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ABSTRACT 

 In a traditional single view photograph, dynamic objects or cameras cause motion noise. Digital image 
denoising is a prominent field in signal processing, focusing on improving the quality of images suffering 
from various degradation effects such as noise . To perform the denoising usually requires modelling the 
image content in order to separate the true image content from the degradation effects and restoring the 
degradation-free content. Restoration of image sequences can obtain better results compared to restoring 
each image individually, provided the temporal redundancy is adequately used. However in denoising of 
image sequence, the estimation of motion patterns between the frames in order to be able to merge the data 
from various frames are very complex and as a result motion estimation, a severely under-determined 
problem, tends to be error-prone and inaccurate. In this paper, for image denoising we are suggesting an 
algorithm which will give better result than the basic NLM algorithm. 
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1. INTRODUCTION 

       Image denoising is a process of obtaining a 
faithful image as an output from a noised image 
without knowing the  reason behind the noise. The 
source of the noise may a low resolution camera, 
improper alignment of lens or the camera or object 
being under out of focus or also under motion. 
Denoising of an image can be achieved by super 
resolution in which many frames are overlapped to 
have an enhanced image. has also been generalized 
to Super resolution reconstruction by Matan Protter 
[1]. As a part of related work few super resolution 
techniques have also been studied. Other super 
resolution algorithms [2]-[27] give a clear idea on 
super resolution though various algorithms.  An 
image can be processed thought its frames. This can 
be done by making using of a single frame 
[28],[29] and multiple frames[30],[38] and many 
more new algorithms have also came into 
existence. 

2. NON LOCAL MEANS (NLM) 

Having noise in the image  is the most common  
problem in image processing. Non Local Means is 
one of the methods to denoise the noised image. 
NLM algorithm is well known for removing 

Additive Gaussian Noise by preserving the image 
structure. In any image, there will be similar pixels 
in the same image based on the color space and 
NLM takes of this redundancy in order to denoise. 
Non Local Means denoising updates the pixel’s 
intensity by averaging the weight of all the pixel 
intensities in the image with similar neighborhood. 
Each pixel’s weight depends on the distance 
between its grey level intensity vector and that of 
the interest pixel. 

Let us consider an image I which is discrete, the 
NLM can be represented as 

�������� 	
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w(x,y) denotes weight, which will be depending up 
on the  gray level vectors distance at points x and y.  

which can be represented as 

� 	 |������ � ������|�,��  

Mathematically weight can be shown as 
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Where, z(x) represents the Gaussian filter weight 
and is mathematically represented as 
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 The main advantage of NLM is it is easy 
to implement. The disadvantage of NLM is more 
computational complexity and by using NLM the 

edge details will be lost. 

 

3. ANISOTROPIC DIFFUSION 

Anisotropic diffusion is an art of Image processing 
which helps to reduce noise in an image without 
abolishing momentous parts of the image i.e, lines, 
boundaries and other parts of the image which 
helps in interpreting the image. This algorithm is a 
continual process where a comparably elementary 
set of computations are adopted to calculate each 
pixel value in the image. Anisotropic diffusion is 
repeated till a sufficient order of smoothing is 
obtained.  The resulting output image preserves 
linear structures while performing smoothing at the 
same time. 

  Anisotropic diffusion can be stated as ���� 	 ����∁��, , �����	 �∁. ��  ∁��, , ��∆� 
where  Δ stand for the Laplacian, �  stand for 
the gradient,  

  div() is the divergence operator and ∁(x,y,t) is the 

coefficient of diffusion, ∁(x,y,t) controls the rate of 
diffusion and usually chosen as a function of the 
image gradient so as to preserve edges in the 
image. The idea of anisotropic diffusion and the 
two functions for the diffusion coefficient was 
stated by Pietro Perona and Jitendra Mailk as 

∁���� 	 �	����   

 

∁���� 	 11  �"#�� 

where #  function of the noise in the image and 
controls the sensitivity to the edges. Here #  is 
called as the acclivity magnitude verge parameter 
and disciplines the rate of diffusion. 

By interpreting Anisotropic Diffusion in terms of 
robust statistics, Black et al. stated an another 
function, known as biweight function 

∁��"� 	 $ 12 �1 � & "#√2(
���			" * #√2
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Anisotropic filtering is highly dependent on 
biweight functionand gradient threshold parameter. 
The biweight function and the gradient threshold 
parameter define performance and level of 
diffusion. 

The conductance function ∁1 favors for the high 

contrast edges over low contrast edges. The ∁ 2 
conductance function supports wide regions over 
smaller regions. The ∁3 function gives sharp edges 
enhancing the empirical results of the filtering 
process. The major disadvantage in this is 
computational complexity. 

4. PROPOSED ALGORITHM 

       In order to overcome the disadvantages in both 
NLM and ANISOTROPIC, we are introducing a 
new algorithm, which is a combination of both 
these algorithms. In the new algorithm, we are 
changing the Gaussian filtering parameter in NLM 
as it is a reason for computational complexity. We 
are proposing NLM interms of ANISOTOPIC. 

 

Fig 1 : Image Restoration Block Diagram 

The mathematical expression for NLM is 

�������� 	
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Where, ���, � 	 �
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Here, z(x) represents Gaussian equation 

 

In the proposed algorithm, we are replacing z(x) 
with the biweight function of ANISOTROPIC 

filter. 

The mathematical equation for the proposed 

algorithm is 
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Here,  0� 	 ½�1 � 2 �

�√�
3���		,k is the threshold 

parameter. 

By the implementation of this algorithm, we are 
achieving high PSNR values than the actual 
algorithms. 

5. RESULTS 

  Proposed algorithm has been implemented on the 
following five standard MATLAB images, Elaine, 
Foreman, Lenna, Miss America and Suzie 
respectively for different standard deviations.  
  

 

Input 

 

 

 

 

 

 

 

 

 

 

 

Output 

 

Fig 2a: Results For Proposed Algorithm For � � 2.2 

 

Fig 2b: Results For Proposed Algorithm For � � 5 

 

Fig 2c: Results For Proposed Algorithm For � � 10 

                                           

Fig 2d: Results For Proposed Algorithm For � � 15 
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  Figures 3: Graphical representation of NLM and 
NLM in terms of Anisotropic diffusion 

 

 
Table1: Comparision Of Nlm With Nlm In Terms Of 

Anisotropic 
 

                MISS AMERICA 

 
STANDARD 

DEVIATION 
NLM NLM+ANISOTROPIC 

2.2 39.0372 41.2892 

5 33.5309 34.2112 

10 27.7036 28.0337 

15 24.3263 24.6784 

 

LENNA 

STANDARD 

DEVIATION 
NLM NLM+ANISOTROPIC 

2.2 31.3850 41.2417 

5 29.6452 34.1410.0 

10 26.1042 27.9909 

15 23.2464 24.6191 
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FOREMAN 

STANDARD 

DEVIATION 
NLM NLM+ANISOTROPIC 

2.2 34.6303 41.3337 

5 31.5639 34.2550 

10 27.0308 28.0577 

15 23.8771 24.5590 

 

ELAINE 

STANDARD 

DEVIATION 
NLM NLM+ANISOTROPIC 

2.2 33.3868 41.2764 

5 31.1149 34.0735 

10 26.7577 28.1394 

15 23.6333 24.7350 

 

SUZIE 

STANDARD 

DEVIATION 
NLM NLM+ANISOTROPIC 

2.2 37.7460 41.3319 

5 33.0285 34.2085 

10 27.5587 28.0795 

15 24.1622 24.6016 

 

6. APPLICATIONS 

 

Whenever we try to shot a scene, the primary wish 

is to get a noise free image. For this the main 

requirement would be a high resolution camera 

which will cost very high. And this is the situation 

where the problem arises. Rather than opting a high 

resolution camera which costs more, enhancing the 

image taken from a low resolution camera will be 

more advisable. This is where the application of 

image denoising arises. Surveillance cameras 

cannot take accurate images due to the low quality 

specifications of the capturing devices, in that case 

we can make use of the proposed algorithm to make 

the images look visually good. We can use this 

algorithm to extend the face detection application to 

low resolution cameras. In finger print recognition 

systems we can use this algorithm so that it 

provides better computational results. Other 

applications with some modifications include facial 

reconstruction, multiple descriptive coding and 

super resolution. 

 

7. CONCLUSIONS 

        From the results obtained it is clear that the 

application of the algorithm is successful. And this 

application is more prominent in de noising the 

images shot from a camera with low quality 

specifications. This procedure is successful in 

obtaining the enhanced images to obtain even the 

minute details when related to blurred images. We 

used Non Local Means algorithm in order to 

denoise the image, but Non Local Means algorithm 

treats high frequency detail, like edges as noise and 

removes the high frequency detail which may also 

be the desired data. So Anisotropic diffusion is 

adopted which will preserve the edge details. 

Finally an algorithm is stated by using Non Local 

Means algorithm in terms of Anisotropic diffusion. 
The combined use of NLM and Anisotropic 

diffusion gives the promising applications in 

denoising the images. With slight proper 

enhancement in the algorithm can be used in finger 

print reading, facial reconstruction. The addition of 

super resolution to the proposed algorithm by using 

Interpolation technique, specially Bicubic 

interpolation will help in extracting much more 

fruitful results. In some real time situations, the 

images that are of our interest may be visually 

annoyed because of various reasons. We can apply 

the proposed algorithm to make the image free 

from noise. 
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