
Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

607

IMPLEMENTATION WITH MULTITHREADING PROCESS

USING EMBEDDED SYSTEM

1
K R JAYACHITRA,

2
Dr. L C SIDDANNA GOWD

1Research Scholar, St.Peter’s University, Avadi, Chennai, India.
2
Professor, ECE, GRT Institute of Engineering and Technology, Tiruttani, India

Email: 1jayamura1912000@gmail.com, 2gouda.lcs@gmail.com

ABSTRACT

In Embedded system based applications, the evolution of multicore architectures offers many performance
enhancements like speed, concurrency, real-time implementation support etc. However, design issues like
critical section handling, selecting optimal number of threads, racing condition avoidance, concurrent tasks
handling etc. needs to be addressed. In this work, these issues are implemented for multicore architecture
using openMP tool. Barrier region limitations are removed to exploit concurrency and demonstrated
applications include are, (i) array filling multitasking (ii) sorting of number, and (iii) sorting of strings. In
all the above examples, the performance of multicore is enhanced compared to single core.

Keyword: Multicore, Openmp, Racing, Multithreading, Embedded System.

1. INTRODUCTION

Parallel programming models are required to
exploit multicore architecture and eliminate
performance handicapped languages [2,7]. Typical
examples of multicore processor are listed in Table
1.

Table 1 Typical Processors And Reported Cores
Processor Reported cores

Intel SCC 48

AMF ATI RV7000 10

NVIDIA Tesla C1060 30

Intel XEON 4

ARM MPCore 4

1.1 Power reduction in multiple cores

The power dissipation in single is related as

 where F� number of times /

second the circuit is oscillated [14,15]. In a
multicore, the power dissipation is reduced [10] and

is given by . A processor with

two cores has the frequency of oscillation
influenced as in Figure 1.

 Fig. 1 Example Of Two Cores

For the dual core processor, the frequency of
oscillation is only half of the total oscillation and
hence, power loss is reduced [9]. The two important
performance enhancement factor and parallelism
(multiple tasks actually active at one time) and
parallelism (multiple tasks actually active at one
time) are handled effectively to avoid limiting
issues like racing, redundant threads, barrier region
etc. In this work, the OpenMP (an API for writing
multithreaded application with a set of compiler
directives and library routines) suited for parallel
processing is used [3,4,5,6]. The architecture of
OpenMP is given in Figure 2.

1.2 Multithread Implementation

Threads are light weight processes and share
process state among multiple threads and reduce the
cost of switch context [8]. Threads interact through
reads/writes to a shared address space. The
synchronization among threads requires a scheduler
and shall determine when to run which threads [16].
The use of multithreads offer performance
enhancement [11], but certain issues such as racing
avoidance, critical section handling, barrier region,
etc. needs to ensure yield correct results.

2. RACE CONDITION IN

MULTITHREADING

In a shared address model, unintended sharing of

data causes race condition and results in altering the
program’s outcome (i.e. data loss) since, the threads
are scheduled differently. Solving race conditions
involves use of synchronization to protect data

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

608

conflicts (or) change how data is accessed to
minimize the excessive use of synchronization [1].
In this paper, fork-join parallelism model is used to
transform a sequential algorithm into a parallel one.
The code to create multithreads ‘N’is listed below:
omp_set_num_threads [n]
#progma OMP parallel
{

int ID=omp_ge, thread _num);
}

The omp_set_num_threads and _get_thread_num
are runtime function and used to request a certain
number of threads [11,13] and returning a thread ID
respectively. The first tread is int exe from ‘o’, and
the last thread to N-1. Also, only N-1 threads are
created since the Nth Parallel section can be invoked
from the parent thread and a thread Pool exists to
minimize cost of threads and a thread creation and
destruction is eliminates for each parallel region.
Barrier region refer to the waiting time due to some
threads waiting for all the other threads to finish
before proceeding.

3. IMPLEMENTATION OF THE WORK

3.1 Array Filling

In this case, an array is to be filled with elements
both using single core single thread and multicore
multithread [12,17].
The implementation code is listed in Figure 2.

Fig. 2 Progmaomp master (Fork-Join parallelism model)

The threads are implemented as shown in Figure 3.

Fig. 3 Threads Implementation

The meaning of different shared variable in this
application is given in Table 2.

Table 2 Different Shared Variable Application

NR_THREADS No. of multithreads

Value size of the array i.e. the No. of

Multithreads

array to be handled by one thread

tolarrsize represents the total array size

C array of size “tolarrsize”

Tid Thread identifier

The results are given in Figure 4 and Figure 5.

Fig. 4 Array Filling

#progmaomp for nowait
for(i=0; i<value; i++)
{
 c[i]=i;
}

#progmaomp for nowait
For (i=value+1;i<value*2+1; i++)
{
 c[i]=1;
}
if (tid==0)
{
 St=omp_get_wtime();
}

#pragma omp parallel shared © private (I,tid)
Num_threads (NR_THREADS)

{

 tid=omp_get_thread_num();

 if (tid==0
 {

 nthreads=omp_get_num_threads();
 printf(“Starting array filling with %d

hreads\n”,nthreads);

 }
}

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

609

Fig. 5 Searching of Numbers and String

3.2 Sorting of Numbers

In this application, numbers are to be sorted in
either ascending or descending order using
multithread implementation. For comparison, a non
multithread implementation is also considered. The
obtained results are shown in Figure xx.

3.2.1 Multithread Implementation of Sorting

 Numbers in Ascending Order

if (choice==1)
 {
 ifp = fopen (readfile, "r");
 st=omp_get_wtime();
 #pragma omp shared(a,tsortno) private(i,count)
 {
 if ((ifp) == NULL)
 {
 printf("Error in logfile1.txt file \n");
 }
 fscanf (ifp,"%d", &i);

 while (!feof (ifp))
 {
 a[count]=i;
 count=count+1;

 //printf("count value is %d\n",count) ;
 //printf ("%d\n ", i);
 fscanf (ifp,"%d", &i);
 }
 fclose (ifp);
 #pragma omp nowait
 {
 ascend(a,tsortno);
 }
}
ed=omp_get_wtime();

printf("\nTotal time taken for to ascend by Core:
%f\n",ed-st);
fprintf(logfile_1,"\nTotal time taken for to ascend
by Core is :");
fprintf(logfile_1,"%f",ed-st);
fprintf(logfile_1," for ");
fprintf(logfile_1,"%ld",tsortno);
fprintf(logfile_1," input ");
}

3.2.2 Non-multithread Implementation of

 Sorting Numbers in Ascending Order

if(choice==1)
 {
 ifp = fopen (readfile, "r");
 st=omp_get_wtime();
 {
 if ((ifp) == NULL)
 {
 printf("Error in logfile1.txt file \n");
 }

 fscanf (ifp, "%d", &i);

 while (!feof (ifp))
 {
 a[count]=i;
 count=count+1;

 fscanf (ifp, "%d", &i);
 }
 fclose (ifp);
 {
 ascend(a,tsortno);
 }
}
 ed=omp_get_wtime();
printf("\nTotal time taken for to ascend by CPU:
%f\n",ed-st);
fprintf(logfile_1,"\nTotal time taken for to ascend
by Cpu is :");
fprintf(logfile_1,"%f",ed-st);
fprintf(logfile_1," for ");
fprintf(logfile_1,"%ld",tsortno);
fprintf(logfile_1," input ");
}

4. RESULTS AND DISCUSSION

In this work, results described the consumed

times to sort numbers using OpenMP
multithreading in ascending and descending order
respectively as shown in Figure 6 and Figure 7.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

610

Fig. 6 Time Taken To Sort Number Using Openmp

Multithread (Ascending)

Fig. 7 Time Taken To Sort Number Using Openmp

Multithread Descending)

Figure 8 and Figure 9 described the consumed
time to sort alphabets using multithread in
ascending and descending order respectively.

Fig. 8 Time Taken To Sort Alphabets Using Multithread

In Ascending Order

Fig. 9 Time Taken To Sort Alphabets Using Multithread

In Descending Order

5. CONCLUSION

This work is concentrated on openMP for
multithreading for ascending and descending
process to calculate time consumption to sort
number and alphabets. The comparison study of
ascending and descending order between number
(using openMP) and alphabet (using
multithreading) is shown the difference to increase
speed and reduce power loss in network.

ACKNOWLEDGMENT

I acknowledge the help and facility offered by
M/s MicroLogic Systems to carryout the
multithreading process and embedded system
studies with hardware environment.

REFERENCES

[1] Ryo Mizutani and Kenji Ohmori, “A Design
and Implementation Method for Embedded
Systems Using Communicating Sequential
Processes with an Event-Driven and Multi-
Thread Processor”, International Conference
on Cyberworlds, Darmstadt, Germany,
September 25 -September 27, Germany, 2012.

[2] Umar Hamid, Haroon Shahzad and
Muhammad Irfan, “Parallel Implementation of
1-D Complex FFT Using Multithreading and
Multi-Core Systems”, International Journal of
Computer and Communication Engineering,
Vol. 2, No. 2, March 2013.

[3] Spiros N. Agathos, Vassilios V.
Dimakopoulos, Aggelos Mourelis, Alexandros
Papadogiannakis, “Deploying OpenMP on an
Embedded Multicore Accelerator”, IEEE
Conference, 2013.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2014. Vol. 68 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

611

[4] V. V. Dimakopoulos, E. Leontiadis and G.
Tzoumas, “A portable C compiler for OpenMP
V.2.0”, in Proceeding on EWOMP, 5th
European Workshop on OpenMP, Aachen,
Germany, pp. 5–11, September 2003.

[5] M. Sato, Y. Nakajima, Y. Ojima and Y. Hotta,
“OpenMP Implementation and Performance on
Embedded Renesas M32R Chip
Multiprocessor”, in Proceeding of 6th European
Workshop on OpenMP (EWOMP’04), pp. 37–
42, 2004.

[6] W.C. Jeun and S. Ha, “Effective OpenMP
Implementation and Translation For
Multiprocessor System-On-Chip without Using
OS”, in Proceeding of ASP-DAC ’07, 12th Asia
and South Pacific Design Automation
Conference, IEEE Computer Society,
Yokohama, Japan, pp. 44–49, 2007.

[7] B. Chapman, L. Huang, E. Biscondi, E.
Stotzer, A. Shrivastava and A. Gatherer,
“Implementing OpenMP on a high
performance embedded multicore MPSoC,” in
Proceeding of IPDPS ’09, IEEE International
Symposium on Parallel & Distributed
Processing, Rome, Italy, pp. 1–8, May 2009.

[8] Greg Hoover, Forrest Brewer, Timothy
Sherwood, “A Case Study of Multi-Threading
in the Embedded Space”, CASES’06, Seoul,
Korea, October 23–25, 2006.

[9] A. Snavely, L. Carter, J. Boisseau, A.
Majumdar, K. S. Gatlin, N. Mitchell, J. Feo,
and B. Koblenz, “Multi-processor performance
on the tera mta”, In ACM/IEEE Conference on
Supercomputing (CDROM), pp. 1–8, 1998.

[10] Bernhard H.C. SPUTH, Oliver FAUST and
Alastair R. ALLEN, “Portable CSP Based
Design for Embedded Multi-Core Systems”,
Communicating Process Architectures, Peter
Welch, Jon Kerridge, and Fred Barnes, IOS
Press, 2006.

[11] Shah Bhatti, James Carlson, Hui Dai, Jing
Deng, Jeff Rose, Anmol Sheth, Brian Shucker,
Charles Gruenwald, Adam Torgerson and
Richard Han, “MANTIS OS: An Embedded
Multithreaded Operating System for Wireless
Micro Sensor Platforms”, Mobile Networks
and Applications, Vol. 10, No. 4, pp. 563–579,
2005.

[12] R. Kumar, V. Zyuban and D.M. Tullsen,
“Interconnections in Multicore Architectures:
Understanding Mechanisms, Overheads, and
Scaling”, Proceeding in International
Symposium, on Computer Architecture
(ISCA05), 2005.

[13] M. Lee, B. Whitney and N. Copty,
“Performance and Scalability of OpenMP
Programs on the Sun FireTM E25K
Throughput Computing Server”, WOMPAT,
pp. 19-28, 2004.

[14] Y. Zhang, M. Burcea, V. Cheng, R. Ho and M.
Voss, “An Adaptive OpenMP Loop Scheduler
fro Hyperthreded SMPs”, in Proceeding of
International Conference on Parallel and
Distributed Systems (PDCS-2004), San
Francisco, CA, September 2004.

[15] Simon Schliecker, Mircea Negrean, Rolf Ernst,
“Reliable Performance Analysis of a Multicore
Multithreaded System-On-Chip”, in
Proceeding CODES+ISSS, ACM, 2008.

[16] P. Crowley and J.L. Baer, “Worst-Case
Execution Time Estimation for Hardware-
assisted Multithreaded Processors”, in
Proceeding 2nd Workshop on Network
Processors, 2003.

[17] M.A. Kinsy, M. Pellauer and S. Devadas,
“Heracles: Fully Synthesizable Parameterized
MIPS-Based Multicore System”, in 21st
International Conference on Field
Programmable Logic and Applications. IEEE
Conference, September 2011.

