
Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

115

 PROPOSE AN INTEGRATION BETWEEN UML STATIC

AND DYNAMIC MODELS USING ENTITY-ATTRIBUTE-

VALUE UNDER THE MDA CONTEXT

1
AHMED MOHAMMED ELSAWI,

 2
SHAMSUL SAHIBUDDIN,

3
ABDELHAMID ABDELHADI

1Software Engineering Department, UniversitiTeknologi Malaysia, Malaysia

2Prof., Software Engineering Department, UniversitiTeknologi Malaysia, Malaysia

3Asstt. Prof., Faculty of Computer Science and Information System, University of Khartoum, Khartoum

E-mail: 1elsawi@gmail.com, 2shamsul@utm.my, 3abhamidhn@gmail.com

ABSTRACT

The Model Driven Architecture (MDA) is adopting models to improve the software productivity,
reusability, maintainability and quality by focusing on models and metamodels in place of conventional
code. The MDA separates the technical details from the business logic in two different models. The
Platform Independent Model (PIM) is concerned with the business logic while the Platform Specific Model
(PSM) is more focusing on the targeted platform. Normally, PIM and PSM models stand in different level
of abstraction. Moving from one level of abstraction to another is achieved by Model transformation. Both
PIM and PSM are modeled using UML diagrams. The UML supports a variety of diagrams that can be
categorized into static and dynamic diagrams. The static diagrams are normally targeted the system’s
structures and it is commonly used to define the PIM and PSM models. On the other hand, the dynamic
diagrams are targeting the system’s behavior and its dynamic elements. To successfully develop a complete
software using the MDA methodology, all structural and behavioral elements should be captured. Hence,
different versions of the PIM and PSM models should be employed to cover the structural and behavioral
elements of the system. Consequently, beside time, cost, and complexity issues a considerable number of
model transformation iterations are required for each version separately. Into face of these issues, we
propose this work to address the integration between UML behavioral and structural diagrams using the
Entity-Attribute-Value (EAV) model. Also, we presented an example to show how this proposed concept
not only allowing for an integration between UML static and behavioral models, but also shows the
flexibility of integration models in different level of abstraction.

Keywords: UML Models Integration, behavioral models, Static Models, MDA, EAV

1. INTRODUCTION

Earlier, in the software development Lifecycle,

models have been employed to address structural
elements in the design phase, as well as in the
testing phase for models checking and verification.
Although, these stages are tightly interconnected
with each other, but the absence of a unified way to
express different levels of abstraction concepts
limited the use of models for design and system
documentation .The Model Driven Architecture use
Models and Metamodels as a keystone in software
development process. The metamodel represents the
conceptual model of a design language, while the
instance generated from such particular design in a
design language is called Instance Model [1].

The development Lifecycle in MDA divided into
platform independent model (PIM) and platform
specific models (PSM). Both models are working in
different level of abstractions [2]. UML/MOF are a
common OMG standard tools that normally used in
model driven development to design models and
metamodels. Model transformation is one of the
main activities in model driven software that
normally serve in transforming high level models to
low level models using model transformation tools
such as Query-View-Transformation (QVT) and
Atlas Transformation Language (ATL). Together
with Computer Aided Software Engineering
(CASE) tools, UML and other transformation tools
are closely related to database schema. The
database supporting such tools is often called a
repository [3].

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

116

 MDA Models can be expressed visually or
textually[4].The visual representation of models is
normally concerned with the functional
requirements. Hence, in some cases, some non-
functional requirements can be addressed through
transformation rules or at the level of the model by
the adoption of UML Profiles and/or Templates [5].
For the textual representation of models, [4, 5]
suggested the embedding of the transformation
rules at the model level in an XMI textual
annotation to cover both, functional and non-
functional requirements. Typical model
representations (Visual and Textual) are imprecise,
incomplete, lack models, interoperability, and as
such do not lead to running applications[6].

UML does have a wide-ranging of behavior
models. These behavior models permit the
specification of a complete range of behaviors.
These specifications are normally static. The class
diagram can be one of these models that commonly
used to describe the model’s specifications. But on
the other hand, the semantics of the behaviors are
not included in the models as it is not included in
the static model specifications. In this paper, we
employ the knowledge representation capability of
the Entity-Attribute-Value (EAV) concept [7] to
integrate UML behavior and static models. The
approach combined both, Static and dynamic
models in a single EAV designed repository. The
model constraints are managed by a structuring
query, which based on our previous work in [8].

In Section 2 of this paper, we list out the related
work concerning the integration between UML
models. The Entity-Attribute-Value concept
highlighted in Section 3. Section 4 presents Models
and Metamodels representation. In Section 5 we
show the integration between static and behavioral
model concept. The results and discussion are in
Section 6. Conclusions and future work are
discussed in section 7.

2. RELATED WORKS

Integration of static and dynamic UML models

has been addressed by [9]. By mapping the static
and behavioral elements of the UML metamodels
into Abstract State Machine (ASM), they convert
the structural model elements into ASM vocabulary
that representing a group of functions and domains.
In this approach the focus was in representing the
UML metamodel structure in ASM vocabulary
semantics. They deviated from the standard UML
diagrams by the ASM semantics. While our work is
using the standard UML diagrams as it is, and
integrated both behavioral and structural diagrams

in a single EAV repository. On the other hand, their
approach can be applied at a very high level of
metamodels and abstractions while ours can go for
different levels of abstractions
(Metamodels/Models). This is beside the fact that
their work is only taken into account model
elements from a static view, dropping any relation
to their actual, dynamic semantics. Consequently,
their formal semantics are not enough to achieve an
integration between UML structural and behavioral
diagrams.

From model’s representation prospective, the
work on [1] is closely related to ours. Were they
adopted the database model to represent models.
However, both static and dynamic models
presented separately using a conventional database
model. On the other hand, the focus wasn’t
targeting the integration between static and
behavioral models. While this work combines the
model’s structure and behavior in the EAV
representation repository, benefiting from its open
structure flexibility. Therefore, there is no need to
redesign the schema upon a change in the model’s
structure or behavior. Also the self-describing data
and the simple physical data format of EAV makes
it much practical when representing models and
metamodels. This is beside the ‘‘Object-at-a-time’’
queries against a highly complex logical schema
that are significantly easier to implement with EAV
than with their conventional structure.

In the next section we brief about EAV concept
and show its strength in knowledge representation
for models and metamodels.

3. THE ENTITY-ATTRIBUTE-VALUE

CONCEPT

EAV is widely used in the medical and clinical

information system as a general purpose means of
knowledge representation. The Attribute-value
pairs concept is an esteemed way of representing
information on an object, originated on 1950s on
the LISP association lists[7]. An example of
attribute-value pairs showing a particular student
information would be: ((IndexNoA3)
(ProgramCS101) (GPA3.1) (Year2012) (Status
Active)).

Unlike the conventional database the EAV
design does not support or conform to rules of
database normalization[10], where the attribute-
value pairs become triples with the entity (the thing
being described, identified with a unique identifier
of some sort) repeating in each row of a table.

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

117

Extensible Markup Language (XML) [3] syntax
is related to attribute-value pairs. XML elements,
delimited within open- and close-tags for ease and
accuracy of parsing, can represent either entities or
attributes. They can contain sub-elements nested to
arbitrary levels; sub-elements may be regarded as
attributes with complex structure. For convenience,
atomic data describing an entity may also be
represented within an element's open-tag as
attribute-value pairs, each component of a pair
being separated by an equal sign.

4. MODEL AND METAMODEL

REPRESENTATION

Normally, metamodels sitting in a level higher

than it is instance model. In this part we are
showing how we represent models and metamodels
using EAV concept. Figure 1 shows our instance
model that we designed with a simple State
Machine design language for an application in
which Passengers buy tickets at the time they
obtain reservations. At check-in time they obtain
boarding cards if there are still seats available. Due
to overbooking of flights they may be rescheduled
on later flights.

Figure 1: A State Machine Model For Airline Passenger

The State Machine diagram is a UML diagram
that shows systems behavior and dynamic
characteristics. Some of the information in this
diagram are is implicit. In this situation, we need to
interpret the graphical objects in the above diagram,
which we do by consulting the documentation of
the State Machine modeling language and its
particular representation in this case.

Here, there are three types of object:

States, represented by ovals, each of which has a
name, represented by the text contained in the oval.

Transitions, represented by arrows. A transition
is from a source state (represented by the plain end
of the arrow) to a target state (represented by the
end of the arrow with an arrowhead).

Events, each of which is associated with a
transition. An event is represented by a name near

the arrow representing the associated transition. The
diagram contains five instances of State: Passenger

The static UML class diagram metamodel in
Figure 2 is representing the concept shown in
Figure 1. Note that the instances in the diagram of
Figure 1 do not appear in the metamodel of Figure
2. Note also the metaclass NamedElement, which is
a superclass of the meta-classes State and Event.
The states and events of Figure 1 are all named.
The metaclass NamedElement supplies an attribute
name to its subclasses.

Metamodels are closely related to database
schemas. Instances of the concepts specified in the
model are stored in a database specified by the
schemas developed from the metamodel. Appendix
A shows the instances in the class list of Figure 1
represented in a database whose schema is
developed from the metamodel of Figure 2.

Figure 2: UML Class Diagram For State Machine

Notice that the population of the database in
Appendix A consists entirely of tuples of literals.
Each column of each table is relational attribute of a
literal type. A column in a table is ultimately
derived from a literal-valued attribute in the UML
Class model of Appendix B. We can think of the
population of the database as a collection of literals
organized according to the classes, associations and
attributes in the Class model.

In the same way, the instances in the Airline
Passenger model of Figure 1 can be represented as a
population of a database whose schema is
developed from the metamodel of Figure 2, as
shown in Appendix A. (An abbreviation used for
more space). This database is the repository of a
modelling tool supporting the simple State Machine
design language. The columns here are all derived
from the name attribute of the class NamedElement
in Appendix A. This conventional representation of
the database tables State and Event, where they
have only one column, name. The table Transition
has three columns, all are foreign keys. Two are
derived from the name attribute of the class State
and one from the name attribute of the class Event.
Without the attribute name in NamedElement, it

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

118

would be impossible to create a repository schema
that would record the Airline Passenger model of
Appendix A.

A further issue is that a relational schema
requires that for each table certain attributes are
declared to be the key for the table. That is, a row in
the table can be identified by looking at the values
of the key attributes. Knowing the values of the key
attributes, we can look at the table to find the values
of the other attributes in the row. Some
metamodeling languages allow the specification of
identifiers [11]. Entity-Relationship Modeling [12]
and Object-Role Modeling [13] both support
identifiers. UML, however, does not [1]. If UML is
used as the metamodeling language, then additional
information must be supplied to designate some
attributes in the repository schema to be keys.

In the STM repository of Appendix A, the tables
State and Event both have the attribute name as
key, while the Transition table has a key composed
of the three attributes source, target and
triggeredBy.

Once we have a schema and a population for an
application, we can use the query language
associated with the database system to make
queries about the population. Queries are typically
about the semantics of the application.
Nevertheless, any change on the metamodel in
Figure 2 should be reflected in its instance model in
Figure 1 and consequently in the database in
Appendix A. However, because of the conventional
database structure a Data Definition Language
(DDL) statements should be used. For example, to
add new attribute to the table Event or State an
Alter table statement should be employed. Which
normally done by the model designer who’s not
necessarily the one who is doing the development.
On the other hand, most of the modelling tools do
not allow any changes on their main metamodel on
which they developed based on it. Beside the fact
that the change in the diagram structure can’t
propagate easily to other behavioral diagrams
attached to it. To overcome this limitation a
dynamic structure employed to replace the
conventional schema in Appendix A by an EAV
structure in Appendix B. The open structure of
EAV treats all the tables in the conventional
schema as a tuple entry in a single EAV table. The
thing that gives more control in managing models
dynamicity, upgrade and maintenance.

Structure-oriented queries are important in
Modelling tool applications. For example, a state
machine can have an initial state (a state with no

transitions in) or a final state (a state with no
transitions out). These states can be identified
respectively by the following two views

CREATE VIEW InitialState(StateName) AS(
SELECT A.Value_ FROM EAV A
Where A.ENTITY = 'STATE' AND A.ATTRIBUTE
= 'NAME'
AND
A.Value_ NOT IN (
SELECT B.Value_ FROM EAV B
WHERE
 B.ENTITY = 'TRANSITION'

AND
B.ATTRIBUTE = 'TARGET'))

CREATE VIEW FinalState(StateName) AS(
SELECT A.Value_ FROM EAV A
Where A.ENTITY = 'STATE' AND A.ATTRIBUTE
= 'NAME'
AND
A.Value_ NOT IN (
SELECT B.Value_ FROM EAV B
WHERE
 B.ENTITY = 'TRANSITION'

AND
B.ATTRIBUTE = SOURCE))

The above two views return no data because the

state machine in Figure 1 is cyclic. Hence, we
interested to validate whether our state machine
design is entirely cyclic, with neither initial nor
final states.

CREATE VIEW Cycli cModel(Cyclic) AS
SELECT "Cyclic" FROM State WHERE

NOT EXISTS SELECT * FROM
InitialState

AND
NOT EXISTS SELECT * FROM FinalState

In particular, Modelling Tool repositories are
intended to store designs, which are often expressed
in graphical languages (like UML). The two-
dimensional nature of graphical languages makes it
relatively easy to have a design language where the
design concepts are expressed as a complex
structure. These complex structures generally have
formation rules (Constrains), which can be checked
by structural queries. Structural queries therefore
are more important for modelling tools than for
general database applications.

An example of a design language (metamodel)
with complex structures having constrains is our
simple State Machine language of Figure 2. An
instance of Transition is necessarily linked to two
instances of State and one instance of Event. A
structured query whose result is violations of this
constraint is

SELECT * FROM EAV A WHERE

A.ENTITY = 'TRANSITION' AND

NOT EXIST(

SELECT * FROM EAV B WHERE B.ENTITY =

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

119

'STATE'

AND B.ATTRIBUTE = 'NAME'

AND B.VALUE_ IN

(SELECT B1.VALUE_ FROM EAV B1 WHERE

B1.ENTITY = 'TRANSITION'AND

B1.ATTRIBUTE ='SOURCE')

AND

SELECT * FROM EAV C WHERE C.ENTITY =
'STATE'

AND C.ATTRIBUTE = 'NAME'

AND C.VALUE_ IN

(SELECT C1.VALUE_ FROM EAV C1 WHERE

C1.ENTITY = 'TRANSITION'AND

C1.ATTRIBUTE ='TARGET')

 AND

SELECT * FROM EAV D WHERE D.ENTITY =
'EVENT'

AND D.ATTRIBUTE = 'NAME'

AND D.VALUE_ IN

 (SELECT D1.VALUE_ FROM EAV

D1 WHERE D1.ENTITY = 'TRANSITION'AND

D1.ATTRIBUTE ='TRIGGEREDBY')

)

Additional constraints can be added in to a given
design, for example, that there be exactly one initial
state and exactly one final state, or that there be no
isolated states.

Some modeling languages allow constraints to be
represented by annotations on static model, but it
may not tell a designer how to concretely represent
a design. Instead, a separate dynamic version of the
static model may employ to address this issue. For
example, the static class diagram in Figure 2 does
not tell the designer enough to be able to represent
the behavioral characteristics of the Airline
Passenger state model presented in Figure 1. To do
this, the static conceptual model must be augmented
by some rendering conventions. However, we are
implementing this by joining both, the behavioral
model and structural static metamodel presented in
Figure 1 and Figure 2 respectively in a single EAV
structure, shown in the next part.

5. INTEGRATION BETWEEN STATIC AND

DYNAMIC MODELS

In this part we combine the static class diagram

(Matamodel) in Figure 2 with its behavioral
Instance Model in Figure 1. Since the
documentation one of the modelling purpose, we
have added some basic information about the

model. Appendix A presented the dynamic state
machine model in Figure 1 combined with its static
structure metamodel in Figure 2.

The Entity column in Appendix C is EAV
structure that can include several attributes
separated by “.” to address different areas in the
representation of the dynamic models and static
metamodels. To realize this the Entity
“Metamodel.Element.NamedElement.EVENT” and
”Metamodel.Element.NamedElement.State” can be
queried to list the correspondence data that
inherited from the NamedElement at the metamodel
level as well as the model level as per below query.

SELECT * FROM EAVRepository

WHERE

ENTITY
LIKE('Metamodel.Element.NamedElement%')

Different scenarios can be implemented where
the dynamic instant model can be addressed without
its static structure metamodel or vice versa. That’s
why it is advisable to create different views for each
area of interest.

The MDA tools along with other modelling tools
support the XML/XMI format to support the
interoperability, model interchange and code
generation. The SQL/XML standard is ISO/IEC
9075–14:2005(E), Information technology –
Database languages – SQL – Part 14: XML-Related
Specifications (SQL/XML). As part of the SQL
standard, it is aligned with SQL:2003 [2]. The
below show apart from an XML representation to
the EAVRepository table

<EAV>

<Row

ENTITY="Metamodel.Element.NamedElement.EVEN
T"

 ATTRIBUTE="NAME"

 VALUE_="complete"

 />

</EAV>

6. RESULTS AND DISCUSSION

Normally, Metamodels represented in a static

UML Models. They are combining a set of concepts
and corresponding mechanisms that allow to
"model" formally different contexts (e.g. #business
processes/activities) with the same point of view.
The different in context can include the structural
and behavioral characteristics beside the
consideration of their different level of abstractions.
Having such capability of representing metamodels

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

120

and its instance models in an XML/XMI format in a
single repository enables for instance, to manage
models formalizing each one subset of an overall
operational context, keeping it consistent with the
others. Therefore, automation of change
propagation can be achieved with less time and
cost.

Therefore, integration and consistency between
models presenting the same type of point of view is
one of the key interest of having one static and
dynamic models in the same repository. This EAV
structure is capable to handle several metamodels in
a single repository as well. Of course, this makes
sense on condition that each metamodel address a
point of view different from the points of views of
the other metamodels. Having this capability, one
can represent different points of views of the same
context. Opening the door to bring more structural
and dynamic models in different level of abstraction
integrated together to support the MDA vision of
end to end development of software applications
using modeling language.

Normally, it is hard to validate the correctness of
the models before development. So, the
communication between the artifact designer and
the developer is very crustal. Hence, it is hard to
keep the models and development artifacts in
synchronization during the development and
maintenance phases. The adoption of this approach
gives better control and quality on metamodels and
its generated models: when defining and changing
the metamodel it possible to immediately check
how it influences to the models. This gives
immediate feedback, testability and incremental
metamodel definition. This is in sharp contrast to
the ways how metamodels are defined in some
standardization organizations where metamodels
are not executed or tested with models (but stay as a
document).

This is beside the great support to the model
evolution: with proper mechanisms in place there is
a flexibility to ensure that models will work, open
in editors, produce the code etc. with the newer
metamodel too (e.g. updates automatically the
models to the new metamodel).

There are also other advantages like faster
metamodel/language development, easier
management, possibility to couple various
generators based on the metamodel together, etc.
The thing ,ml that support software product line
productivity.

Under the MDA context the static models (Class
diagram) has a capability of 1 to 1 mapping to

implementation (source code) potentially. However,
the behavioral models (State Machine) are normally
lack of capability for entire code generation.
Considering code generation from behavioral
diagram, it is possible to generate the skeleton of
method invocations, however, it is impossible to
generate the content codes of methods
(functions/operation). Otherwise, it is necessary to
specify same description like the source codes. The
proposed approach demonstrated the capability of
integration between UML behavioral models (State
Machine Diagrams) with Static model (Class
Diagrams). Consequently, more controls are
provided concerning the transformation to code
from models.

The limitation of this approach is inherited from
EAV representation drawbacks. Where a
considerable up-front programming is needed to do
many tasks that a conventional architecture would
do automatically. Moreover, such programming
needs to be done only once, and availability of
generic EAV tools could remove this limitation.
Also, for bulk retrieval EAV design is considered
less efficient than a conventional structure.
Consequently, performing complex attribute-centric
queries, which are based on values of attributes,
and returning a set of objects is both significantly
less efficient as well as technically more difficult.

7. CONCLUSION AND FUTURE WORK

In this paper we have presented a new concept of

integration between UML static and dynamic
models where we represented a static metamodel
class diagram combined with its instance dynamic
state machine models inspired by the Entity-
Attribute-Value concept. Both static and its
dynamic model represented in a single repository.
Having is repository in XML/XMI format make it
exchangeable and accessible to most of CASE tools
in general and MDA transformation tools in
specific.

The paper focused on the representation and
integration of structural and behavioral models
under the MDA context. However, in the near
future we plan to bring the Domain Specific
Language (DSL) on board in order to standardize
and simplify the repository update and population.

Also our intention to use this approach for
computer platform representation in to support of a
transformation to a particular platform executable
code.

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

121

REFRENCES:

[1] R. M. Colomb, "Metamodelling and
Model-Driven Architecture," Faculty of

Computer Science and Information

Systems

University of Technology Malaysia, vol. 1, 2009
2009.

[2] A. Eisenberg, J. Melton, K. Kulkarni, J.-E.
Michels, and F. Zemke, "SQL: 2003 has
been published," ACM SIGMoD Record,

vol. 33, pp. 119-126, 2004.
[3] T. Kiefer and M. M. Nicola, "Generating

structured query language/extensible
markup language (SQL/XML)
statements," ed: Google Patents, 2012.

[4] M. Peltier, J. Bézivin, and G. Guillaume,
"MTRANS: A general framework, based
on XSLT, for model transformations," in
Workshop on Transformations in UML

(WTUML), Genova, Italy, 2001.
[5] M. Peltier, F. Ziserman, and J. Bézivin,

"On levels of model transformation," in
XML Europe, 2000, pp. 1-17.

[6] H. Kern, A. Hummel, and S. Kühne,
"Towards a comparative analysis of meta-
metamodels," in Proceedings of the

compilation of the co-located workshops

on DSM'11, TMC'11, AGERE!'11,

AOOPES'11, NEAT'11, & VMIL'11, 2011,
pp. 7-12.

[7] V. Dinu and P. Nadkarni, "Guidelines for
the effective use of entity-attribute-value
modeling for biomedical databases,"
International journal of medical

informatics, vol. 76, p. 769, 2007.
[8] A. M. ELSAWI, S. SAHIBULDIN, and A.

ABDELHADI, "INTRODUCING THE
OPEN SOURCE METAMODEL
CONCEPT," Journal of Theoretical &

Applied Information Technology, vol. 57,
2013.

[9] A. Cavarra, E. Riccobene, and P.
Scandurra, "Integrating UML static and
dynamic views and formalizing the
interaction mechanism of UML state
machines," in Abstract State Machines

2003, 2003, pp. 229-243.
[10] W. Kent, "A simple guide to five normal

forms in relational database theory,"
Communications of the ACM, vol. 26, pp.
120-125, 1983.

[11] D. Varró and A. Balogh, "The model
transformation language of the VIATRA2
framework," Science of Computer

Programming, vol. 68, pp. 214-234, 2007.

[12] I.-Y. Song and K. Froehlich, "Entity-
relationship modeling," Potentials, IEEE,

vol. 13, pp. 29-34, 1994.
[13] T. Halpin, "Object-role modeling

(ORM/NIAM)," in Handbook on

Architectures of Information Systems, ed:
Springer, 2006, pp. 81-103.

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

122

APPENDICES

APPENDIX A:

State Event

Name Name

WishTravel reservation

Completed reschedual

HoldRes reqCheckIn

ReadyTravel checkIn

WBoardCard complete

urgeFly

Transition

Source Target Triggeredby

WishTravel HoldRes reservation

HoldRes ReadyTravel reqCheckIn

ReadyTravel HoldRes reschedual

ReadyTravel WBoardCard checkIn

WBoardCard Completed complete

Completed WishTravel urgeFly

Appendix A: Airline Passenger state model of Figure 1 represented as a conventional database population

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

123

APPENDIX B:

ENTITY ATTRIBUTE VALUE_

EVENT NAME checkIn

EVENT NAME Complete

EVENT NAME reqCheckIn

EVENT NAME Reschedule

EVENT NAME Reservation

EVENT NAME urgeFly

STATE NAME Completed

STATE NAME HoldRes

STATE NAME ReadyTravel

STATE NAME WBoardCard

STATE NAME WishTravel

TRANSITION SOURCE Completed

TRANSITION SOURCE HoldRes

TRANSITION SOURCE ReadyTravel

TRANSITION SOURCE ReadyTravel

TRANSITION SOURCE WBoardCard

TRANSITION SOURCE WishTravel

TRANSITION TARGET Completed

TRANSITION TARGET HoldRes

TRANSITION TARGET HoldRes

TRANSITION TARGET ReadyTravel

TRANSITION TARGET WBoardCard

TRANSITION TARGET WishTravel

TRANSITION TRIGGEREDBY checkIn

TRANSITION TRIGGEREDBY complete

TRANSITION TRIGGEREDBY reqCheckIn

TRANSITION TRIGGEREDBY reschedule

TRANSITION TRIGGEREDBY reservation

TRANSITION TRIGGEREDBY urgeFly

Appendix B: Airline Passenger state model of Figure 1 represented in EAV database population

Journal of Theoretical and Applied Information Technology
 10

th
 October 2014. Vol. 68 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

124

APPENDIX C:

ENTITY ATTRIBUTE VALUE_

Metamodel ID 1

Metamodel Name State Machine

Metamodel.Element ID 1.1.1.1

Metamodel.Element Name NamedElement

Metamodel.Element.NamedElement DataType String

Metamodel.Element.NamedElement Attribute Name

Metamodel.Element.NamedElement.EVENT NAME checkIn

Metamodel.Element.NamedElement.EVENT NAME complete

Metamodel.Element.NamedElement.EVENT NAME reqCheckIn

Metamodel.Element.NamedElement.EVENT NAME reservation

Metamodel.Element.NamedElement.EVENT NAME urgeFly

Metamodel.Element.NamedElement.EVENT NAME Completed

Metamodel.Element.NamedElement.EVENT NAME HoldRes

Metamodel.Element.NamedElement.EVENT NAME ReadyTravel

Metamodel.Element.NamedElement.EVENT NAME WBoardCard

Metamodel.Element.NamedElement.EVENT NAME WishTravel

Metamodel.Element.NamedElement.NAME NAME Completed

Metamodel.Element.NamedElement.NAME NAME HoldRes

Metamodel.Element.NamedElement.NAME NAME ReadyTravel

Metamodel.Element.NamedElement.NAME NAME WBoardCard

Metamodel.Element.TRANSITION SOURCE Completed

Metamodel.Element.TRANSITION SOURCE HoldRes

Metamodel.Element.TRANSITION SOURCE ReadyTravel

Metamodel.Element.TRANSITION SOURCE WBoardCard

Metamodel.Element.TRANSITION SOURCE WishTravel

Metamodel.Element.TRANSITION TARGET Completed

Metamodel.Element.TRANSITION TARGET HoldRes

Metamodel.Element.TRANSITION TARGET HoldRes

Metamodel.Element.TRANSITION TARGET ReadyTravel

Metamodel.Element.TRANSITION TARGET WBoardCard

Metamodel.Element.TRANSITION TARGET WishTravel

Metamodel.Element.TRANSITION TRIGGEREDBY checkIn

Metamodel.Element.TRANSITION TRIGGEREDBY complete

Metamodel.Element.TRANSITION TRIGGEREDBY reqCheckIn

Metamodel.Element.TRANSITION TRIGGEREDBY reschedule

Metamodel.Element.TRANSITION TRIGGEREDBY reservation

Metamodel.Element.TRANSITION TRIGGEREDBY urgeFly

Appendix C: Fragment of EAV representation to models in Figure 1 and Figure 2

