and create a robust model.

4.3 State of the art VMM Schedulers

VCPU scheduling remains as a challenge for
Virtualization technologies, especially with
hypervisors starting to host Chip Multithreading
VMs. A naive, yet popular, implementation is to
use a simple Round-Robin algorithm when
assigning processor resources to each VCPU. This
option is available in most hypervisors. e.g. in
KVM or Virtual Box hypervisors. However, this
approach can cause additional synchronization
latency for guest VMs due to VCPU preemption.
Whereas, VMware ESX and XEN are two of the
leading virtualization systems for the x86
architecture, and they both allow for CMT
virtualization. However, implementing CMT
virtualization is difficult because the two
technologies have different goals, and virtualization
in particular can conflict with the expected behavior
of a CMT system. As the implemented prototype in
this paper is a generic, it discusses briefing the
main features of these two VMM scheduler’s
algorithms in specific.

4.3.1 CPU scheduling algorithms in XEN

XEN is quite unique among VM platforms
because it allows user to choose among different
CPU schedulers. It implements a higher level
abstraction scheduling operations, where each
scheduler needs to implement its own scheduling
policy and registers itself to this interface. XEN
supports three different types of schedulers [32, 8]
namely Borrowed Virtual Time (BVT), Simple
Earliest Deadline First (SEDF) and Credit
Scheduler .The users can set the scheduler option
during XEN’s boot time by passing the parameter

value of sched i) Borrowed Virtual Time (BVT): It
is a proportional share scheduler that is suited for
I/O intensive domains. The scheduler adjusts itself
dynamically with the varying I/O intensities when
specified with the correct parameters. It is based on
the concept of virtual time, dispatching the
runnable VM with the smallest virtual time the low
latency support is provided in BVT for real time
and interactive applications by allowing latency
sensitive client to warp back in virtual time to gain
scheduling priority. And the client can effectively
borrow virtual time from its future CPU allocation.
Each runnable domain Domi will receive CPU
proportion according to its weight wi, and the
virtual time vti of Domi is incremented by its
running time rtij in the jth scheduling around,
divided by wi: vti ← vti +rtrj / wi. However, due to
the lack of Non Work Conserving (NWC) mode
(unused CPU cycles of one domain can’t be used
by the other domain), its usage is severely limited
in many application environments. ii) Simple
Earliest Deadline First (SEDF): In this algorithm,
the domains request a minimum time slice that
requires for communication. The request is a tuble
of (si, pi, xi), which means Domi will receive si units
of time in each period of length pi. The xi is a
boolean flag indicating whether Domi is scheduled
in WC-mode or NWC-mode. SEDF performs well
when the workload is low, but when running in
heavy workload, many clients are observed to miss
their deadlines and the scheduling overhead
significantly increases, where the domain requests
for‘t’ slices every ‘p’ periods of CPU time. One
main shortage is the lack of global workload
balancing on multiprocessors, and the CPU fairness
depends on the value of the period. Besides, the
lack of global load balancing on multiprocessors,
implementation also limits its usage. iii) Credit
Scheduling: BVT lacks NWC-mode while SEDF is
found to be unstable under heavy workload and
does not support CMT well, so both of them were
replaced by Credit scheduler in XEN. The credit
based scheduler is recently incorporated into XEN
and it provides better load balancing and low
latency mechanisms. This algorithm is a kind of
proportional share (PS) strategy, featuring
automatic workload balancing of virtual CPUs
across physical CPUs on a CMT host. According to
the scheduling algorithm of Credit Scheduler using
in XEN hypervisor, each virtual CPU is
asynchronously assigned to a physical CPU by
CPU scheduler in order to maximize the
throughput. Specifically, when there is no runnable
VCPU on the current physical CPU, the scheduler
will try to migrate one runnable VCPU from the

Figure 3 :SysBench Database Transaction

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

726

other physical CPUs. Each domain is assigned with
a (weight, cap) pair. Similarly, the scheduler
allocates CPU time proportion (in credit) to each
domain according to its weight. All queued VCPUs
are sorted by their remaining credit, and the
scheduler will select the VCPU that has most credit
to run. When the cap is 0, VM receives extra
physical CPU (WC-mode), while a nonzero cap
(expressed as a percentage) limits the amount of
physical CPU time obtained by a VM (NWC-
mode). The algorithm uses followers interval for
the physical CPU allocation. The priorities (credits)
all runnable VMs which are recalculated in the
interval, which is mainly in proportion to weight
that VMs are assigned by the user. This algorithm
can efficiently achieve a global workload balancing
on a CMT system when the majority of the
workload is not the high concurrent application.
However, all these choice come with the burden of
choosing the right scheduler and configuring it.

4.3.2 VMware ESX server VCPU scheduling

algorithms

The default approach by KVM or Virtual Box
hypervisors (Round-Robin algorithm) cause
additional synchronization latency for guest virtual
machines due to VCPU preemption. In order to
eliminate this synchronization latency, VMware
applies a co-scheduling algorithm [O. Sukwong,
and H. Kim], which uses a concept similar to gang
scheduling [33]. Co-scheduling requires that all
VCPUs are associated with a VM to be scheduled
simultaneously in order for the VM to run. Such an
algorithm helps to avoid the synchronization
latency, as both the waiting VCPUs and the lock
holding VCPU are preempted and resumed at the
same time. This “strict” co-scheduling approach,
however, introduces a fragmentation problem. A
VCPU can only be scheduled after the hypervisor
gathers enough resources to execute all other
VCPUs in the same VM. However, ESX has
several optimizations to improve performance over
a naive implementation of co scheduling, which
would require even idle VCPUs in a VM to
execute. First, ESX is able to detect if a VCPU is
executing an idle loop, and in this case ESX does
not schedule an idle VCPU to run nor require it to
be co-scheduled for active VCPUs to run. Second,
ESX uses a technique called relaxed co-scheduling
that helps prevent requiring physical CPUs from
being idle in order to start running VCPUs in an
CMT system. ESX provides three control knobs for
CPU allocation to individual VMs: reservation,

limit, and shares. Reservation guarantees a certain
minimum CPU allocation expressed in MHz Limit

(in MHz) provides an upper bound on the CPU
allocation. Share provides a mechanism for
proportional allocation during time periods when
the sum of the CPU demands of the currently
running VMs exceeds the capacity of the physical
host.

Having analyzed two major representative
virtualization platforms, one can infer that current
commercial resource management tools provide
only partial solutions to VCPU scheduling problem
i.e. it provides resource management capabilities by
forcing virtual machines allocation to be within
certain limits. In addition, these tools do not
address setting these limits with appropriate values
for each application, or how they should be
changed in case. Thus, a resourceful VMM
scheduler is important for increased throughput and
decreased response time. Given varying workloads,
there is a particular scheduling algorithm that is
more efficient at scheduling VM for particular
types of workloads. Thus, it is possible to fine tune
the VMM scheduler to maximize throughput and
minimize response time with specific type of
workloads subject to SLA.

5. SYSTEM MODEL

This section presents the proposed self-

adaptive resource management model and its
working logic. Generally VMM schedulers repeat
three steps: workload characterization, performance
estimation, and scheduling decision. Thus, the core
concept revolves around the idea of building
mechanisms into systems that allow for dynamic
reconfiguration of VM’s VCPU, based on the
variations of the workload to achieve a) an
improved overall system performance to withstand
SLA and b) a better utilization of system resources.
To achieve these goals, a computer system needs to
be checked regularly. Thus this section shows how
the mentioned goals are attained through a
combined use of system models that guide heuristic
combinatorial search techniques in their exploration
of the space of possible configurations. The system
model evaluates, predicts, the performance of a
system for a given configuration point.

The proposed system algorithm works as
follows. Thereby, all the virtual machines are
serving the incoming requests; VMM monitors the
resource utilization of the various resources, and
performance of the system. VMM executes a
SAVIMM algorithm, at regular intervals, called
Monitoring interval (MI), to determine the best
configuration (suitable number of cores) for each
VM with the help of a meta-heuristic algorithm. As

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

727

a result of running the controller algorithm,
reconfiguration commands are generated to instruct
the system to change its configuration. To
maximize the performance, design issues such as
i) fairness in resource sharing among VMs,
ii) workload balancing among virtual CPUs in a
CMT VM iii) unneglectable cost of the wasted
CPU time during the period of synchronization
between VCPUs in a VM and iv) adaptiveness for
VMs with the different workload properties, should
be considered for the scheduler in the VMM.
Hence, this model runs continuously to ensure that
provisioning goals are met at all times and set the
following design goals for resource provisioning
approach: Automation: All decisions related to
provisioning should be made automatically without
human intervention; Adaptation: The application
provisioner should adapt to uncertainties such as
changes in workload intensity; Performance

Assurance: The resource allocation in the system is
dynamically varied for ensuring achievement of
SLA targets.

5.1 The General Control Approach

This section presents the control architecture of
the proposed adaptive systems. It describes the
system architecture and components, and it also
describes how interact with one another.
Furthermore, some control decisions regarding
workload forecasting, and frequency of control are
also discussed. The architecture of the SAIVMM
system model is best illustrated in Figure 4.It has
five main components namely workload intensity
supervisor, workload forecaster, SLA observer,
system performance examiner, genetic algorithm
guided VCPU regulator. The dynamic balancing
component, VCPU regulator of SAVIMM
reconfigures the individual VM’s VCPU demand
based on the resource requirement.

This component performs a re-evaluation of the
resource pools, in a regular interval, based on the
performance evaluation subject to SLA over a
period of time. If there is a big imbalance in the
resource pool, then the balancing component will
be more aggressive in the balancing process. SLA

observer is a component that computes the
measurement required for implementing the control
system. It calculates average response time,
throughput and resource utilization for each client
class on specified time periods. It has a list of
completed requests for each client class, which is
populated by the resource unit class after servicing
the requests. The designer specifies the time
interval to calculate the statistics. The generated
statistic report is used by the external entities for
analysis and makes runtime decisions. Afterwards,
the list of request is cleared to accumulate the
completed requests till the next sample instance.
The SLA observer module uses the average arrival
rate of requests obtained in the previous Monitoring
Interval (MI), as an estimation of the expected
workload intensity for the next MI. This value is
then used by the algorithm to compute the SLA
value for a given set of configuration parameters.
The drawback of this approach is that it overlooks
any increasing or decreasing tendency in the
workload of the past MI. This results, an inaccurate
choice of configuration values. System

Performance Examiner is implemented as a small
component that collects utilized data on all system
resources (e.g., Disks and CPU) as well as the
count of completed requests which allow the
component to compute the response time and
throughput. The monitor periodically inserts
multiple sample requests into the requests that are
sent by the client to the server. Two time stamps are
used during a sample request is inserted and a
response is received. The difference is used as the
server side response time and the average response
time is considered as the metric at certain point of
time. Workload Intensity Supervisor and

Workload Forecaster is the main components that
make the algorithm more proactive as opposed to
reactive. The use of effective forecasting algorithms
enables the controller to acquire a more proactive
behavior for the workload intensity value used by
the model. It means that the system can make better
configuration decisions to accommodate the future
workload. To overcome the shortcomings
mentioned in SLA module, a module is added
responsible for short term workload forecasting.
This module keeps a sliding window of N values
for the last average arrival rates observed for the
last N small sub intervals. Each of the sub intervals

Figure 4: SAIVMM Framework Components

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

728

is of length ∆ seconds and ∆ are chosen so that N x
∆ does not exceed the length of a monitoring
interval (some minutes).Workload Forecaster is
responsible for prediction of request arrival rate.
This information helps to compute the resources
required for meeting SLA targets and resource
utilization goals well in advance. Prediction can be
defined based on historical data on resources usage,
or statistical models derived from known
application workloads. In addition, the particular
method to estimate future load, the workload
intensity supervisor alerts the workload forecaster
and VCPU tuner when service request rate is likely
to change. This alert contains the expected arrival
rate and it must be issued before the expected time
for the rate to change; So that the workload
forecaster and VCPU tuner will have time to
calculate changes in the system and the application
provisioner will have the time to add or remove the
required resources. Genetic Algorithm guided

VCPU Regulator: It consists of two components
namely VCPU regulator and genetic algorithm
controller. VCPU regulator decides the number of
VCPUs required meeting the SLA targets, with the
help of genetic algorithm. As stated earlier, VCPU
regulator finds out the best configuration by
collecting response time of the entire VMs. This
algorithm takes the desired SLA goals, the arrival
and departure processes into account and performs
a combinatorial search of the state space of possible
configuration points in order to find optimal
configuration. The cost function associated with
each point in the space of configuration points is
the SLA value of the configuration described in
section 6.This component considers the system as a
network of queues whose model parameters are
obtained via workload intensity supervisor and
workload forecaster components. The queuing
network model considered by the system consists of
client and server architecture. Clients in the model
are represented by the generated requests, whereas
application provisioner and application instances
are the processing stations for these requests. Once
the VCPU regulator determines the best
configuration for the workload intensity levels
provided by the various inputs, it sends
reconfiguration commands to the appropriate VM.
Control Considerations: The accuracy of the CPU
time is scheduled to the virtual CPUs, depending on
the time interval that is regarded. Hence in the case
to complementing the control approach, it is
recommended to take some additional
considerations into account when designing and
deploying the system. These considerations have a
significant impact on the efficiency of the algorithm

and on the performance of the entire system. By
enabling the algorithm to dynamically regulate the
frequency of its invocation over the fixed interval,
the overall system performance and stability could
be improved. In the case of a sudden surge in the
workload, an adaptive controller algorithm
responds to the change occurs in the external
environment in advance. Figure 5 shows a simple
load adjustable algorithm that can be used to
dynamically vary the length of the monitoring
interval. This algorithm sets the length of the MI as
a multiple, MI, of the smallest possible interval
MImin. When the currently measured value of the
SLA, SLAcurr, is less than or equal to the minimum
value of SLAmin for the SLA, the monitoring
interval is set to its minimum value MImin.
Otherwise, the monitoring interval is set to the
multiple of MImin according to the relative error
between the SLA value,and SLAprev, measured last
time the algorithm was activated and the currently
measured value of the SLA, SLAcurr.

6 DESIGNS AND IMPLEMENTATION OF

SYSTEM MODEL

This section presents the design and

construction of a simulation framework with
appropriate parameters for evaluating VCPU
scheduling algorithms. The simulation framework
is built by CSIM models and tool that makes the
framework easy to understand and configure for
various virtualization setups. The simulation model
of a system is built as shown in figure 6 and
experimented with policies as discussed earlier. The
specification of the system is the cluster of the
server machines in which each modeled as a
multiple server queue. It incorporates necessary
assumptions that are required for having a real
performance model of cloud centers: (i) Random
arrival process (Poisson process) (ii) Incorporates
complex user requests by introducing super-tasks;
(iii) Captures different delays imposed by cloud

Figure 5: Adaptive Monitoring Interval (MI)

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

729

centers on user requests; (iv) hyper exponential
family distribution of the service time.

Let us assume n virtual machines are
consolidated into a m-core physical machine, given
as vector VM = {vm1, vm2,...vmn | m ≥ n }.The
allocated /available resources for the virtual
machines at some point of time is given as vector
Rcpu = {r1cpu,r2cpu,…rncpu | ricpu ≥ 1 }.The response
time of the virtual machines at some instance ,to
meet the SLA is given as vector SLAresp =
{resp1,resp2,…respn}.Further, resource requirement
of the virtual machines can be calculated as

follows ricpu = (respi / ∑ respi		
���

���) * (m-1).In real

systems, it is common that the execution times of
the parallel segments to be lengthened as more
processor cores are simultaneously accessing one
another. The value (m-1) models the effects of
contention for access to multicores.

Researchers use simulators to evaluate new
scheduling techniques under controllable and
repeatable condition, which is impossible to reach
in real cloud. Simulators are very useful as different
setups and different data sets can be used to
evaluate existing or proposed solutions as well as to
compare their performance. Several simulation
approaches for cloud systems have been proposed.
Each differs in whether they focus on special
applications or allow simulation of cloud systems in
common. For an example, the simulation
framework MRPerf [34] instruments the discrete
event network simulator NS-3 [35] for studying
performance and dependability of MapReduce [36].
The framework models network, node, and disk
behavior in high aspect and thus allows evaluating
the impact of network topology choices and
network / node failures, but is limited to
applications that use MapReduce. Similarly, the
cloudsim toolkit [37] is a discrete event simulation
engine provides simple implementation of common
entities such as computational resources or users
and also allows simulating virtual machines, VM

scheduling, simple jobs, network topology, data
storage and other useful functionality. However,
provided implementations are too simple and it is
necessary to extend these entities for more complex
requirements. Further, it needs one to have in depth
knowledge on cloudsim usage classes and java. In
contrast to all the above, CSIM [38, 39] is a
simulation model building toolkit, used by C/C++
programmers to implement process oriented,
discrete event simulation model. These models
mimic the operation of complex systems, to give
modelers insight into the dynamic behavior of these
systems. Because CSIM models are C/C++
programs, there are virtually no limits to the level
of details, degree of complexity and size of the
simulation models. CSIM processes are operated in
an asynchronous parallel manner, mimicking the
behavior of multiple entities which are active at the
same time.

A CSIM program models a system as a
collection of CSIM processes which interact with
each other by using the CSIM structures. The
purpose of modeling a system is to produce
estimates of time and performance. The model
maintains simulated time, so that it can yield insight
into the dynamic behavior of the modeled system.
In CSIM, entities are represented by processes, and
queues are represented by facilities and other
simulated resources. In these models, the complete
system is represented by a collection of simulated
resources and a collection of processes that
compete for use of these resources. A major benefit
of using a standard programming language to
implement simulation models is that these models
can be combined easily with other software
components. Informally, the followings are the
basic constructs of CSIM i) Processes - the active
entities that request service at facilities, wait for
events, etc. ii) Facilities- queues and servers
reserved or used by processes iii) Events - used to
synchronize process activities iv) Mailboxes - used
for inter-process communications v) Data

collection structures - used to collect data during
the execution of a model vi) Process classes- used
to segregate statistics for reporting purposes vii)
Streams - flow of random numbers. In CSIM, it is
easy to model a CPU and multi-core CPU as a
facility and facility_ms respectively. A facility is a
server with a queue for the waiting processes. In
operation, an arriving process reserves a facility. If
the server at the facility is not busy, it is assigned to
do the requesting process. If the server is busy, the
arriving process is placed in the queue and it is
suspended. Normally, when the process is given to
the server, it does a hold (service time) and releases

Figure 6: Cloud computing Environment model

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

730

the server at the facility. When this happens the
queue is checked; there is a waiting process, and so
on. Now a multi-server operates in the same way
only when there are multiple servers. The service
time is drawn from a probability distribution
function exponential (service Time). All the CSIM
resources have “inspector functions, which let one
to get properties and statistics from the resources.
For an example, the mean response time of the
server [i] is given by server[i]->resp (). Similarly,
the statistics and counters for a resource is cleared
by calling the reset () method. The communication
among CSIM processes is accomplished via CSIM
mailboxes and synchronization of CSIM processes
is accomplished via CSIM events.

Based on CSIM, a set of C++ classes,
serverVM, VMM, scheduler, client and transactions
been developed, which models the basic program
and machine components of the system as shown in
figure 5 and figure 6. Figure 7 depicts the UML
class diagram, model processing units of a
computing system. The working logic of the
proposed system is given as a sequence diagram in
figure 8. This is an open model, where the
transactions arrive from outside to be processed
with a variable of transactions that circulate among

the clients and the servers via internet. The sim
process creates the model in which the activities
start with the instantiation of the genProcess
method in the Client class where each client has its
unique id. The generator holds (delay) an
exponentially distributed interarrival interval and
generates a new transaction using genProcess that
runs “forever”. When genProcess creates a new
transaction, it selects the server first and the
transaction will visit using client class id. In this
model, the servers are an array of server objects,
and each server has a CPU resource, with multiple
servers (think of each of these CSIM servers as a
core). Each transaction notes its start time and visits
the cpu on the serverVM object. When a transaction
completes, it records its response time (the interval
between its start time and its completion). The
selectServer and configController method models
the VMM as if it is in the proposed system
(figure 5). The configController is elaborated more.
For example, scheduler () functions have two
different methods, reactive and proactive for
resource allocation. Each scheduler needs to
implement its scheduling policy and needs to
register itself to this interface. Users can set the
scheduler option during compile time by passing
the parameter value of scheduler () and the
scheduler implements the required resource
allocation decisions. Based on the chosen
controller, the sim process executes
configController that in turn invokes appropriate
scheduler which allocates sufficient resources. For
instance, if the decision is to maintain 2 and 3
resource units for A and B client classes
respectively, this component implements these
decisions until the next decision is made. It has the
access to the queue instances of each client class,
resource units and other state variables. In regular
interval, it executes the scheduler algorithm. Here,
the design decision of centralized scheduler has
been taken instead of each class taking the
responsibility of scheduling. This is because, it is
easy to track and validate the resource utilizations
compared to a distributed algorithm. In addition,
arbitrary size of controller intervals are considered
to dynamically vary the length of the monitoring
interval that is dynamically determined using the
algorithm in Figure 6. In each control period, the
VMM scheduler computes a weight for every VM.
The weights are then truncated to integers and
given to the VMs to set the number of VCPUs to be
used for the next interval. Finally, the inspector
function reports, statement of each server resources
usage, and summary of the response times for all of
the transactions. The user can use the given classes

Figure 7: UML Class Diagram of the model

Figure 8 :UML Sequence Diagram of the model

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

731

to implement the required simulation depending on
their requirements.

7. EXPERIMENTS AND EVALUATION

This section, presents the result of an extensive

evaluation of the proposed workload aware
adaptive scheduler approach based on synthetic
workloads. Due to the space constraints, only
selected experiments are presented. Thus, only
consolidated servers average response time for
workload aware reactive and proactive algorithm
with fixed and variable time interval is given. Table
1 indicates that the effective response time differs
from the MI for both proactive and reactive. As far
as reactive algorithm is concerned, it gives good
results for MI is 1 minute (Table 1), and for all
other cases not withstands with SLA.This is
because the resource allocations are carried out
precisely at the time interval, and in all other cases
no such precision is maintained. Subsequently, for
this case there is no improvement in their frequency
of execution. Likewise, for the Exponential
Smoothing case the effective response time is
0.3821 when MI=2 (Table 1 and Figure 9).

This is because, the Exponential Smoothing
forecasted the workload, predetermined resource
allocation that made the server ready for
maintaining SLA. In addition, as the frequency of
execution time is saved 50%, steeled to the service
time. For the same case, when the MI=3 (Table 1)
close result with 50% execution frequency

improvement with a 2% deviation in their net
response time can be seen.

Similarly, for Weighted Moving Average case it
gives good response time for both MI= {1, 2}
(Table 1 and Figure 10) with least deviation of
0.5% and 34% execution frequency reduction. This
is because as mentioned earlier this forecasting
algorithm exploits the workloads characteristics of
constant intensity for quite a while before changing
significantly. Thus for the fixed MI, forecasting
algorithm provides good results especially for
WMA. As far as MI is concerned the accuracy of
the CPU time is scheduled to the virtual CPUs
depending on the time interval that is regarded.
That is, if the MI is too small and the workload
amount is relatively steady, the SAVIMM
algorithm will be executed too frequently with little
or no effect. At the same time, if the MI is too large
and the workload amount varies very quickly, the
controller will not run effectively. Thus, a MI that
adjusts itself to the workload strength can be more
effective than a fixed MI. Table 2 gives the
comparative results of the adaptive MI algorithms.
Figure 11 shows all algorithms work quite nicely
and withstand the SLA over fixed MI.

Table 1:Comparison of Various Workload Aware

Algorithms for the Fixed Monitoring Interval

S
.N

o

Model

T
im

e

(m
in
u
te
s

Frequency

of

algorithm

invocation

resp time

(minutes)

1 Reactive

1 100

0.3967

2 Proactive(ExpS) 0.3899

3 Proactive(WMA) 0.3810

4 Reactive

2 50

0.3998

5 Proactive(ExpS) 0.3821

6 Proactive(WMA) 0.3826

7 Reactive

3 33

0.4119

8 Proactive(ExpS) 0.3890

9 Proactive(WMA) 0.4090

10 Reactive

4 25

0.4292

11 Proactive(ExpS) 0.4207

12 Proactive(WMA) 0.4256

13 Reactive

5 20

0.4315

14 Proactive(ExpS) 0.4190

15 Proactive(WMA) 0.4002

16 Reactive

6 17

0.4521

17 Proactive(ExpS) 0.4421

18 Proactive(WMA) 0.4456

Figure 9: SAVIMM Response Time for the fixed

Monitoring Interval of 1 minute

Figure 10: SAVIMM Response Time for the fixed

Monitoring Interval of 2 minute

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

732

Limitations: Though this flexible simulation
framework aids the evaluation of VCPU scheduling
algorithms, the framework at this current state is
still primitive that needs improvements in order to
(i) include other resource requirements, such as
memory, network bandwidth, and (ii) represent
more synchronization mechanisms (iii) try adaptive
MI algorithm with different values (iv) use a
variety of real-world arrival traces to generate the
request rate.

8. CONCLUSION AND FUTURE RESEARCH

Virtualization is becoming an increasingly

important technology in large part because it offers
the promise of allowing more efficient use of
computing resources. However, the behavior of a
VM often differs significantly from a physical
system, leading to performance degradation for
applications running in a VM. Furthermore,
virtualization is a rapidly evolving field, as
hardware support continues to be added and
adopted to bring the performance of virtualized
systems closer to that of native execution. Hence,
this paper, propose novel adaptive meta-heuristics
based scheduling policies for provisioning the
VCPU resources among competing VM service
domains in a cloud. The objective of such
provisioning is to guarantee to budge to SLA for
each domain, with respect to the diverse workloads
on-the-fly. The framework is built upon CSIM
models and tool, making the framework easy to
understand and configure for various virtualization

setups. We demonstrate the usefulness of the
framework by evaluating three VCPU scheduling
algorithms: proactive, reactive and adaptive. We
evaluated how periodic and aperiodic execution of
control actions can affect policy performance and
speed of convergence. Simulation based
experimental results using synthetic workload
models indicated that the proposed provisioning
technique can detect changes in workload intensity
(arrival pattern and resource demands) that occur
over time and allocate resources accordingly to
achieve application SLA targets. In addition the
results of the experiments have shown that the
proposed Weighed Moving Average algorithm
combined with the adaptive MI policy significantly
outperforms other dynamic VM consolidation
algorithms; In regard to the SLA metric due to a
substantially reduced level of response time
violations and the frequency of algorithm
invocation.

Regarding possible future works, first we plan
to evaluate the proposed system in a real Cloud
infrastructure like Open Stack. Second is the
investigation of more complex workload models
such as slowly varying, quickly varying (synthetic),
big spike, dual phase variations which are drawn
from real-world traces; that will leverage these
workload models with increasing server
consolidation ratio. Third apart from CPU sharing
we would to like extend to cover the allocations of
the resources like main memory, network I/O.
Fourth, we can use multiple alternative forecasting
methods in parallel; select which method to trust
based on its accuracy in recent time horizons.
Finally we will extend the model to support
adaptive scheduling techniques in addition with the
resource allocation for the diverse workloads.

REFERENCES

[1]. Makhija V, Herndon B, Smith P, Roderick L,
Zamost E and Anderson J, “VMmark: A
Scalable Benchmark for Virtualized Systems”,
Technical Report VMware-TR-2006-002, Sep
2006.

[2]. James E .Smith, Ravi Nair, “Virtual Machines:
Versatile Platforms for Systems and
Processes", ISBN: 1-55860-910-5, Elsevier.

[3]. Sukwong O, Kim H, “Is co-scheduling too
expensive for SMP VMs?”, In Proc. of the 6th

conf. on Computer systems, ACM, 2011.
[4]. Suresh.S, Kannan.M, “A Study on System

Virtualization Techniques”, International

Conference on HI-TECh Trends In Emerging

Figure 11: SAVIMM Response Time for the

Adaptive Monitoring Interval

Table 2: Comparison of Various Workload Aware

Algorithms for the Adaptive Monitoring Interval

S
.N

o

Model

Frequency of

algorithm

invocation

resp time
(minutes)

1 Reactive 38 0.3883

2 Proactive(ExpS) 26 0.3751

3 Proactive(WMA) 22 0.3579

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

733

Computational Technologies (ICECT2014),
Tamilnadu, India, February 20- 21, 2014.

[5]. Herbst N.R,Huber N,Kounev S, and Amrehn
E, ”Self-Adaptive Workload Classification and
Forecasting for Proactive Resource
Provisioning”, In Proceedings of the 4th

ACM/SPEC International Conference on

Performance Engineering (ICPE 2013),
Prague, Czech Republic, April 21-24. 2013.

[6]. Sivanandam S.N, Deepa S.N, “Introduction to
Genetic Algorithms”, Springer, ISBN 978-3-
540-73189-4, 2008.

[7]. Goldberg D. E, “Genetic Algorithms in
Search”, Optimization & machine Learning,
Addison-Wesley, 1989.

[8]. Cherkasova L,Gupta D, and Vahdat A,
“Comparison of the three CPU Schedulers in
XEN”, SIGMETRICS Perform. Eval. Rev.,
Vol.35, no.2, pp.42-51, 2007.

[9]. Xue Liu, Xiaoyun Zhu, Pradeep Padala, Zhikui
Wang, and Sharad Singhal, “Optimal
Multivariate Control for Differentiated
Services on a Shared Hosting Platform”,
Proceedings of the 46th IEEE Conference on

Decision and Control (CDC’07), December
2007.

[10]. O.Tickoo., R.Iyer., R.Illikkal., and D. Newell,
“Modeling Virtual Machine Performance:
Challenges and Approaches”, In HotMetrics,
2009.

[11]. Ongaro D, Cox A. L., and Rixner S,
“Scheduling I/O in Virtual Machine
Monitors”, Proceedings of the fourth ACM

SIGPLAN/SIGOPS international conference

on Virtual execution environments(VEE

'08),ACM,pp.1-10, New York, USA,2008.
[12]. Padala P, Hou K.Y, Shin K.G, Zhu X, Uysal

M, Wang Z, Singhal S, and Merchant A,
“Automated Control of Multiple Virtualized
Resources”, Proceedings of EuroSys ’09,
ACM, 2009.

[13]. Weng C., et al., “The Hybrid Scheduling
Framework for Virtual Machine Systems,”
Proc. of the 2009 ACM SIGPLAN/SIGOPS

intl’conf. on Virtual execution environments,
New York, NY, USA, 2009.

[14]. Chieu T. C, Mohindra A, Karve A. A, and
Segal A, “Dynamic Scaling of Web
Applications in a Virtualized Cloud
Computing Environment”, Proceedings of the

6th International Conference on e-Business

Engineering (ICEBE’09), 2009.

[15]. Watson B. J, Marwah M, Gmach D, Chen Y,
Arlitt M, and Wang Z, “Probabilistic
Performance Modeling of Virtualized
Resource Allocation,” in ICAC, 2010.

[16]. Jung G, Hiltunen M, Joshi K, Schlichting R,
and Pu C, “Mistral: Dynamically Managing
Power, Performance, and Adaptation Cost in
Cloud Infrastructures”, In ICDCS, 2010.

[17]. Lim S.H, Huh J.S, Kim Y.J, Shipman G. M,
and Das C. R, “A Quantitative Analysis of
Performance of Shared Service Systems with
Multiple Resource Contention”, Technical

report, 2010, [Online]. Available:
http://www.cse.psu.edu/research/publications/
tech-reports/2010/cse-10-010.pdf.

[18]. Gong Z, Gu X, “Pac: Pattern-Driven
Application Consolidation for Efficient Cloud
Computing”, 18th Annual IEEE/ACM

International Symposium on Modeling,

Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS'10),
pp.24–33, August 2010.

[19]. Li K, “Optimal Load Distribution for Multiple
Heterogeneous Blade Servers in a Cloud
Computing Environment”, Parallel and

Distributed Processing Workshops and PhD

Forum, 2011 IEEE International Symposium ,
pp.948–957, 2011.

[20]. Huber N, Quast M. von, Hauck M, and
Kounev S, “Evaluating and Modeling
Virtualization Performance Overhead for
Cloud Environments”, Proceedings of the
International Conference on Cloud

Computing and Services Science (CLOSER

2011), SciTePress, pp. 563 - 573.
Noordwijkerhout, Netherlands, May 7-9,
2011.

[21]. Kousiouris G, Cucinotta T, and Varvarigou T,
“The Effects of Scheduling, Workload Type
and Consolidation Scenarios on Virtual
Machine Performance and their Prediction
through Optimized Artificial Neural
Networks”, Journal of Systems and Software,
Vol. 84, no. 8, 2011.

[22]. Lu L, Zhang H, Jiang G, Chen H, Yoshihira
K, and Smirni E, “Untangling Mixed
Information to Calibrate Resource Utilization
in Virtual Machines”, International

Conference on Autonomic Computing, 2011.
[23]. Nikolaus Huber et.al., “Model-based Self-

Adaptive Resource Allocation in Virtualized
Environments”, SEAMS ’11, May 23-24,
2011.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

734

[24]. Guenter B, Jain N, and Williams C,
“Managing Cost, Performance, and Reliability
Tradeoffs for Energy-Aware Server
Provisioning”, Proceedings IEEE INFOCOM,
pp. 1332-1340, 2011.

[25]. Sethi S, Sahu A, and Jena S. K, “Efficient
Load Balancing in Cloud Computing using
Fuzzy Logic”, IOSR Journal of Engineering,

vol. 2,no. 7, pp. 65-71, 2012.
[26]. Kraft S, Casale G, Krishnamurthy D, Greer

D, and Kilpatrick P, “Performance Models of
Storage Contention in Cloud Environments”,
SoSyM, 2012.

[27]. Rao J, Wei Y, Gong J, and Xu C.Z., “QoS
Guarantees and Service Differentiation for
Dynamic Cloud Applications”, IEEE

Transactions on Network and Service

Management, Vol. 10, no. 1, March 2013.
[28]. Chia-Ying Tseng and Kang-Yuan Liu, “A

Modified Priority Based CPU Scheduling
Scheme for Virtualized Environment”,
International Journal of Hybrid Information

Technology, Vol. 6, no. 2, March, 2013.
[29]. Armbrust M, Fox A, Griffith R, Joseph A. D,

Katz R, Konwinski A, Lee G, Patterson D,
Rabkin A, Stoica I, and Zaharia M, “A view of
Cloud Computing”, Communication of

ACM,Vol.53,pp.50–58, April 2010.
[30]. Eduardo Ciliendo,Takechika Kunimasa ,

“Linux Performance and Tuning Guidelines”,
Redpaper,IBM,July 2007.

[31]. Suresh S, Kannan M, “A Performance Study
of Hardware Impact on Full Virtualization for
Server Consolidation in Cloud Environment”,
Journal of Theoretical and Applied Information

Technology(JATIT), Vol. 60, no.3, 28th
February 2014.

[32]. Chisnall D, “The Definitive Guide to the XEN
Hypervisor”, Prentice Hall, 2007.

[33]. Schwiegeishohn U and Yahyapour R,
"Improving First-Come-FirstServe Job
Scheduling by Gang Scheduling", Job

Scheduling Strategies for Parallel Processing,
Springer Berlin, Heidelberg, 1998.

[34]. Wang G, Butt A. R, Pandey P, and Gupta K,
“A Simulation Approach to Evaluating Design
Decisions in MapReduce Setups”,
International Symposium on Modeling,

Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS),
IEEE,pp.1–11,2009.

[35]. Various authors, “The Network Simulator NS-
3”,[Online].Available:http://www.isi.edu/nsna
m/ ns/.(Retrieved in January 2014).

[36]. Dean J and Ghemawat S, “Mapreduce:
Simplified Data Processing on Large Clusters”,
Communication of ACM, Vol.51,pp.107–113,
January 2008.

[37]. Buyya R, Ranjan R, and Calheiros R. N,
“Modeling and Simulation of Scalable Cloud
Computing Environments and the CloudSim
Toolkit: Challenges and Opportunities”,
Proceedings of the 7th High Performance
Computing and Simulation (HPCS 2009)

Conference, 2009.
[38]. Edwards G and Sankar R, “Modeling and

Simulation of Networks using CSIM”,
Simulation, Vol.58, no.2, pp.131-136, 1992.

[39]. Schwetman H, “CSIM19: A Powerful Tool
for Building System Models”, Proceedings of

the 2001 Winter Simulation Conference,
pp.250-255, 2001.

