
Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

789

A COMPARATIVE STUDY OF EVOLUTIONARY

ALGORITHMS FOR SCHOOL SCHEDULING PROBLEM

1
DANIEL NUGRAHA,

 2
RAYMOND KOSALA

1School of Computer Science, Bina Nusantara University, Jakarta, Indonesia

2School of Computer Science, Bina Nusantara University, Jakarta, Indonesia

E-mail: 1niel_syd@yahoo.com, 2rkosala@binus.edu

ABSTRACT

The scheduling problem is one of the combinatorial optimization problems that are common in the real
world. Evolutionary algorithms, such as Genetic Algorithm and the Bees Algorithm have been used in the
literature to solve this problem. In this paper, we apply the Genetic Algorithm, Bees Algorithm, and the
combination of these two algorithms, which is Hybrid GA-Bees, to solve school scheduling problem. The
algorithms to solve the school scheduling problems were implemented using the object-oriented paradigm
and tested to create actual class schedules at a middle school in Jakarta. Our study concludes that the
Hybrid GA-Bees can produce better solutions compared to the solutions generated by the Genetic
Algorithm and Bees algorithm.

Keywords: Genetic Algorithm, Bees algorithm, Hybrid GA-Bees algorithm, school scheduling

1. INTRODUCTION

The scheduling problem is one of the

combinatorial optimization problems that are
common in the real world, and the scheduling
problem in education domain is not new. In general,
the scheduling problem can be classified into
several types, such as college-level academic
scheduling, scheduling middle and elementary
schools, scheduling exams, transportation
scheduling, scheduling flow of sales or delivery of
goods, and others.

The scheduling problem can be categorized in the
class of NP-hard problem in which the problems are
difficult to solve using exact algorithms [1]. In this
class of problems, the computation time required
searching for the optimal solution increases
exponentially depending on the size of the problem
[2, 3]. In the research literature there has been many
solutions proposed to solve similar NP-hard
problem with various metaheuristic and
evolutionary approaches. From those studies we can
conclude that the evolutionary methods have been
succeeded in solving these problems [4, 5, 6].

In a previous study [7], a new algorithm which is
called Hybrid GA-Bees was proposed. The authors
in [7] have tested the Hybrid GA-Bees algorithm to
solve a university’s course timetabling problem,
and concluded that it produced in a better schedule

optimization when compared with other methods,
such as Tabu Search, Bees Algorithm, and Variable
Neighborhood search (VNS). In this paper, we
focus on comparing some evolutionary algorithms,
including the Hybrid GA-Bees algorithm, to solve
the real world class scheduling problem at a middle
school institution.

In this paper, a Hybrid GA-Bees algorithm will
be compared with the Genetic algorithms and Bees
algorithm alone with a customized fitness
computation for scheduling problems at one middle
school in Jakarta. The rest of this paper is divided
into the following sections: Section 2 describes the
scheduling problem in detail, Section 3 describes
the algorithms that will be compared, Section 4
shows the experimental results and compares the
performance of evolutionary algorithms, and
Section 5 concludes the paper.

2. DESCRIPTION OF THE SCHEDULING

PROBLEM

There are two main classes of course scheduling
or timetabling problems: the Post Enrolment-based
course scheduling problem and the Curriculum-
based course scheduling problem [8]. In the
literature, the post enrolment-based course
scheduling problem is also often called as class

scheduling problem or event scheduling problem.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

790

This paper attempts to solve the class scheduling
or the post enrolment problem at a middle school in
Jakarta. In the manual scheduling, the schools often
have to deals with the overlapping schedules that
may cause the obstruction of teaching and learning
process, make the students come late to the next
lesson, and in the end waste the time allocated for
learning. The manual course scheduling also has the
has to deal with following complications:
constraints on the teachers, constraints on
classroom space, constraints on the time for study,
and constraints due to the regulation about the
number of work hours and rest periods of the
teachers. In the following, we propose to solve this
problem by using evolutionary algorithms.

2.1 Constraints

A class scheduling problem can be described as a
set of soft constraints and hard constraints. Hard
constraints are the constraints that should be
fulfilled, while soft constraints are the constraints
that will not disrupt the teaching and learning
process if not met, but the schedule would be better
and preferable if it could be met. The set of hard
and soft constraints are described as follows.

Hard Constraints

H1. Teacher: One educator cannot teach in two
places or classes on the same time slot on the same
day.

H2. Overlap: On the same day, there should be no
courses taught more than once.

H3. Maximum working day: The educators cannot
teach more than four time slots in a single day.

Soft Constraint

S1. Break: The educators should be given time off
before the next classes.

2.2 Fitness Function

The formulation of the fitness function is adapted
from [9] and can be written as follows:

f(X) = ∑
=

n

i 1

wi di (1)

The function f(X) is a fitness or objective
function that specifies the quality of a scheduling,
where:

• X is a scheduling (timetable) which is checked
against a set of hard and soft constraints
mentioned above,

• wi are weights, where the hard constraint has a
weight of 100 and soft constraint has a weight
of 1,

• di is violation number of the ith constraint (how
many times a constraint is violated), and

• n is the total number of constraints.

The lower the value of the fitness function in
Formula 1 will yield a better solution. Thus this
fitness function will be minimized during the search
of the timetabling solution, and the best solution
will have a fitness value of 0 (zero).

3. THE ALGORITHMS

3.1 Genetic Algorithms

Genetic algorithm, which was proposed by John
Holland in 1975, is a branch of evolutionary
computation (EC) and is based on the principle of
natural selection [9].

The genetic algorithm [10] that is shown in
Figure 1 begins by generating an initial population
in the form of a collection of individuals who were
randomized. Each individual or commonly called
chromosome has a fitness value that measures how
good the individual is as a solution. Each individual
is represented as the arrangement of genes. Finally,
each gene contains a value or a particular trait
called allele.

Figure 1. The Genetic algorithm

In every loop or one generation, each individual
undergo selection, crossover, and mutation are then

1) Choose the initialize population of

individuals

2) Evaluate the fitness of each individual in

that population

3) Repeat

4) Selection: Select pair of parent individuals

form a population

5) Crossover: With a crossover probability

crossover the parents to generate a new

individual (Children). If no crossover was

performed, the individual is an exact copy of

parents

6) Mutation: With a mutation probability

mutate new individual

7) Evaluate the individual fitness of new

individuals

8) Replace least-fit population with new

individuals

9) Until terminations condition met

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

791

the fitness values are re-evaluated. The selection
operator chooses the parents randomly using
roulette wheel selection method, in which
individuals with better fitness values will have
higher probabilities of being selected. The selected
parents that are chosen probabilistically then
crossed over. In the end, with a small probability a
mutation is carried out to the individual
chromosome.

3.2 Bees Algorithm (Bees)

Bees Algorithm is a metaheuristic search
technique based on population. The algorithm is
inspired by the foraging behavior of the honey bee
in combination with a randomized local search
around in the neighborhood of the solution to get
the best fitness value [1]. The parameters in this
algorithm are: the number of scout or search bees
(n), the number of sites that will be used for the
neighborhood search (m), the number of elite bees
(e), the number of bees that will be employed for
patches visited by the elite bees (nep), number of
bees that are employed for other (m-e) selected
patches (nsp), and the size of patches (ngh) [11].

The Bees algorithm that we use [12] is shown in
Figure 2. The algorithm starts with setting the
number n bees that are conducting random searches
of honey into the population, and then back for the
fitness calculation. The bees that produce the best
fitness values later become elite bees (e), then the
elite bees choose their members (nep) to carry out
the neighborhood search in m sites.

Figure 2. The Bees Algorithm (Bees)

The neighbor solution is the best result from the

new fitness calculation, and this will replace the old
result. Next, the rest of the bees other than the elite
bees will be sent to search randomly into the
population and then back for the fitness calculation.
This condition is repeated until the fitness value
equal to 0.

In the Neighborhood Search algorithm [12]
shown in Figure 3, the bees choose the neighbor
randomly, put the result in set X’, then swap or
move at random. The best results will be used for
further processing.

Figure 3. The Neighborhood Search Algorithm

3.3 GA-Bees Algorithm

The GA-Bees hybrid algorithm shown in Figure
4 is an algorithm that combined the genetic
algorithm and Bees algorithm [7].

The first step the combined GA-Bees algorithm
shown in Figure 4 is to initialize the population
randomly. Then the fitness of each individual in the
population is calculated. In one generation (one
loop), the Hybrid GA-Bees algorithm does two
processes in sequence. The loop starts with the Bees
algorithm from steps 4 to 7 that perform local
search as well as to improve the fitness value as
many as e (the number of elite bees) individuals.
Then the improved individuals are returned to the
population. Finally the genetic algorithm processes
(Selection, Crossover, and Mutation) are started
from steps 8 to 12.

4. EXPERIMENTS

The algorithms above were implemented using
the Java SDK 1.7 and their performances were
tested using the data from Tunas Muda School in
Jakarta during the academic year 2011/2012.

The data consists of a total of 12 classes from
grade 7 to grade 12 of middle (junior high) school.
Each grade level has parallel classes. The number
of classrooms used for teaching and learning
operations was 25 rooms and special facilities
including laboratories. There were 32 teachers that
teach no more than 16 sessions per week. The
duration of one class session was 70 minutes.

Create a Neighborhood Solution from X:
1. Randomly select neighbor

2. Set X’ = X

3. Randomly choose a kind of move in two

kind of moves (Single move, Swap move)

4. Take a best solution X’ in the

neighborhood of X created by the chosen

kind of move with a fraction of available

set of block element of X

5. Return X’

1) Initialize population with random

2) Evaluate fitness of the population

3) While (stopping criterion not met)

 // Forming new population

4) Select sites for Neighborhood Search

5) Recruit bees for selected sites (more bees

for the best e sites) and evaluate fitness.

6) Select the finest bees from each patch

7) Assign remaining bees to search

randomly and evaluate their fitness

8) End While.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

792

The experiments were executed using a computer
with the following specification: Intel Core i7 -
2630QM processor running at 2.00GHz with a 32-
bit Windows 7 Operating System.

Figure 4. The GA-Bees (hybrid) Algorithm

Table 1 shows the representation of each class as
a matrix timetable with size x times y, where x is
the number of sessions per day and y is the number
of working days in a week. So there were 25 genes
used for one allele and they were initialized
randomly at the start. A chromosome or individual
was composed of 12 alleles that represent the
amount of class. So the string that represents an
individual consists of 300 genes. Figure 5 shows the
string representation of the individual in the
population.

Table 1 . Scheduling Class 7C

4 2 … 11 6 8 … … 5 …

Figure 5. String representation of a chromosome

We have conducted the experiments to test the

performance of the three algorithms. They were
tested with the same chromosome model to
generate good timetables, while complying with the
hard and soft constraints that were mentioned
earlier in this paper.

The Genetic Algorithm (GA) was tested for up to
100 generations. Early initialization was done using
random data entered in each class to form the
individual or chromosome. The GA operators that
were used are the following:

a. Selection: the selection process was done using
roulette dish to choose parents randomly.
Chromosomes that have better fitness values had
greater opportunities to be selected.

b. Crossover: the crossover method that was used
is the probabilistic n-point crossover, in which
crossover point derived from the number of classes
that are available, and the selection probabilities
were randomly selected from among the parents.
Figure 6, 7 and 8 show two examples of how the
crossover operator works.

c. Mutation: the mutation process that was used
is a swap mutation of 2 random points. Figure 9
shows an example of how the mutation operator
works.

In Figure 6, the resulting Child chromosomes do
not always follow the pattern of their parents or
follow a certain pattern because they were
randomly selected from the chromosomes of the
parents. Figure 7 and 8 show two examples of
crossover selection models of the children.

1) Initialize population with random

2) Evaluate fitness of the population

3) While (stopping criterion not met)

// Bees algorithm

4) Select sites for neighborhood search

5) Recruit bees for selected sites (more bees

for the best e sites) and evaluate fitness.

6) Select the finest bees from each patch

7) Assign remaining bees to search randomly

and evaluate their fitness.

// Genetic algorithm

8) Randomly select pair of parent individuals

from a population

9) Crossover: With a crossover probability

crossover the parents to generate a new

individual (children). If no crossover was

perform, the individual is an exact copy of

parents

10) Mutation: With a mutation probability

mutate new individual at each position in

chromosome

11) Evaluate the individual fitness of new

individuals

12) Selection: Replace least-fit population

with new individuals

13) End while.

Grade7 …… . Grade 12

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

793

Parent1:

1 2 3 4 5 6 7 8

Parent2:

11 12 13 14 15 16 17 18

Child1:

1 12 3 14 5 16 7 18

Child2:

11 12 13 14 15 16 7 8

Figure 6. An example of the crossover operation

1 2 3 4 5 6 7 8

11 12 13 14 15 16 17 18

Figure 7. Crossover selection model of Child1

1 2 3 4 5 6 7 8

11 12 13 14 15 16 17 18

Figure 8. Crossover selection model of Child2

Before:

1 2 3 4 5 6 7 8

After:

1 8 3 4 5 6 7 2

Figure 9. Swap Mutation model

If an individual meets the criteria mutation
probability, then every allele of its chromosome
will be swap randomly. So the represented class in
the individual may be swapped around.

In order to do the experiments, Figure 10 shows
the implementation of a user interface (UI) for the
timetabling solution. Figure 11 shows the UI to
generate the initial population, and Figure 12 shows
the UI of the resulting timetable.

Figure 10. The User Interface of the Solution

Figure 11. The User Interface to Generate the Initial

Population

Figure 12. The User Interface of the Resulting

Timetable

In this experiment, we used a hold out method to
find the best combination of the parameters. The
parameters for the Genetic algorithms are selected
from the following values based on the previous
research done in [7]: crossover threshold probability
{50%, 80%, 90%} and mutation probability of
{1%, 2%, 3%}. The tests above were performed on
all possible combinations of the specified values,
and each experiment was done ten times, and then

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

794

we use the average values. The best combination of
parameters for the Genetic algorithm was crossover
threshold probability of 80% and mutation
probability of 2%. Total number of generations was
limited to 100 iterations, and the value 0 is the best
fitness value.

The test result of the Genetic algorithm (GA) in
Figure 13 shows the fitness values over generations
that form a learning curve. We can see that the
learning curve of the maximum fitness values has a
high variance. The possible reason for this is
because all the operations in the GA, which are the
crossover and mutation, are done randomly. The
green curve, which is the average fitness value of
each generation, tends to improve with lower
average fitness value at each generation. This
means in general, we can see that the GA produces
better population from generation to generation.
However, the GA could not produce a good enough
timetabling solution after 100 generations because
no individual with a fitness value of zero was
generated.

Figure 13. The Genetic Algorithm Test Results

For the Bees algorithm, the best combination of
parameters are selected from the following values:
the number of scout bees (n) = {20, 30} , the
number of elite bees (e) = {3, 4} , the number of
selected sites (m) = {4, 5} , the number elite
patches (nep) = {4, 5}, the number of other bee
patches (nsp) = {2, 3}, the size of the patch (ngh) =
{5, 10}. The tests above were performed on all
possible combinations of the specified values, and
each experiment was done ten times, and then we

use the average values. The best combination of
parameters for the Bees algorithm was: n = 30, e =
4, m = 5, nap = 4, nsp = 2, ngh = 10. Total number
of generations was limited to 100 iterations, and the
value 0 is the best fitness value.

As can be seen from the test results of the Bees
algorithm in Figure 14, the maximum fitness curve
fell rapidly. That is because of the neighborhood
search (NS) done by a number of bees that were not
employed by the elite bees (m-e), and this affected
the shape of the maximum fitness curve. All elite
bees ensure that the overall fitness value improves,
and if the (m-e) bees obtained good results, then the
fitness curve will drop significantly. The fitness
curve may go up if the results of the (m-e) bees
were not good. However, the fitness curve would
not go up significantly because we use only a small
number of (m-e) bees. The red curve is a minimal
fitness curve that was always constant or goes
down. This is because the elite bees maintain the
same or better fitness value. To conclude, the Bees
algorithm has better results on our scheduling
problem than the genetic algorithm over 100
generations in our experiments.

 Figure 14. The Bees Algorithm Test Results

For the GA-Bees algorithm, the best combination
of parameters are: n (the number of scout bees) =
30, e (the number of elite bees) = 4, m (the number
of selected sites) = 5, nep (the number of bees
recruited for patches visited by bees elite e) = 5, nsp
(the number of bees recruited for the other (m-e)
selected patches) = 2, and ngh (the size of the

Fitness

Generation

Fitness

Generation

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

795

patches) = 10. From the resulting best parameter of
the combination of Genetic algorithms and Bees
algorithms, averaging over ten runs, we obtained
some fitness curves as shown in Figure 15.

Figure 15. The GA – Bees Test Results

We can see from the experiment results of the
GA-Bees algorithm in Figure 15 that GA-Bees
algorithm gave better results compared to the
results of the previous two algorithms. The average
minimal fitness curve touches the point 0, which
means that it was able to produce a timetabling that
meets all the given constraints before 100
generations, that is at the 64th generation. We can
also see that the maximum fitness curve has a
higher variance than the maximum fitness curve of
the genetic algorithm. The possible explanation for
this higher variance is because the randomness of
the neighborhood search in the Bees algorithm is
intensified by the randomness of the crossover and
mutation operators in the Genetic algorithm.

We also calculated and compared the gradients of
the learning curves to compare the three algorithms.
The gradients of the learning curves were calculated
using the following formula:

mi =

ii

ii

xx

yy

−

−

+

+

1

1 (2)

Table 2 shows the results of the calculation of the
average gradient of the learning curve using
formula (2) by averaging the results starting with i

= 1 (the 1st generation) up to i = 100 (the 100th
generation). In this experiment we also tested each
algorithm as much as ten times with the same
variable and the same initial random population.
Table 2 shows negative numbers because on
average the gradients were decreasing over
generations. The larger the negative value, the
greater the slope of the learning curve and the
algorithm also gives better results faster. On
average, the GA-Bees algorithm had the largest
gradient.

Table 2. The Gradients of the learning curves

The average gradient obtained by the Bees
algorithm was around 37.42% better than the
average gradient obtained by the Genetic
algorithms. The average gradient obtained by the
combined or hybrid GA-Bees algorithm was around
14.55% and 57.42% better than those of the Bees
algorithm and the Genetic algorithms respectively.
Thus, we can conclude that the GA-Bees algorithm
was the best algorithm for solving our timetabling
problem.

There is still an open research issue, whether the
hybrid GA-Bees algorithm is better than the other
evolutionary algorithms for other scheduling
problems.

The limitation of this study is that we assume on
each day there is the same number of sessions for
different class levels. For schools that require
different session numbers, our methods above can
still be used by giving additional information to the
algorithm about the lengths of the alleles in the
genes.

Experiment
Number

GA Bees GA-Bees

1 -17 -23 -22

2 -19 -21 -23

3 -15 -15 -21

4 -17 -20 -25

5 -13 -29 -41

6 -14 -22 -22

7 -15 -20 -21

8 -18 -21 -19

9 -14 -22 -23

10 -13 -19 -27

Average -15.5 -21.3 -24.4

Fitness

Generation

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

796

5. CONCLUSION

In this paper, we try to find good solutions to
the class scheduling problem, which is one of the
most common combinatorial optimization problems
in the real world. Specifically, we compared an
algorithm combined of the Genetic and Bees, which
is called GA-Bees, with the Genetic algorithms and
the Bees algorithm alone with a customized fitness
computation for scheduling problems at a middle
school in Jakarta. Based on our experiments, the
hybrid GA-Bees algorithm produced better and
optimal solutions when applied to the problem of
academic scheduling of a middle school in Jakarta.

Some future research in this area includes
applying the hybrid GA-Bees algorithm for
scheduling exams, bus scheduling, or scheduling
the purchase of goods.

REFERENCES:

[1] D.S. Hochbaum. Approximation algorithms for

NP-hard problems. PWS Publishing Co.
Boston, MA, USA, 1997.

[2] A. Schaerf. A Survey of Automated
Timetabling. Artificial Intelligence Review,
April 1999, Volume 13, Issue 2, pp. 87-127.

[3] S. Abdullah and H. Turabieh, “Generating
University Course Timetable Using Genetic
Algorithms and Local Search”. Proceedings of

the Third International Conference on

Convergence and Hybrid Information

Technology, 2008. ICCIT '08, pp.254-260.
[4] Y. Zhou, J. Zhang, and Y. Wang. Performance

Analysis of the (1+1) Evolutionary Algorithm
for the Multiprocessor Scheduling Problem.
Algorithmica, June 2014, pp. 1-21.

[5] M. Ragera, C. Gahmb, F. Denz. Energy-
oriented scheduling based on Evolutionary
Algorithms. Computers & Operations

Research, Available online 17 May 2014.
[6] J.A. Soria-Alcaraz, M. Carpio, and H. Puga.

“A new approach of Design for the Academic
Timetabling through Genetic Algorithm”.
Proceedings of the Electronics, Robotics and

Automotive Mechanics Conference (CERMA),

2010, pp.96-101.
[7] N.B. Phuc, T.T.M.K. Nguyen, and T.H.N.

Tran, “A New Hybrid GA-Bees Algorithm for
a Real-world University Timetabling
Problem”. Proceedings of the International

Conference on Intelligent Computation and

Bio-Medical Instrumentation (ICBMI), 2011,
pp.321-326.

[8] B. McCollum, P. McMullan, B. Paechter, R.
Lewis, A. Schaerf, L. Di Gaspero, A. J. Parkes,
R. Qu, and E. Burke. “Setting the Research
Agenda in Automated Timetabling: The
Second International Timetabling
Competition”. Technical Report, International

Timetabling Competition 07-08, 2007.
[9] M. Mitchell. An Introduction to Genetic

Algorithms. Cambridge, MA: MIT Press, 1996.
[10] G. Zhang and W. Liu. “A genetic Algorithm

Base on a New Real Coding Approach”.
Proceedings of the second International

Conference on Intelligent System Design and

Engineering Application (ISDEA), 2012,
pp.88-92.

[11] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri,
S. Rahim, and M. Zaidi. ”The Bees Algorithm
– A Novel Tool for Complex Optimisation
Problems”, Proceedings of IPROMS 2006

Conference, pp.454-461.

[12] N.T.T.M. Khang, N.B. Phuc, and T.T.H.
Noung, “The Bees Algorithm for a Practical
University Timetabling Problem in Vietnam”.
Proceedings of the IEEE International

Conference on Computer Science and

Automation Engineering (CSAE), 2011, pp. 42-
47.

