
Journal of Theoretical and Applied Information Technology 
 31

st
 October 2014. Vol. 68 No.3 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
716 

 

SAIVMM: SELF ADAPTIVE INTELLIGENT VMM 

SCHEDULER FOR SERVER CONSOLIDATION IN CLOUD 

ENVIRONMENT 

S.SURESH
1
, S.SAKTHIVEL

2
 

1Associate Professor, Department of Computer Science and Engineering, Adhiyamaan College of 

Engineering, Hosur-635109, Tamil Nadu, India 
2Professor, Department of Computer Science and Engineering, Sona College of Technology, TPTC Main 

Road,Salem-636005, Tamilnadu, India 

E-mail:  1ssuresh.siv.72@gmail.com , 2sakvel75@gmail.com  

 

ABSTRACT 

 
Cloud computing is an on-demand resource provisioning technology and server virtualization act as a 
driving force of cloud. Virtualization consolidates multiple physical machines into one machine, thereby 
cut cost and improves efficiency of data center. However, as all virtual machines (VM) share the same 
physical resources, contention for shared resources cause significant variance in observed system response 
time and throughput. Diverse and unpredictable workloads in cloud environments, needs resource 
allocations to be continuously optimized to ensure the hosted services meet their service level objectives 
(SLO). However, the current VMM algorithms are more oriented with providing fair access to the VMs; 
Lack the ability to adaptively determine the effects of changing resource allocations on the performance of 
the hosted IT services.  Furthermore, as hardware getting evolved and multi core processor technology has 
increased density of processor cores in a computer at a faster rate, effective usage of the resources becomes 
a great challenge to software. This is a major bottleneck in cloud applications where performance plays a 
vital role for user acceptance. Taking this all into account, the paper propose a novel system using meta-
heuristic combinatorial search techniques that automatically regulates the VMM CPU scheduler related to 
the applications on-the-fly with dynamic changes in the environment to maximize throughput and minimize 
response time. We used this resource allocation algorithm in an evaluation, consist of various scenarios 
with synthetic workloads. Simulation based results indicate that proposed model improves CPU utilization 
and make the best tradeoff between resource utilization and performance by 2% on average and up to 6% 
compared to the  default VMM scheduler configurations. The proposed model discussed in this paper can 
readily be extended to a multi-tier cloud computing environment applications to reduce the overall 
performance delay. 
Keywords: Cloud computing, Virtualization, VMM Scheduling, Workload, Simulation 
 

1. INTRODUCTION  

 
Clouds are a large poll of hardware or software 

resources that can be accessed on-demand like a 
utility computing. These cloud services can be 
provided without any knowledge of the physical 
location of the servers and the systems that provide 
the computing services. It is continuously gaining 
popularity, due to its ease-of-use, on-demand 
resource provisioning, pay per use business model, 
and ability to support execution of applications of 
diverse types. Virtualization act as a driving force 
of cloud by simplifying load balancing, dealing 
with hardware failures and easing system scaling 
through server consolidation. Server consolidation 
enables one to consolidate applications running on 
possibly tens of thousands of servers each 
significantly underutilized on the average; Thus by 

running multiple virtual machines on the same 
physical resources, virtualization promises a more 
efficient usage of the available hardware in cloud 
data centers. However, as all VMs share the same 
physical resources, contention for shared resources 
cause significant variance in the observed system 
response time and throughput. A recent survey [1] 
of datacenter applications show that some of the 
most common workloads targeted for virtualization 
are parallel computing applications, databases, web 
hosting, mail exchange and file hosting. These are 
multi-threaded that uses CPU, memory and 
Input/output (I/O) heavily. Thus, the success of 
next generation cloud computing infrastructures 
depends on how effectively these infrastructures, 
instantiate and dynamically maintain computing 
platforms, constructed out of cloud resources and 
services. This meet varying resource and service 
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requirements of cloud costumer applications are 
characterized by Quality of Service (QoS) 
requirements. 

Everything is delivered to cloud users as 
services. In these regard, two important problems 
are frequently encountered with deploying IT 
applications in cloud. The first is overload or under 
load. A simple solution for this problem is to assign 
resources to VMs in static manner. However, static 
allocation becomes inefficient under varying load. 
The second problem is QoS. As cloud hosted 
services and applications are user oriented, QoS has 
a great impact on growth and acceptability of cloud 
computing paradigm. However, providing QoS 
requires a solid model that needs detailed insights 
of computing centers. Indeed, it is very difficult to 
dynamically allocate resources for multitier 
applications. i.e. How to effectively increase 
resource utilization and meet service level an 
objective (SLOs) in a shared virtualization 
environment is a great challenge. So it is a large 
challenge for the scheduler that can achieve the 
goal of good fairness, efficient workload balancing, 
and minimal wasted CPU time, when allocating the 
physical CPU time to VMs. Thus the scheduler 
with a good adaptiveness can make a better trade 
off among these factors, and can change its strategy 
for VMs with the different workload properties. 
Besides the reduction in infrastructure and ongoing 
operating costs, this work also has societal 
significance as it decreases carbon-dioxide 
footprints and energy consumption by modern IT 
infrastructures. 

Virtualization solutions ranging from VMware, 
KVM and XEN can be implemented within a 
cloud; each has its strength and weakness. The, 
performance of a hosted application is sensitive to 
the hypervisor scheduler configuration parameters 
on which the application is running. However, the 
exact relationship between the value of the 
scheduler configuration parameters of the VM, and 
the application performance metrics such as 
response time or throughput is not obvious. 
Therefore, determining the appropriate parameter 
values that would provide certain SLA for an 
application is a hard problem due to dynamic nature 
of the workload; thus most of the time the 
parameters are left as default values. Subsequently, 
existing tools for performance and resource 
management of virtualized infrastructures lack the 
ability to dynamically determine the effects of 
changing resource allocations on the performance 
of hosted IT services. 

Modern virtualization and middleware 
technologies create many possible ways for 

resource allocation and system reconfiguration by 
adding or removing virtual CPU cores to VMs or 
by changing the hypervisor scheduling parameters. 
Similarly, application servers provide means to 
create application server clusters and add or remove 
cluster nodes. There are advantages and drawbacks 
in the mentioned dynamic configuration options. 
Some of them can be used on-the-fly, but they 
require a special system setup or introduce high 
reconfiguration overhead. Thus, the proposed self-
adaptive resource allocation algorithm, focus on 
adding or removing virtual CPUs to an application 
server cluster; that can achieve the goal of good 
fairness, efficient workload balancing, and minimal 
wasted CPU time. 

As hardware support continues to be added and 
adopted to bring the performance of virtualized 
systems closer to that of native execution, the 
virtualization of these computing resources is not 
substantial. With respect to Moore’s Law, Chip 
Multi-Threading (CMT) is becoming increasingly 
important because of multi-core CPUs that combine 
multiple processor cores inside a single physical 
CPU. Thus, the increasing number of processing 
cores has become a promising way of improving 
the performance of servers by quickly adapt to 
cores changing capabilities, resulting in numerous 
performance and other benefits compared to 
existing techniques. Thus, it can be used to improve 
the scheduling of consolidated servers by allowing 
the cores of a chip to be dynamically partitioned 
among guest virtual machines. Compared to 
conventional scheduling/multiprocessor scheduling, 
dynamic partitioning provides higher throughput, 
lower transaction latency, and more isolation. Yet it 
can quickly adapt to bursts in demand and it also 
has changing capabilities of the underlying 
hardware.  

Virtualization delivers dramatic resource usage 
and cost cutting, but overall data center efficiency 
metrics may still not be what they should, with 
respect to the state-of-art hardware and software 
advancements. Thus, this research aims at 
presenting the evaluation done on, how does 
application response time in cloud get impacted 
with adaptive CPU resource allocation with 
changing customer workloads? When should a 
reconfiguration be triggered for achieving effective 
resource usage without compromising SLAs? How 
rapidly and at what level be the reconfiguration 
triggered?  

Evaluating new scheduling techniques under 
various, controllable and repeatable conditions are 
impossible in real Cloud. Because, system level 
scheduling implementation requires deep 
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understanding on hardware architecture, as well as 
low level programming and debugging. 
Consequently, it makes qualitative evaluation of 
scheduling algorithm difficult and requires 
significant effort. In addition, the proposed 
algorithms are sometimes affected by the existing 
system architecture [3]. In order to address this 
problem, the cloud virtualization environment, is 
simulated to evaluate the performance of the 
defined algorithm using CSIM simulation toolkit, 
and C/C++ library that allows assembling a 
complete virtualization system with flexible 
configurations. Although the framework’s 
components are constructed using the CSIM model, 
the users of the framework are not required to know 
CSIM or its underlying concepts. All they need is 
to use CSIM library, type in parameters say 
workload distribution, and write a C/C++ function 
to express the scheduling function.  

In summary, the contribution of this paper is 
multifold and our works are as follows: i) Study on 
server virtualization and its various solutions.        
ii) Study on state of the art work in VMM 
scheduling. iii) Conducting two performance case 
studies that focus on how the performance is 
affected by the amount of CPU allocation.            
iv) Construct an adaptive system that automatically 
adjust the VMM CPU scheduler based on the 
workload fluctuations to give guarantee QoS using 
combinatorial heuristic search techniques.             
v) The best CPU scheduler configuration for each 
synthetic workload with a given target amount of 
users was determined. vi) Investigate and evaluate 
more scheduler configurations. vii) The 
performance of various scheduling algorithms in 
various configurations was measured. 

The rest of the paper is organized as follows. 
Section 2 provides some background information 
and basic concepts related to server virtualization, 
chip multithreading, workload forecasting, and 
meta-heuristic search techniques. Section three 
deals with review of literature. Section four 
presents resource influence on VM and state-of-the-
art VMM schedulers. Section five illustrates the 
soundness of proposed mechanisms to be built into 
the systems to enable self-management, for the case 
of cloud. Section 6 and 7 presents experimental 
methodology, setup, and the discussion of results. 
Section 8 presents the conclusion and suggestions 
for future research. 

 

2. BACKGROUND 

 
This section presents some background 

information and definitions on server virtualization 

and its solutions, chip multithreading, 
combinatorial search techniques and control 
decisions regarding workload forecasting that helps 
to understand the conceptual decisions made. 

 

2.1 Server Virtualization 

Server virtualization is an abstraction of 
underlying physical hardware. It creates virtual 
environments that allow running multiple 
applications in separate virtual containers hosted on 
single hardware that enables workload isolation and 
makes consolidation possible. VMM, a software 
layer, VMM separates underlying hardware from 
the software running on top of it, creates a notion of 
the hardware for a virtual machine. Thus, it creates 
and manages processor, memory, and I/O units for 
the virtual OS. The first and foremost application of 
virtualization is server consolidation. It is a process 
encapsulating the single server workloads into VMs 
and running them in a shared hardware platform via 
hypervisor. Server consolidation provides an 
effective solution to parallelism and high utilization 
of modern multi-core processors by running 
multiple virtual machines on top of the single 
platform with virtualization. Virtualization 
Technology can be classified into three major 
approaches[2,4], based on the performance, ease of 
installation and administration, level of security 
between each virtualization images, and supported 
hardware platforms and methods of executing guest 
OS code with / without hardware access.   

 

2.1.1 Full virtualization 

It is a type of virtualization in which hardware 
is completely emulated via hardware and software 
that allows operating systems, and its kernel to run 
unmodified in a VM. It executes privileged guest 
code in software, typically with just in time 
translation for speed. Binary translation 
virtualization technique solved this problem by 
having the VMM, examine the binary instructions 
before they were executed, and dynamically rewrite 
sections of code that would try to execute a 
privileged instruction so that the VMM would 
maintain control of the system and emulate the 
effect of the instruction. Here VMM runs itself as 
an application inside the host OS, subsequently, all 
resource allocations and scheduling facilities are 
offered by the host OS. The VMM presents an 
interface to VM that is indistinguishable from 
physical hardware. Hardware virtualization support 
in recent x86 CPUs support a privilege level 
beyond supervisor mode, used by the hypervisor to 
control guest OS execution. As every resource 
request from the guest machine needs to go through 
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the VMM and hence, there is a lot of overhead on 
the VMM. For example, if there is a request for 
disk read/write operation, the request is routed via 
VMM, which then validates the request and 
transfers the requested data back to the guest OS. 
This results an additional delay along with the 
normal response latency and transfer time. 
However, data prefetching and efficient scheduling 
can help to improve the delay in such a case. 
 

2.1.2 Para virtualization  
This approach defines new hardware software 

mixture architecture known as hypervisor, which is 
similar to physical hardware emulated CPU, 
memory and I/O instructions, that are replaced by 
hypercalls. It reduces overhead inherent in dynamic 
translation. By running directly on the machine, the 
hypervisor has direct communication with the 
hardware. It does not virtualize a total computer 
environment, in the manner that previous approach 
does. Thus, it allows the guest OS to execute 
directly in user mode, by providing a software 
interface (API), which is similar to the underlying 
hardware allows the guest to use to perform 
privileged functions. In that, the guests are aware 
that they are virtualized and need modifications in 
the guest device drivers. Here, the hypervisor 
perform scheduling and resource allocation for all 
VMs. Thus, it stimulates VMM directly, controls 
scheduling of VCPUs on PCPUs rather than having 
VCPUs execute as threads in a host OS that are 
scheduled based on the host OS CPU scheduling 
algorithm and makes work simpler. In addition, if 
the virtualization layer supports direct 
communication with the hardware through 
available facilities like hardware assisted 
virtualization (section 2.1.3), the calls can be 
mapped directly to the hardware. Unlike the 
previous approach, this technique has a lower 
communication overhead as the hypervisor does not 
completely intermediate the guest and the physical 
hardware. Also, the performance of the 
paravirtualized setup depending on the workload of 
the guests, leads to instability in performance 
swinging between the two ends of spectrum. 
 
2.1.3 Hardware assisted virtualization: 

It is a hardware extension which includes a 
new CPU execution mode, guest mode, in addition 
to the original mode provided by the vendors like 
Intel and AMD. CPU execution in host mode 
remains with full ring privileges (from ring 0 to 3); 
however the rings in guest mode are deprivileged 
for hypervisor trap and emulation. Thus, hardware 
assisting processors give the guest OS the necessary 

authority to have direct access to platform resources 
without sharing control over the hardware. 
Formerly, the VMM should emulate the hardware 
to the guest OS while it retains control of the 
physical platform. These new processors give both 
the VMM and the guest OS the authority each 
needs to run without hardware emulation or OS 
modification.  Thus, privileged instructions are 
trapped in the hardware and redirected to 
hypervisor, eliminating the need of ring 
deprivileging used in the former solution; 
Simplifying the hypervisor implementation, and 
therefore supports unmodified guest OS 
(Windows). Furthermore, hardware assisted 
shadow page table for virtualizing memory 
supports unmodified guest or hardware virtual 
machine, to manage the translation from guest 
linear memory address to host physical memory 
address. Subsequently, key state information for 
CPU and guest OS can be stored in the protected 
memory which can be accessed only by the VMM, 
protecting the integrity of the handoff process. All 
trapped, emulated I/O devices and paravirtualized 
I/O devices are enabled in hardware virtualization. 
This provides virtual machines greater capabilities, 
and scalability. As guest shares the page table 
entries among all of its VCPUs, the hypervisor 
needs to track the page table access for each VCPU. 
The corresponding SPT entries are also shared 
among these VCPUs. 

 

2.2 Scheduling in a Hypervisor  

Aforesaid, three virtualization approaches 
infer, VMM is an important entity as it routes any 
request by the guest to access the hardware. Thus, it 
is very important to VMM to ensure that all the 
guests are given reasonable access to the hardware 
to ensure SLO to the guests. Such a SLO 
mechanism is provided by scheduling the guests 
appropriately. A scheduling mechanism guarantees 
that a guest performs its transactions in its 
scheduled time and allows all the guests to get a 
reasonable chance to access the resources. This 
kind of a scheduling provides equality in access and 
it trades off the latency of the access. The VMM 
gives a portion of the full physical machine 
resources to each guest domain, thus multiple 
guests must share the available resources. 
Therefore, the VMM does not generally picture the 
full power of the underlying machine to any single 
guest. Instead, it allocates a portion of the resources 
to each guest domain. It either attempts to partition 
resources evenly or favors some guests over others 
in a biased fashion. As the workload and demand 
varies, it grants each guest OS a limited amount of 
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specified resource, like memory and allows each 
guest OS only its fair share of other resource like 
CPU. Similarly, it does not like all guests to have 
access to every physical device in the system and 
thus it exposes only the devices it wants each guest 
to see. Sometimes, it even creates virtual devices 
that have no corresponding underlying physical 
device like virtual network interface. Thus, from 
the perspective of VMM’s CPU scheduler, each 
VM is represented by one or more virtual resources, 
and the primary goal is to maintain proportional 
share of CPU time allocation of each guest domain, 
according to user defined SLA based on 
unpredictable workloads. Thus, a core requirement 
for an effective virtual machine scheduling 
algorithm is the ability to dynamically provision its 
various resources to its various users according to 
their instantaneous needs and in fulfillment with 
negotiated SLAs to afford an environment like 
cloud. 

 

2.3 Chip Multithreading (CMT) and Virtual 

CPU (VCPU) 

CMT is to combine the resources of multiple 
CPUs in a single host system, in which all the 
processors behave identically. CMT lets any 
processes in the system can execute on any 
processor. By providing additional CPU resources 
to execute multiple threads simultaneously, it works 
faster and more efficient than a single core 
processor; it shares the processing load, improving 
overall system performance. The system also can 
shut down portions of the cores that aren’t in use, 
saving power and generating less heat. In addition, 
as each core on the chip has its own memory 
controller, significantly improves memory 
performance. Also, connecting the processor cores 
together lets data flow freely and reduces latency 
problems. Thus increasing number of processing 
cores (Moore’s law) becomes a promising way of 
improving the performance of servers.  

Logical Domains technology provides flexible 
assignment of hardware resources to domains, with 
options for specifying physical resources for a 
corresponding virtual resource. One of the 
distinguishing features of logical domains 
compared to other hypervisors is the assignment of 
CPUs to individual domains. Each domain is 
assigned an exclusive use of a number of CPUs, 
also called threads. Within a domain, these are 
called virtual CPUs (VCPUs) and the granularity of 
assignment is a single VCPU.A domain can have 
from one VCPU up to all the VCPUs on the server. 
The number of CPUs in a domain can be 
dynamically and none disruptively changed on the 

fly and the change in the number of VCPUs in a 
running domain takes effect instantly. The number 
of CPUs can be managed routinely with the logical 
domains, by dynamic resource manager, provided 
by the respective tool. This method avoids the 
frequent context switches that usual VMM must 
implement to run several guests on a CPU and to 
intercept privileged operations, has an impressive 
benefit in terms of simplicity and reduction of the 
overhead. Because each domain has dedicated 
hardware circuitry, a domain can change its state 
without causing a trap and emulation. Typically, a 
virtual machine can be assigned multiple VCPUs 
and an application with multiple processes or 
threads can have considerable performance 
improvements when multiple VCPUs are executed 
on diverse physical CPUs. To improve the CPU 
usage effectiveness in the CMT configuration 
further, the CPU scheduler must implement a 
global load balancing functionality that quickly 
reassigns VCPUs among available physical CPUs. 
 

2.4 Dynamic Resource Allocation 

Dynamic resource allocations are quite 
essential for adaptive computing. Generally, there 
are two approaches namely proactive allocation and 
reactive allocation. Reactive allocations are used to 
adjust resources based on demand and recent 
behavior. It is preferred more to handle momentary 
fluctuations smoothly. Whereas, proactive resource 
allocations involve taking up actions to make 
resources available for upcoming load spikes. It is 
good for managing resources in a multi-tenant 
cloud where it is common to have hot spots at some 
locations, while still having spare resources 
scattered throughout the datacenter. Inability to 
quickly use fragmented spare resources in a 
datacenter during load spikes causes host level over 
provisioning. When predictions are accurate, this 
scheme provides very good performance. 
Forecasting can be achieved by applying many 
techniques [5]. However, we describe here two very 
popular forecasting techniques namely weighted 
moving averages, and exponential smoothing. 
Moving Average: A simple and widely used 
forecasting method is the simple moving average 
(SMA), which makes the value to be forecasted for 
the next period from the average number of 
previous observations. With this technique only one 
value can be forecasted at a time. This limitation 
can be overcome by the weighed moving averages 
where the value to be forecasted maintains an 
almost constant value for quite a while before 
changing significantly. The forecasted value is 
computed as a weighed average of a given number 
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of the most recent observations. The weights are 
chosen in a way that reacts the relative importance 
of the newest/oldest observations. Exponential 
Smoothing: Exponential smoothing technique is an 
additional popular forecasting technique known for 
its peculiarity for its peculiarity to make predictions 
from time series data that exhibit upwards and/or 
downwards trends. It computes Forcasted Value = ∂ 
x Previous Actual Value + (1-∂) x Previous 
Forcasted Value. Where, ∂ is used to gauge the 
relative importance that is associated with the 
previous prediction as opposed to the earlier 
observation (i.e., more weight is given to observed 
values rather than to the predicted ones if ∂ is close 
to 1 and vice versa). 

 

2.5 Genetic Algorithms (GA) 

As scheduling problems belong to 
combinatorial optimization problems, one tends to 
use optimization algorithms to find optimal 
solutions, which have been studied from Simulated 
Annealing, Genetic Algorithm, Hill Climbing and 
Particle Swam. Compared to standard heuristics, 
genetic algorithms [6, 7] are well suited for fine 
tuning structures which are very close to optimal 
solutions. GA is a computational model that 
emulates biological evolutionary theories to solve 
optimization problems. In computing terms, GA 
maps a problem to a set of binary strings, each of 
them representing a possible solution. The GA then 
manipulates the most promising strings searching 
for improved solutions, through a simple cycle of 
four stages: i) creation of a "population" 
(randomness) of strings, ii) evaluation of each 
string (reproduction), iii) selection of "best" strings 
using fitness function, and iv) genetic manipulation 
(cross over) to create the new population of strings. 
Here, the decision variables are the CPU usage 
limits to be enforced on the co-located VMs. In this 
work, a genetic algorithm based technique is 
applied. It searches the space of various possible 
CPU usage limits and finds a near to optimal 
solution. It uses the negative of utility optimization 
objective given in section 6 as the fitness function 
since the GA is designed to minimize the fitness 
function. As a result, it maximizes the system 
utility. The genetic algorithm generates a new 
population of candidate solutions and evaluates 
their fitness values in various iterations. Through 
the research, it is observed that genetic algorithm is 
able to converge within 50 iterations or generations. 

 

3. RELATED WORK 

VMM resource allocation, scheduling, and 
analysis of virtualization performance are some of 

the most important problems in server consolidated 
virtualization research in enterprise applications. In 
specific, optimizing the performance of the 
resource virtualization is an ongoing research area, 
and there are several new techniques are proposed 
to implement resource virtualization. Hence, the 
related work is divided into the following groups: 
(i) the performance behavior of the applications 
running inside the virtual machines (ii) approaches 
for optimizing the resource provisioning to improve 
the performance of virtualization in the real systems 
and (iii) approaches for dynamic resource 
provisioning optimizing the performance of 
virtualization using simulation. 

Cherkasova et al. [8] have compared three 
schedulers in XEN, SEDF (Simple Earlier Deadline 
First), BVT (Borrowed Virtual Time), and Credit. 
They studied that the credit scheduler used in XEN 
are performance-oriented and do not accordance 
with configured values for some workloads and 
choosing the right parameters for individual virtual 
machines is crucial in order to get the desired 
application performance. Similarly a study is made 
to this by Liu et al.[9] to develop a mechanism that 
adaptively regulate these parameters, In which they 
designed a feedback controller that takes care of 
regulating the scheduling parameters of VM  such 
that each application gets its relative level of 
performance. Govindan et al. [10] proposed an 
algorithm to schedule the CPU of VMM that 
considers the largest number of network packages 
to minimize the delay of the packages caused by 
virtualization, by creating an unfair advantage to 
communication intensive applications over CPU 
intensive ones. It enhances the performance even 
under the high consolidated virtualized 
applications, while still adhering to the high-level 
resource provisioning goals in a reasonable manner. 
Similarly, Ongaro et al [11] examined the impact of 
the CPU scheduling on network I/O performance in 
XEN and inferred that XEN privileged allocating 
CPU resources to CPU-bound VMs rather than I/O-
bound VMs, and which could influence network 
bandwidth and latency in unwanted ways. They 
proposed few enhancements to boost the I/O 
performance of VMs, which sort the domains in the 
run queue based on their remaining credits and to 
place all the I/O intensive domains in the same 
domain that reduce the pre-emption of the event 
channel notifier, improves the overall latency and 
performance. In [12], author propose a coarse-
grained feedback control framework that works 
based on transfer functions to model the dynamic 
relationship between a performance metrics and 
physical control features, for better performance 
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prediction. It dynamically allocates resources to 
applications running in a virtualized environment. 
Subsequently, for reconfiguration options focus on 
the hypervisor’s cap and disk share parameters. 
However, the valuation with RUBiS and TPC-W in 
combination with a production trace driven 
workload is hopeful. In [13], authors developed a 
mathematical scheduler modeling to analyze and 
empirically compare XEN’s scheduling algorithms 
such as co proportional, proportional share 
scheduling strategies that provide a convenient 
infrastructure to quickly examine new idea based 
algorithms. Chieu et al. [14] proposed a reactive 
algorithm for dynamic VM provisioning of 
Platform as Service and Software as Service 
applications, whereas this current approach 
considers adaptive reconfiguration of available 
virtual instances, say increase or decrease their 
resource capacity based on their request arrival rate 
and performance metrics. Watson et al. [15] 
proposed a probabilistic performance model using 
quantile regression making it possible to predict the 
response time of the web authentication benchmark 
depending on the allocated resources at the virtual 
machine level. However, the performance relevant 
factors are rarely explicitly provided. In [16], 
author developed a multi-level resource allocation 
framework Mistral that adapt a VM’s CPU 
capacity, by add or remove a VM, live-migrate a 
VM between hosts and shutdown or restart a host. 
This method considers performance, transient costs 
and power consumption in its reconfiguration 
algorithm. However, it is based on a simple multi-
tier application with read-only transactions and a 
fixed web tier modeled with a layered queuing 
network. Lim et al. [17] proposed a mathematical 
model to characterize workload using multiple 
resource usages. They characterize a host as a 
collection of m resource queues. They also 
characterize each application as a vector of size m, 
where ith element is calculated as the amount of 
time using ith resource divided by its runtime when 
running in standalone mode. However, this model 
is not practical. As per this model, running multiple 
applications together not take longer than their 
sequential execution. This is not true in virtualized 
environments. Severe contention between two VMs 
may lead to slowdown of more than twice. The 
fundamental problem is how to obtain resource 
vectors. Generally, resource usage is represented as 
utilization or throughput. Measuring the amount of 
time using I/O and network is unusual and not easy. 
In [18], author proposed a novel system PAC, 
which estimates VM’s performance on each host by 
measuring difference between time series of VM 

and host by periodically characterizing each virtual 
machine as a repetitive time series of resource 
consumption, and each host as a repetitive time 
series of remaining resources. Consequently, it then 
schedules the VM to a host with minimum 
difference. For VM schedulers, the way to 
characterize workload determines how to estimate 
VM’s performance on each target, in the sense 
either physical core or host. Thus, scheduling 
decision is just a process of selecting the most 
suitable objective based on evaluation. In [19], 
author proposed the problem of optimal load 
distribution of generic tasks on multiple 
heterogeneous servers preloaded with special tasks 
in a cloud computing environment. He formulated 
it as a problem of multi-variable optimization based 
on a queuing model. He developed algorithms to 
find the numerical solution of an optimal load 
distribution and the minimum average response 
time of generic tasks. In [20], discussed the overall 
view on several components while focusing on the 
overhead of virtualization. They conducted diverse 
experiments on two unlike virtualization platforms 
and on a native machine. They also calculated the 
virtualization overhead of some components like 
network, memory and disks. Later, they proposed a 
model which helps to estimate the performance of 
virtualized machines based on linear regression.    
In [21], author used Artificial Neural Network, a 
machine learning technique to predict the 
performance impact of real-time scheduling 
parameters, VM deployment and workload type on 
the system performance based on measurements 
using various MATLAB benchmark tests. In [22], 
author used analytical queuing models to quantify 
the slowdown of virtualized applications in server 
virtualization scenarios. However, it is shown that 
using the total CPU time as distribution factor to 
derive workload specific virtualization overhead, 
typically results in an uneven estimation at best.    
In [23], author presents a new approach for self-
adaptive resource provisioning in virtualized 
environments based on online architecture level 
performance models. He investigates the use of 
such models as a means for online performance 
prediction allowing to predict the effects of changes 
in user workloads as well as to predict the effects of 
particular reconfiguration actions, undertaken to 
obey SLA efficient resource usage. By using 
virtualization techniques, they applied these 
allocation changes to evaluate the use of such 
models for online performance prediction. 
However, in the present research, the influences of 
virtualization on system performance to integrate 
the gained insights into the proposed performance 
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models are investigated. Guenter et al. [24], 
developed energy aware on demand virtual machine 
consolidation system focused on web, where SLAs 
are defined in terms of the response time. They 
applied weighted linear regression to forecast the 
future workload and proactively optimize the 
resource allocation. This approach is in line with 
the Local Regression (LR) algorithm. In [25], the 
authors present a new fuzzy controller for load 
balancing in cloud computing, which requires two 
input data like processor speed and assigned load of 
VM and provides the balance load to reduce the 
application response time. This method can be used 
only for CPU intense applications where the SLA is 
related to CPU speed. On the contrary, the 
technique applied in this present research is more 
general as it does not make any guess regarding the 
CPU speed of the machines existing. Kraft et al. 
[26], proposed two approaches based on queuing 
theory to predict the I/O performance of 
consolidated virtual machines. First, the trace based 
approach which simulates the consolidation of 
homogeneous workloads that is modeled as a single 
queue with multiple servers having service times 
fitted to a Markovian Arrival Process. Second, they 
foresaw storage performance in mixed workload 
consolidation scenarios. They generated linear 
estimators based on mean value analysis. In 
addition, they also created a closed queuing 
network model, with service times fitted to a 
Markovian Arrival Process. Both methods use 
monitored measurements on the block layer that is 
lower than typical applications run. Besides, they 
pay attention on performance prediction without 
considering the performance effects due to changes 
in the workload amount. In [27], the authors 
proposed a fuzzy controller for allocating 
virtualized resources with respect to the application 
response time. Both works consider only the 
response time and its deviation from the SLO value 
as input parameters to the controller. Instead, this 
present paper combines the information regarding 
the response time with the VCPU utilization. The 
combination of these two parameters allows the 
adaptive genetic controller to gain more knowledge 
on the system load, thus results in a more accurate 
CPU capacity allocation. In [28], author proposed 
solution for the synchronization problem of a server 
consolidation by modifying the XEN Credit 
Scheduler, in which new priority TURBO added to 
the scheduler to avoid the scheduling decisions that, 
was made for synchronization. TURBO allows 
need to synchronization VCPUs to preempt and 
being picked up to run at the next time slice without 
impacting overall system fairness; thus the threads 

in the concurrent program can be synchronized. 
Consequently, proposed scheduler works fine and 
greatly enhances the performance in concurrent 
workload by decreasing CPU allocation errors; but 
it incurs minor performance drop in a parallel 
workload due to the extra overhead of finding the 
most urgent work from other PCPUs. 

Thus, it is argued that earlier works have 
missed a good opportunity of cost and performance 
optimization by disregarding workload aware 
resource allocation or scheduling in multi-core 
systems. In addition, to the best of our knowledge, 
no works exploit the genetic algorithm extensively. 
Thus our approach taken by genetic algorithm 
usually falls into two different categories, whereby 
(1) the genetic algorithm is used to model the 
behavior of a system, or (2) the genetic algorithm is 
used to design a controller to act on the system at 
run time in order to guarantee a specific QoS. 
 

4. RESOURCE INFLUENCE ON 

APPLICATION PERFORMANCE IN VM 

AND THE STATE OF THE ART VMM 

SCHEDULERS 
 
As performance provision is the major concern 

of VMM scheduler in cloud, this section provides 
1) two quantitative case studies that focus on how 
the VM performance is affected by adapting a 
VM’s CPU capacity and 2) two qualitative case 
studies of widely popular virtualization VMM 
schedulers.  
 

4.1 Performance Influencing Factors 
As virtualization introduces dynamics and 

increases flexibility, a variety of additional factors 
can influence the performance of virtualized 
systems. In [20, 29] having analyzed major 
representative virtualization platforms, abstracted a 
generic performance model of VM performance 
influencing factors as shown in figure 1. Those are  
virtualization type, hypervisor’s architecture, 
resource management configuration and workload 
profile. Though, several influencing factors are 
grouped under the resource management 
configuration, the CPU scheduling configuration 
has a significant influence on the virtualization 
platform’s performance and chief among them are 
virtual CPUs allocated to a VM, the number of 
VMs and resource over commitment. Managing 
virtual CPU requires an additional management 
layer in the hypervisor and the number of VMs has 
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a direct effect on how the available resources are 
shared among all VMs. 
 

4.2 PERFORMANCE STUDY 

4.2.1 Impact of CPU allocation  

As it was discussed earlier, CPU cores are one 
of the main sources of performance interference as 
shown in Figure 1. Even with such physical 
isolation for the CPU, the typical relationship 
between application performance and the CPU 
allocation is difficult. Thus, this complexity is 
demonstrated by executing two types of 
experiments, targeted at the component and 
application level in virtual machine environment by 
setting CPU limit at different levels. The 
performance of the CPU intensive applications 
(kernel compilation) and virtualized applications 
(OLTB) are measured while varying the VM’s CPU 
limit from 1 core to 8 cores. All resource 
allocations were kept high enough to ensure that 
those are all not the bottleneck. All the experiments 
were conducted on physical hardware configured 
with AMD FX 8-Core Black Edition FX-9590. It 
has 8 *4.7 GHz AMD Opteron 8 core processors 
with 3MB L2, 6MB L3 cache each, 8 GB DDR2-
667 main memory, 100 GB of storage and 
10/100/1000-BaseTEthernet connections. Both host 
and virtual machine are configured with 8 VCPUs 
and 4 GB RAM, 50GB HDD with Ubuntu 14.04 
LTS (Trusty Tahr). The virtualization solutions 
considered for the experiment is XEN 5.0. In all 
solutions, hardware virtualization support is used to 
virtualize 64-bit guests over a 64-bit host. For the 
XEN machines, virtual NICs use the default 
bridged network driver. Two types of benchmarks 
[30, 31] namely Linux kernel compile, MySQL-
SysBench are used and are targeted at the 
component and application level of influencing 
factors.a) Linux kernel compile: The kernel build 
benchmark unarchieved the Linux kernel source 
archieve, and build a particular configuration. It 
heavily used the disk and CPU. It executed many 

processes, exercising fork(), exec(), the normal 
page fault handling code, and thus stressing the 
memory subsystem. It accessed many files and used 
pipes, thus stressing the system call interface.        
b) MySQL SysBench: It is a modular, cross platform 
and multi-threaded benchmark tool for evaluating 
OS parameters that are important for a system to 
run a MySQL database under intensive load to 
evaluate its performance. SysBench, which was run 
on a separate client machine, was configured to 
send multiple simultaneous queries to the MySQL 
database with zero think time.A simple database 
that fit entirely in memory is used. As a result, 
these workloads both saturated the virtual CPU and 
generated network activity, with very little disk I/O. 
For various numbers of threads the experiment is 
conducted and the results of both are given in the 
Figure 2 and Figure 3.It shows the normalized 
performance of these examinations. As seen from 
the graph, both the benchmarks workloads behave 
linearly, and the performance slope is different at 
various CPU allocation ranges. While the kernel 
compilation saturate quickly at      3 VCPUs, 
SysBench performance, on the other hand, varies 
almost linearly with CPU allocation. But at some 
time the saturated point is visible because of 
resource over provisioning. Thus, this data reveals 
the fact that virtualized workloads can have quite 
different performance curves with respect to 
number of CPU allocation. The above analysis of 
hypervisor’s behaviors demonstrates that resource 
pools are one of the vital factors in the constitution 
of virtualization overhead and current scheduling 
scheme in conventional VMM the shows 
bottlenecks on the massive advanced system with 
heavier load i.e., more VMs and heavier stress as 
shown in the experiment. Hence, in order to 
maximum the hardware resource utilization, VM 
management has become an important research 
field of virtualization technology. Thus, VM 
scheduling is crucial for the throughput of a system 
and affects the overall system performance. 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
Figure 1: Performance  Influence Factors of  the 

Virtualization Layer (Adapted from [20]) 

 
Figure 2: The performance Impact of  Core Mappings 
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This leads to the conclusions that resources 
allocated to a virtual machine directly have an 
impact on the hosted application’s performance and 
choosing appropriate control knobs to handle 
resource allocation for a VM is critical to ensure 
desirable performance and create a robust model. 

 

4.3 State of the art VMM Schedulers 

VCPU scheduling remains as a challenge for 
Virtualization technologies, especially with 
hypervisors starting to host Chip Multithreading 
VMs. A naive, yet popular, implementation is to 
use a simple Round-Robin algorithm when 
assigning processor resources to each VCPU. This 
option is available in most hypervisors. e.g. in 
KVM or Virtual Box hypervisors. However, this 
approach can cause additional synchronization 
latency for guest VMs due to VCPU preemption. 
Whereas, VMware ESX and XEN are two of the 
leading virtualization systems for the x86 
architecture, and they both allow for CMT 
virtualization. However, implementing CMT 
virtualization is difficult because the two 
technologies have different goals, and virtualization 
in particular can conflict with the expected behavior 
of a CMT system. As the implemented prototype in 
this paper is a generic, it discusses briefing the 
main features of these two VMM scheduler’s 
algorithms in specific. 

 

4.3.1 CPU scheduling algorithms in XEN 

XEN is quite unique among VM platforms 
because it allows user to choose among different 
CPU schedulers. It implements a higher level 
abstraction scheduling operations, where each 
scheduler needs to implement its own scheduling 
policy and registers itself to this interface. XEN 
supports three different types of schedulers [32, 8] 
namely Borrowed Virtual Time (BVT), Simple 
Earliest Deadline First (SEDF) and Credit 
Scheduler .The users can set the scheduler option 
during XEN’s boot time by passing the parameter 

value of sched i) Borrowed Virtual Time (BVT): It 
is a proportional share scheduler that is suited for 
I/O intensive domains. The scheduler adjusts itself 
dynamically with the varying I/O intensities when 
specified with the correct parameters. It is based on 
the concept of virtual time, dispatching the 
runnable VM with the smallest virtual time the low 
latency support is provided in BVT for real time 
and interactive applications by allowing latency 
sensitive client to warp back in virtual time to gain 
scheduling priority. And the client can effectively 
borrow virtual time from its future CPU allocation. 
Each runnable domain Domi will receive CPU 
proportion according to its weight wi, and the 
virtual time vti of Domi is incremented by its 
running time rtij in the jth scheduling around, 
divided by wi: vti ← vti +rtrj / wi. However, due to 
the lack of Non Work Conserving (NWC) mode 
(unused CPU cycles of one domain can’t be used 
by the other domain), its usage is severely limited 
in many application environments. ii) Simple 
Earliest Deadline First (SEDF): In this algorithm, 
the domains request a minimum time slice that 
requires for communication. The request is a tuble 
of (si, pi, xi), which means Domi will receive si units 
of time in each period of length pi. The xi is a 
boolean flag indicating whether Domi is scheduled 
in WC-mode or NWC-mode. SEDF performs well 
when the workload is low, but when running in 
heavy workload, many clients are observed to miss 
their deadlines and the scheduling overhead 
significantly increases, where the domain requests 
for‘t’ slices every ‘p’ periods of CPU time. One 
main shortage is the lack of global workload 
balancing on multiprocessors, and the CPU fairness 
depends on the value of the period. Besides, the 
lack of global load balancing on multiprocessors, 
implementation also limits its usage. iii) Credit 
Scheduling: BVT lacks NWC-mode while SEDF is 
found to be unstable under heavy workload and 
does not support CMT well, so both of them were 
replaced by Credit scheduler in XEN. The credit 
based scheduler is recently incorporated into XEN 
and it provides better load balancing and low 
latency mechanisms. This algorithm is a kind of 
proportional share (PS) strategy, featuring 
automatic workload balancing of virtual CPUs 
across physical CPUs on a CMT host. According to 
the scheduling algorithm of Credit Scheduler using 
in XEN hypervisor, each virtual CPU is 
asynchronously assigned to a physical CPU by 
CPU scheduler in order to maximize the 
throughput. Specifically, when there is no runnable 
VCPU on the current physical CPU, the scheduler 
will try to migrate one runnable VCPU from the 

 
Figure 3 :SysBench Database Transaction 
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other physical CPUs. Each domain is assigned with 
a (weight, cap) pair. Similarly, the scheduler 
allocates CPU time proportion (in credit) to each 
domain according to its weight. All queued VCPUs 
are sorted by their remaining credit, and the 
scheduler will select the VCPU that has most credit 
to run. When the cap is 0, VM receives extra 
physical CPU (WC-mode), while a nonzero cap 
(expressed as a percentage) limits the amount of 
physical CPU time obtained by a VM (NWC-
mode). The algorithm uses followers interval for 
the physical CPU allocation. The priorities (credits) 
all runnable VMs which are recalculated in the 
interval, which is mainly in proportion to weight 
that VMs are assigned by the user. This algorithm 
can efficiently achieve a global workload balancing 
on a CMT system when the majority of the 
workload is not the high concurrent application. 
However, all these choice come with the burden of 
choosing the right scheduler and configuring it. 
 
4.3.2 VMware ESX server VCPU scheduling 

algorithms 

The default approach by KVM or Virtual Box 
hypervisors (Round-Robin algorithm) cause 
additional synchronization latency for guest virtual 
machines due to VCPU preemption. In order to 
eliminate this synchronization latency, VMware 
applies a co-scheduling algorithm [O. Sukwong, 
and H. Kim], which uses a concept similar to gang 
scheduling [33]. Co-scheduling requires that all 
VCPUs are associated with a VM to be scheduled 
simultaneously in order for the VM to run. Such an 
algorithm helps to avoid the synchronization 
latency, as both the waiting VCPUs and the lock 
holding VCPU are preempted and resumed at the 
same time. This “strict” co-scheduling approach, 
however, introduces a fragmentation problem. A 
VCPU can only be scheduled after the hypervisor 
gathers enough resources to execute all other 
VCPUs in the same VM. However, ESX has 
several optimizations to improve performance over 
a naive implementation of co scheduling, which 
would require even idle VCPUs in a VM to 
execute. First, ESX is able to detect if a VCPU is 
executing an idle loop, and in this case ESX does 
not schedule an idle VCPU to run nor require it to 
be co-scheduled for active VCPUs to run. Second, 
ESX uses a technique called relaxed co-scheduling 
that helps prevent requiring physical CPUs from 
being idle in order to start running VCPUs in an 
CMT system. ESX provides three control knobs for 
CPU allocation to individual VMs: reservation, 

limit, and shares. Reservation guarantees a certain 
minimum CPU allocation expressed in MHz Limit 

(in MHz) provides an upper bound on the CPU 
allocation. Share provides a mechanism for 
proportional allocation during time periods when 
the sum of the CPU demands of the currently 
running VMs exceeds the capacity of the physical 
host.  

Having analyzed two major representative 
virtualization platforms, one can infer that current 
commercial resource management tools provide 
only partial solutions to VCPU scheduling problem 
i.e. it provides resource management capabilities by 
forcing virtual machines allocation to be within 
certain limits. In addition, these tools do not 
address setting these limits with appropriate values 
for each application, or how they should be 
changed in case. Thus, a resourceful VMM 
scheduler is important for increased throughput and 
decreased response time. Given varying workloads, 
there is a particular scheduling algorithm that is 
more efficient at scheduling VM for particular 
types of workloads. Thus, it is possible to fine tune 
the VMM scheduler to maximize throughput and 
minimize response time with specific type of 
workloads subject to SLA. 

 

5. SYSTEM MODEL 

 
This section presents the proposed self-

adaptive resource management model and its 
working logic. Generally VMM schedulers repeat 
three steps: workload characterization, performance 
estimation, and scheduling decision. Thus, the core 
concept revolves around the idea of building 
mechanisms into systems that allow for dynamic 
reconfiguration of VM’s VCPU, based on the 
variations of the workload to achieve a) an 
improved overall system performance to withstand 
SLA and b) a better utilization of system resources. 
To achieve these goals, a computer system needs to 
be checked regularly. Thus this section shows how 
the mentioned goals are attained through a 
combined use of system models that guide heuristic 
combinatorial search techniques in their exploration 
of the space of possible configurations. The system 
model evaluates, predicts, the performance of a 
system for a given configuration point.  

The proposed system algorithm works as 
follows. Thereby, all the virtual machines are 
serving the incoming requests; VMM monitors the 
resource utilization of the various resources, and 
performance of the system. VMM executes a 
SAVIMM algorithm, at regular intervals, called 
Monitoring interval (MI), to determine the best 
configuration (suitable number of cores) for each 
VM with the help of a meta-heuristic algorithm. As 
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a result of running the controller algorithm, 
reconfiguration commands are generated to instruct 
the system to change its configuration. To 
maximize the performance, design issues such as    
i) fairness in resource sharing among VMs,           
ii) workload balancing among virtual CPUs in a 
CMT VM iii) unneglectable cost of the wasted 
CPU time during the period of synchronization 
between VCPUs in a VM and iv) adaptiveness for 
VMs with the different workload properties, should 
be considered for the scheduler in the VMM. 
Hence, this model runs continuously to ensure that 
provisioning goals are met at all times and set the 
following design goals for resource provisioning 
approach: Automation: All decisions related to 
provisioning should be made automatically without 
human intervention; Adaptation: The application 
provisioner should adapt to uncertainties such as 
changes in workload intensity; Performance 

Assurance: The resource allocation in the system is 
dynamically varied for ensuring achievement of 
SLA targets. 
 

5.1 The General Control Approach 

This section presents the control architecture of 
the proposed adaptive systems. It describes the 
system architecture and components, and it also 
describes how interact with one another. 
Furthermore, some control decisions regarding 
workload forecasting, and frequency of control are 
also discussed. The architecture of the SAIVMM 
system model is best illustrated in Figure 4.It has 
five main components namely workload intensity 
supervisor, workload forecaster, SLA observer, 
system performance examiner, genetic algorithm 
guided VCPU regulator. The dynamic balancing 
component, VCPU regulator of SAVIMM 
reconfigures the individual VM’s VCPU demand 
based on the resource requirement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This component performs a re-evaluation of the 
resource pools, in a regular interval, based on the 
performance evaluation subject to SLA over a 
period of time. If there is a big imbalance in the 
resource pool, then the balancing component will 
be more aggressive in the balancing process. SLA 

observer is a component that computes the 
measurement required for implementing the control 
system. It calculates average response time, 
throughput and resource utilization for each client 
class on specified time periods. It has a list of 
completed requests for each client class, which is 
populated by the resource unit class after servicing 
the requests. The designer specifies the time 
interval to calculate the statistics. The generated 
statistic report is used by the external entities for 
analysis and makes runtime decisions. Afterwards, 
the list of request is cleared to accumulate the 
completed requests till the next sample instance. 
The SLA observer module uses the average arrival 
rate of requests obtained in the previous Monitoring 
Interval (MI), as an estimation of the expected 
workload intensity for the next MI. This value is 
then used by the algorithm to compute the SLA 
value for a given set of configuration parameters. 
The drawback of this approach is that it overlooks 
any increasing or decreasing tendency in the 
workload of the past MI. This results, an inaccurate 
choice of configuration values. System 

Performance Examiner is implemented as a small 
component that collects utilized data on all system 
resources (e.g., Disks and CPU) as well as the 
count of completed requests which allow the 
component to compute the response time and 
throughput. The monitor periodically inserts 
multiple sample requests into the requests that are 
sent by the client to the server. Two time stamps are 
used during a sample request is inserted and a 
response is received. The difference is used as the 
server side response time and the average response 
time is considered as the metric at certain point of 
time. Workload Intensity Supervisor and 

Workload Forecaster is the main components that 
make the algorithm more proactive as opposed to 
reactive. The use of effective forecasting algorithms 
enables the controller to acquire a more proactive 
behavior for the workload intensity value used by 
the model. It means that the system can make better 
configuration decisions to accommodate the future 
workload. To overcome the shortcomings 
mentioned in SLA module, a module is added 
responsible for short term workload forecasting. 
This module keeps a sliding window of N values 
for the last average arrival rates observed for the 
last N small sub intervals. Each of the sub intervals  

Figure 4: SAIVMM Framework Components 
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is of length ∆ seconds and ∆ are chosen so that N x 
∆ does not exceed the length of a monitoring 
interval (some minutes).Workload Forecaster is 
responsible for prediction of request arrival rate. 
This information helps to compute the resources 
required for meeting SLA targets and resource 
utilization goals well in advance. Prediction can be 
defined based on historical data on resources usage, 
or statistical models derived from known 
application workloads. In addition, the particular 
method to estimate future load, the workload 
intensity supervisor alerts the workload forecaster 
and VCPU tuner when service request rate is likely 
to change. This alert contains the expected arrival 
rate and it must be issued before the expected time 
for the rate to change; So that the workload 
forecaster and VCPU tuner will have time to 
calculate changes in the system and the application 
provisioner will have the time to add or remove the 
required resources. Genetic Algorithm guided 

VCPU Regulator: It consists of two components 
namely VCPU regulator and genetic algorithm 
controller. VCPU regulator decides the number of 
VCPUs required meeting the SLA targets, with the 
help of genetic algorithm. As stated earlier, VCPU 
regulator finds out the best configuration by 
collecting response time of the entire VMs. This 
algorithm takes the desired SLA goals, the arrival 
and departure processes into account and performs 
a combinatorial search of the state space of possible 
configuration points in order to find optimal 
configuration. The cost function associated with 
each point in the space of configuration points is 
the SLA value of the configuration described in 
section 6.This component considers the system as a 
network of queues whose model parameters are 
obtained via workload intensity supervisor and 
workload forecaster components. The queuing 
network model considered by the system consists of 
client and server architecture. Clients in the model 
are represented by the generated requests, whereas 
application provisioner and application instances 
are the processing stations for these requests. Once 
the VCPU regulator determines the best 
configuration for the workload intensity levels 
provided by the various inputs, it sends 
reconfiguration commands to the appropriate VM. 
Control Considerations: The accuracy of the CPU 
time is scheduled to the virtual CPUs, depending on 
the time interval that is regarded. Hence in the case 
to complementing the control approach, it is 
recommended to take some additional 
considerations into account when designing and 
deploying the system. These considerations have a 
significant impact on the efficiency of the algorithm 

and on the performance of the entire system. By 
enabling the algorithm to dynamically regulate the 
frequency of its invocation over the fixed interval, 
the overall system performance and stability could 
be improved. In the case of a sudden surge in the 
workload, an adaptive controller algorithm 
responds to the change occurs in the external 
environment in advance. Figure 5 shows a simple 
load adjustable algorithm that can be used to 
dynamically vary the length of the monitoring 
interval. This algorithm sets the length of the MI as 
a multiple, MI, of the smallest possible interval 
MImin. When the currently measured value of the 
SLA, SLAcurr, is less than or equal to the minimum 
value of SLAmin for the SLA, the monitoring 
interval is set to its minimum value MImin. 
Otherwise, the monitoring interval is set to the 
multiple of MImin according to the relative error 
between the SLA value,and SLAprev, measured last 
time the algorithm was activated and the currently 
measured value of the SLA, SLAcurr. 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 DESIGNS AND IMPLEMENTATION OF 

SYSTEM MODEL 

 
This section presents the design and 

construction of a simulation framework with 
appropriate parameters for evaluating VCPU 
scheduling algorithms. The simulation framework 
is built by CSIM models and tool that makes the 
framework easy to understand and configure for 
various virtualization setups. The simulation model 
of a system is built as shown in figure 6 and 
experimented with policies as discussed earlier. The 
specification of the system is the cluster of the 
server machines in which each modeled as a 
multiple server queue. It incorporates necessary 
assumptions that are required for having a real 
performance model of cloud centers: (i) Random 
arrival process (Poisson process) (ii) Incorporates 
complex user requests by introducing super-tasks; 
(iii) Captures different delays imposed by cloud 

 

Figure 5: Adaptive Monitoring Interval (MI) 
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centers on user requests; (iv) hyper exponential 
family distribution of the service time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let us assume n virtual machines are 
consolidated into a m-core physical machine, given 
as vector VM = {vm1, vm2,...vmn | m ≥ n }.The 
allocated /available resources for the virtual 
machines at some point of time is given as vector 
Rcpu = {r1cpu,r2cpu,…rncpu | ricpu ≥ 1 }.The response 
time of the virtual machines at some instance ,to 
meet the SLA is given as vector SLAresp = 
{resp1,resp2,…respn}.Further, resource requirement 
of the  virtual machines can be calculated as 

follows  ricpu = ( respi / ∑ respi		
���

��� ) * (m-1).In real 

systems, it is common that the execution times of 
the parallel segments to be lengthened as more 
processor cores are simultaneously accessing one 
another. The value (m-1) models the effects of 
contention for access to multicores.  

Researchers use simulators to evaluate new 
scheduling techniques under controllable and 
repeatable condition, which is impossible to reach 
in real cloud. Simulators are very useful as different 
setups and different data sets can be used to 
evaluate existing or proposed solutions as well as to 
compare their performance. Several simulation 
approaches for cloud systems have been proposed. 
Each differs in whether they focus on special 
applications or allow simulation of cloud systems in 
common. For an example, the simulation 
framework MRPerf [34] instruments the discrete 
event network simulator NS-3 [35] for studying 
performance and dependability of MapReduce [36]. 
The framework models network, node, and disk 
behavior in high aspect and thus allows evaluating 
the impact of network topology choices and 
network / node failures, but is limited to 
applications that use MapReduce. Similarly, the 
cloudsim toolkit [37] is a discrete event simulation 
engine provides simple implementation of common 
entities such as computational resources or users 
and also allows simulating virtual machines, VM 

scheduling, simple jobs, network topology, data 
storage and other useful functionality. However, 
provided implementations are too simple and it is 
necessary to extend these entities for more complex 
requirements. Further, it needs one to have in depth 
knowledge on cloudsim usage classes and java. In 
contrast to all the above, CSIM [38, 39] is a 
simulation model building toolkit, used by C/C++ 
programmers to implement process oriented, 
discrete event simulation model. These models 
mimic the operation of complex systems, to give 
modelers insight into the dynamic behavior of these 
systems. Because CSIM models are C/C++ 
programs, there are virtually no limits to the level 
of details, degree of complexity and size of the 
simulation models. CSIM processes are operated in 
an asynchronous parallel manner, mimicking the 
behavior of multiple entities which are active at the 
same time. 

A CSIM program models a system as a 
collection of CSIM processes which interact with 
each other by using the CSIM structures. The 
purpose of modeling a system is to produce 
estimates of time and performance. The model 
maintains simulated time, so that it can yield insight 
into the dynamic behavior of the modeled system. 
In CSIM, entities are represented by processes, and 
queues are represented by facilities and other 
simulated resources. In these models, the complete 
system is represented by a collection of simulated 
resources and a collection of processes that 
compete for use of these resources. A major benefit 
of using a standard programming language to 
implement simulation models is that these models 
can be combined easily with other software 
components. Informally, the followings are the 
basic constructs of CSIM i) Processes - the active 
entities that request service at facilities, wait for 
events, etc. ii) Facilities- queues and servers 
reserved or used by processes   iii) Events - used to 
synchronize process activities iv) Mailboxes - used 
for inter-process communications v) Data 

collection structures - used to collect data during 
the execution of a model vi) Process classes- used 
to segregate statistics for reporting purposes vii) 
Streams - flow of random numbers. In CSIM, it is 
easy to model a CPU and multi-core CPU as a 
facility and facility_ms respectively. A facility is a 
server with a queue for the waiting processes. In 
operation, an arriving process reserves a facility. If 
the server at the facility is not busy, it is assigned to 
do the requesting process. If the server is busy, the 
arriving process is placed in the queue and it is 
suspended. Normally, when the process is given to 
the server, it does a hold (service time) and releases 

 
Figure 6: Cloud computing Environment model 
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the server at the facility. When this happens the 
queue is checked; there is a waiting process, and so 
on. Now a multi-server operates in the same way 
only when there are multiple servers. The service 
time is drawn from a probability distribution 
function exponential (service Time). All the CSIM 
resources have “inspector functions, which let one 
to get properties and statistics from the resources. 
For an example, the mean response time of the 
server [i] is given by server[i]->resp (). Similarly, 
the statistics and counters for a resource is cleared 
by calling the reset () method. The communication 
among CSIM processes is accomplished via CSIM 
mailboxes and synchronization of CSIM processes 
is accomplished via CSIM events. 

Based on CSIM, a set of C++ classes, 
serverVM, VMM, scheduler, client and transactions 
been developed, which models the basic program 
and machine components of the system as shown in 
figure 5 and figure 6. Figure 7 depicts the UML 
class diagram, model processing units of a 
computing system. The working logic of the 
proposed system is given as a sequence diagram in 
figure 8. This is an open model, where the 
transactions arrive from outside to be processed 
with a variable of transactions that circulate among 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the clients and the servers via internet. The sim 
process creates the model in which the activities 
start with the instantiation of the genProcess 
method in the Client class where each client has its 
unique id. The generator holds (delay) an 
exponentially distributed interarrival interval and 
generates a new transaction using genProcess that 
runs “forever”. When genProcess creates a new 
transaction, it selects the server first and the 
transaction will visit using client class id. In this 
model, the servers are an array of server objects, 
and each server has a CPU resource, with multiple 
servers (think of each of these CSIM servers as a 
core). Each transaction notes its start time and visits 
the cpu on the serverVM object. When a transaction 
completes, it records its response time (the interval 
between its start time and its completion). The 
selectServer and configController method models 
the VMM as if it is in the proposed system          
(figure 5). The configController is elaborated more. 
For example, scheduler () functions have two 
different methods, reactive and proactive for 
resource allocation. Each scheduler needs to 
implement its scheduling policy and needs to 
register itself to this interface. Users can set the 
scheduler option during compile time by passing 
the parameter value of scheduler () and the 
scheduler implements the required resource 
allocation decisions. Based on the chosen 
controller, the sim process executes 
configController that in turn invokes appropriate 
scheduler which allocates sufficient resources. For 
instance, if the decision is to maintain 2 and 3 
resource units for A and B client classes 
respectively, this component implements these 
decisions until the next decision is made. It has the 
access to the queue instances of each client class, 
resource units and other state variables. In regular 
interval, it executes the scheduler algorithm. Here, 
the design decision of centralized scheduler has 
been taken instead of each class taking the 
responsibility of scheduling. This is because, it is 
easy to track and validate the resource utilizations 
compared to a distributed algorithm. In addition, 
arbitrary size of controller intervals are considered 
to dynamically vary the length of the monitoring 
interval that is dynamically determined using the 
algorithm in Figure 6. In each control period, the 
VMM scheduler computes a weight for every VM. 
The weights are then truncated to integers and 
given to the VMs to set the number of VCPUs to be 
used for the next interval. Finally, the inspector 
function reports, statement of each server resources 
usage, and summary of the response times for all of 
the transactions. The user can use the given classes 

 

Figure 7: UML Class Diagram of the model 

 

 

Figure 8 :UML Sequence Diagram of the model 
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to implement the required simulation depending on 
their requirements. 

7. EXPERIMENTS AND EVALUATION 

 
This section, presents the result of an extensive 

evaluation of the proposed workload aware 
adaptive scheduler approach based on synthetic 
workloads. Due to the space constraints, only 
selected experiments are presented. Thus, only 
consolidated servers average response time for 
workload aware reactive and proactive algorithm 
with fixed and variable time interval is given. Table 
1 indicates that the effective response time differs 
from the MI for both proactive and reactive. As far 
as reactive algorithm is concerned, it gives good 
results for MI is 1 minute (Table 1), and for all 
other cases not withstands with SLA.This is 
because the resource allocations are carried out 
precisely at the time interval, and in all other cases 
no such precision is maintained. Subsequently, for 
this case there is no improvement in their frequency 
of execution. Likewise, for the Exponential 
Smoothing case the effective response time is 
0.3821 when MI=2 (Table 1 and   Figure 9). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is because, the Exponential Smoothing 
forecasted the workload, predetermined resource 
allocation that made the server ready for 
maintaining SLA. In addition, as the frequency of 
execution time is saved 50%, steeled to the service 
time. For the same case, when the MI=3 (Table 1) 
close result with 50% execution frequency 

improvement with a 2% deviation in their net 
response time can be seen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similarly, for Weighted Moving Average case it 
gives good response time for both MI= {1, 2} 
(Table 1 and Figure 10) with least deviation of 
0.5% and 34% execution frequency reduction. This 
is because as mentioned earlier this forecasting 
algorithm exploits the workloads characteristics of 
constant intensity for quite a while before changing 
significantly. Thus for the fixed MI, forecasting 
algorithm provides good results especially for 
WMA. As far as MI is concerned the accuracy of 
the CPU time is scheduled to the virtual CPUs 
depending on the time interval that is regarded. 
That is, if the MI is too small and the workload 
amount is relatively steady, the SAVIMM 
algorithm will be executed too frequently with little 
or no effect. At the same time, if the MI is too large 
and the workload amount varies very quickly, the 
controller will not run effectively. Thus, a MI that 
adjusts itself to the workload strength can be more 
effective than a fixed MI. Table 2 gives the 
comparative results of the adaptive MI algorithms. 
Figure 11 shows all algorithms work quite nicely 
and withstand the SLA over fixed MI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1:Comparison of  Various Workload Aware 

Algorithms for the Fixed Monitoring Interval 

S
.N

o
 

 

Model 

T
im

e
  
  
  
  

(m
in
u
te
s

 

Frequency 

of 

algorithm 

invocation 

resp time 

(minutes) 

 

1 Reactive  

1 100 

0.3967 

2 Proactive(ExpS) 0.3899 

3 Proactive(WMA) 0.3810 

4 Reactive  

2 50 

0.3998 

5 Proactive(ExpS) 0.3821 

6 Proactive(WMA) 0.3826 

7 Reactive  

3 33 

0.4119 

8 Proactive(ExpS) 0.3890 

9 Proactive(WMA) 0.4090 

10 Reactive  

4 25 

0.4292 

11 Proactive(ExpS) 0.4207 

12 Proactive(WMA) 0.4256 

13 Reactive  

5 20 

0.4315 

14 Proactive(ExpS) 0.4190 

15 Proactive(WMA) 0.4002 

16 Reactive  

6 17 

0.4521 

17 Proactive(ExpS) 0.4421 

18 Proactive(WMA) 0.4456 

 

 
Figure 9: SAVIMM Response Time for the fixed 

Monitoring Interval of  1 minute 

 

 
Figure 10:  SAVIMM Response Time for the fixed 

Monitoring  Interval of 2 minute 
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Limitations: Though this flexible simulation 
framework aids the evaluation of VCPU scheduling 
algorithms, the framework at this current state is 
still primitive that needs improvements in order to 
(i) include other resource requirements, such as 
memory, network bandwidth, and (ii) represent 
more synchronization mechanisms (iii) try adaptive 
MI algorithm with different values (iv) use a 
variety of real-world arrival traces to generate the 
request rate. 
 

8. CONCLUSION AND FUTURE RESEARCH 

 
Virtualization is becoming an increasingly 

important technology in large part because it offers 
the promise of allowing more efficient use of 
computing resources. However, the behavior of a 
VM often differs significantly from a physical 
system, leading to performance degradation for 
applications running in a VM. Furthermore, 
virtualization is a rapidly evolving field, as 
hardware support continues to be added and 
adopted to bring the performance of virtualized 
systems closer to that of native execution. Hence, 
this paper, propose novel adaptive meta-heuristics 
based scheduling policies for provisioning the 
VCPU resources among competing VM service 
domains in a cloud. The objective of such 
provisioning is to guarantee to budge to SLA for 
each domain, with respect to the diverse workloads 
on-the-fly. The framework is built upon CSIM 
models and tool, making the framework easy to 
understand and configure for various virtualization 

setups. We demonstrate the usefulness of the 
framework by evaluating three VCPU scheduling 
algorithms: proactive, reactive and adaptive. We 
evaluated how periodic and aperiodic execution of 
control actions can affect policy performance and 
speed of convergence. Simulation based 
experimental results using synthetic workload 
models indicated that the proposed provisioning 
technique can detect changes in workload intensity 
(arrival pattern and resource demands) that occur 
over time and allocate resources accordingly to 
achieve application SLA targets. In addition the 
results of the experiments have shown that the 
proposed Weighed Moving Average algorithm 
combined with the adaptive MI policy significantly 
outperforms other dynamic VM consolidation 
algorithms; In regard to the SLA metric due to a 
substantially reduced level of response time 
violations and the frequency of algorithm 
invocation.  

Regarding possible future works, first we plan 
to evaluate the proposed system in a real Cloud 
infrastructure like Open Stack. Second is the 
investigation of more complex workload models 
such as slowly varying, quickly varying (synthetic), 
big spike, dual phase variations which are drawn 
from real-world traces; that will leverage these 
workload models with increasing server 
consolidation ratio. Third apart from CPU sharing 
we would to like extend to cover the allocations of 
the resources like main memory, network I/O. 
Fourth, we can use multiple alternative forecasting 
methods in parallel; select which method to trust 
based on its accuracy in recent time horizons. 
Finally we will extend the model to support 
adaptive scheduling techniques in addition with the 
resource allocation for the diverse workloads. 
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