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ABSTRACT 

 
The scheduling problem is one of the combinatorial optimization problems that are common in the real 
world. Evolutionary algorithms, such as Genetic Algorithm and the Bees Algorithm have been used in the 
literature to solve this problem. In this paper, we apply the Genetic Algorithm, Bees Algorithm, and the 
combination of these two algorithms, which is Hybrid GA-Bees, to solve school scheduling problem. The 
algorithms to solve the school scheduling problems were implemented using the object-oriented paradigm 
and tested to create actual class schedules at a middle school in Jakarta. Our study concludes that the 
Hybrid GA-Bees can produce better solutions compared to the solutions generated by the Genetic 
Algorithm and Bees algorithm. 
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1. INTRODUCTION  

 
The scheduling problem is one of the 

combinatorial optimization problems that are 
common in the real world, and the scheduling 
problem in education domain is not new. In general, 
the scheduling problem can be classified into 
several types, such as college-level academic 
scheduling, scheduling middle and elementary 
schools, scheduling exams, transportation 
scheduling, scheduling flow of sales or delivery of 
goods, and others.  

The scheduling problem can be categorized in the 
class of NP-hard problem in which the problems are 
difficult to solve using exact algorithms [1]. In this 
class of problems, the computation time required 
searching for the optimal solution increases 
exponentially depending on the size of the problem 
[2, 3]. In the research literature there has been many 
solutions proposed to solve similar NP-hard 
problem with various metaheuristic and 
evolutionary approaches. From those studies we can 
conclude that the evolutionary methods have been 
succeeded in solving these problems [4, 5, 6]. 

In a previous study [7], a new algorithm which is 
called Hybrid GA-Bees was proposed. The authors 
in [7] have tested the Hybrid GA-Bees algorithm to 
solve a university’s course timetabling problem, 
and concluded that it produced in a better schedule 

optimization when compared with other methods, 
such as Tabu Search, Bees Algorithm, and Variable 
Neighborhood search (VNS). In this paper, we 
focus on comparing some evolutionary algorithms, 
including the Hybrid GA-Bees algorithm, to solve 
the real world class scheduling problem at a middle 
school institution. 

In this paper, a Hybrid GA-Bees algorithm will 
be compared with the Genetic algorithms and Bees 
algorithm alone with a customized fitness 
computation for scheduling problems at one middle 
school in Jakarta. The rest of this paper is divided 
into the following sections: Section 2 describes the 
scheduling problem in detail, Section 3 describes 
the algorithms that will be compared, Section 4 
shows the experimental results and compares the 
performance of evolutionary algorithms, and 
Section 5 concludes the paper. 

2. DESCRIPTION OF THE SCHEDULING 

PROBLEM 

There are two main classes of course scheduling 
or timetabling problems: the Post Enrolment-based 
course scheduling problem and the Curriculum-
based course scheduling problem [8]. In the 
literature, the post enrolment-based course 
scheduling problem is also often called as class 

scheduling problem or event scheduling problem.  



Journal of Theoretical and Applied Information Technology 
 30

th
 September 2014. Vol. 67 No.3 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
790 

 

This paper attempts to solve the class scheduling 
or the post enrolment problem at a middle school in 
Jakarta. In the manual scheduling, the schools often 
have to deals with the overlapping schedules that 
may cause the obstruction of teaching and learning 
process, make the students come late to the next 
lesson, and in the end waste the time allocated for 
learning. The manual course scheduling also has the 
has to deal with following complications: 
constraints on the teachers, constraints on 
classroom space, constraints on the time for study, 
and constraints due to the regulation about the 
number of work hours and rest periods of the 
teachers. In the following, we propose to solve this 
problem by using evolutionary algorithms.  

2.1 Constraints 

A class scheduling problem can be described as a 
set of soft constraints and hard constraints. Hard 
constraints are the constraints that should be 
fulfilled, while soft constraints are the constraints 
that will not disrupt the teaching and learning 
process if not met, but the schedule would be better 
and preferable if it could be met. The set of hard 
and soft constraints are described as follows. 

Hard Constraints 

H1. Teacher: One educator cannot teach in two 
places or classes on the same time slot on the same 
day. 

H2. Overlap: On the same day, there should be no 
courses taught more than once. 

H3. Maximum working day: The educators cannot 
teach more than four time slots in a single day. 

Soft Constraint 

S1. Break: The educators should be given time off 
before the next classes. 

2.2 Fitness Function  

The formulation of the fitness function is adapted 
from [9] and can be written as follows: 

f(X) = ∑
=

n

i 1

wi di  (1) 

 

The function f(X) is a fitness or objective 
function that specifies the quality of a scheduling, 
where:  

• X is a scheduling (timetable) which is checked 
against a set of hard and soft constraints 
mentioned above,  

• wi are weights, where the hard constraint has a 
weight of 100 and soft constraint has a weight 
of 1, 

• di is violation number of the ith constraint (how 
many times a constraint is violated), and 

• n is the total number of constraints. 

The lower the value of the fitness function in 
Formula 1 will yield a better solution. Thus this 
fitness function will be minimized during the search 
of the timetabling solution, and the best solution 
will have a fitness value of 0 (zero). 
 

3. THE ALGORITHMS 

 
3.1 Genetic Algorithms 

Genetic algorithm, which was proposed by John 
Holland in 1975, is a branch of evolutionary 
computation (EC) and is based on the principle of 
natural selection [9]. 

The genetic algorithm [10] that is shown in 
Figure 1 begins by generating an initial population 
in the form of a collection of individuals who were 
randomized. Each individual or commonly called 
chromosome has a fitness value that measures how 
good the individual is as a solution. Each individual 
is represented as the arrangement of genes. Finally, 
each gene contains a value or a particular trait 
called allele. 

 

 

Figure 1. The Genetic algorithm 

In every loop or one generation, each individual 
undergo selection, crossover, and mutation are then 

1) Choose the initialize population of 

individuals 

2) Evaluate the fitness of each individual in 

that population 

3) Repeat 

4) Selection: Select pair of parent individuals 

form a population 

5) Crossover: With a crossover probability 

crossover the parents to generate a new 

individual (Children). If no crossover was 

performed, the individual is an exact copy of 

parents 

6) Mutation: With a mutation probability 

mutate new individual 

7) Evaluate the individual fitness of new 

individuals 

8) Replace least-fit population with new 

individuals 

9) Until terminations condition met 
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the fitness values are re-evaluated. The selection 
operator chooses the parents randomly using 
roulette wheel selection method, in which 
individuals with better fitness values will have 
higher probabilities of being selected. The selected 
parents that are chosen probabilistically then 
crossed over. In the end, with a small probability a 
mutation is carried out to the individual 
chromosome. 

3.2 Bees Algorithm (Bees) 

Bees Algorithm is a metaheuristic search 
technique based on population. The algorithm is 
inspired by the foraging behavior of the honey bee 
in combination with a randomized local search 
around in the neighborhood of the solution to get 
the best fitness value [1]. The parameters in this 
algorithm are: the number of scout or search bees 
(n), the number of sites that will be used for the 
neighborhood search (m), the number of elite bees 
(e), the number of bees that will be employed for 
patches visited by the elite bees (nep), number of 
bees that are employed for other (m-e) selected 
patches (nsp), and the size of patches (ngh) [11]. 

The Bees algorithm that we use [12] is shown in 
Figure 2. The algorithm starts with setting the 
number n bees that are conducting random searches 
of honey into the population, and then back for the 
fitness calculation. The bees that produce the best 
fitness values later become elite bees (e), then the 
elite bees choose their members (nep) to carry out 
the neighborhood search in m sites.  

 

 

Figure 2. The Bees Algorithm (Bees) 

 
The neighbor solution is the best result from the 

new fitness calculation, and this will replace the old 
result. Next, the rest of the bees other than the elite 
bees will be sent to search randomly into the 
population and then back for the fitness calculation. 
This condition is repeated until the fitness value 
equal to 0.  

In the Neighborhood Search algorithm [12] 
shown in Figure 3, the bees choose the neighbor 
randomly, put the result in set X’, then swap or 
move at random. The best results will be used for 
further processing. 

 

 

Figure 3. The Neighborhood Search Algorithm 

 

3.3 GA-Bees Algorithm 

The GA-Bees hybrid algorithm shown in Figure 
4 is an algorithm that combined the genetic 
algorithm and Bees algorithm [7]. 

The first step the combined GA-Bees algorithm 
shown in Figure 4 is to initialize the population 
randomly. Then the fitness of each individual in the 
population is calculated. In one generation (one 
loop), the Hybrid GA-Bees algorithm does two 
processes in sequence. The loop starts with the Bees 
algorithm from steps 4 to 7 that perform local 
search as well as to improve the fitness value as 
many as e (the number of elite bees) individuals. 
Then the improved individuals are returned to the 
population. Finally the genetic algorithm processes 
(Selection, Crossover, and Mutation) are started 
from steps 8 to 12. 

 

4. EXPERIMENTS 

The algorithms above were implemented using 
the Java SDK 1.7 and their performances were 
tested using the data from Tunas Muda School in 
Jakarta during the academic year 2011/2012.  

The data consists of a total of 12 classes from 
grade 7 to grade 12 of middle (junior high) school. 
Each grade level has parallel classes. The number 
of classrooms used for teaching and learning 
operations was 25 rooms and special facilities 
including laboratories. There were 32 teachers that 
teach no more than 16 sessions per week. The 
duration of one class session was 70 minutes. 

Create a Neighborhood Solution from X: 
1. Randomly select neighbor 

2. Set X’ = X 

3. Randomly choose a kind of move in two 

kind of moves (Single move, Swap move) 

4. Take a best solution X’ in the 

neighborhood of X created by the chosen 

kind of move with a fraction of available 

set of block element of X 

5. Return X’ 

1) Initialize population with random 

2) Evaluate fitness of the population 

3) While (stopping criterion not met) 

   // Forming new population 

4) Select sites for Neighborhood Search 

5) Recruit bees for selected sites (more bees 

for the best e sites) and evaluate fitness. 

6) Select the finest bees from each patch 

7) Assign remaining bees to search 

randomly and evaluate their fitness 

8) End While. 
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The experiments were executed using a computer 
with the following specification: Intel Core i7 - 
2630QM processor running at 2.00GHz with a 32-
bit Windows 7 Operating System. 

 

 
 

Figure 4. The GA-Bees (hybrid) Algorithm 

 

Table 1 shows the representation of each class as 
a matrix timetable with size x times y, where x is 
the number of sessions per day and y is the number 
of working days in a week. So there were 25 genes 
used for one allele and they were initialized 
randomly at the start. A chromosome or individual 
was composed of 12 alleles that represent the 
amount of class. So the string that represents an 
individual consists of 300 genes. Figure 5 shows the 
string representation of the individual in the 
population. 

Table 1 . Scheduling Class 7C 

 

 

 

 

4 2 … 11 6 8 … … 5   …  

 
Figure 5. String representation of a chromosome 

 
We have conducted the experiments to test the 

performance of the three algorithms. They were 
tested with the same chromosome model to 
generate good timetables, while complying with the 
hard and soft constraints that were mentioned 
earlier in this paper.  

The Genetic Algorithm (GA) was tested for up to 
100 generations. Early initialization was done using 
random data entered in each class to form the 
individual or chromosome. The GA operators that 
were used are the following: 

a. Selection: the selection process was done using 
roulette dish to choose parents randomly. 
Chromosomes that have better fitness values had 
greater opportunities to be selected.  

b. Crossover: the crossover method that was used 
is the probabilistic n-point crossover, in which 
crossover point derived from the number of classes 
that are available, and the selection probabilities 
were randomly selected from among the parents. 
Figure 6, 7 and 8 show two examples of how the 
crossover operator works.  

c. Mutation: the mutation process that was used 
is a swap mutation of 2 random points. Figure 9 
shows an example of how the mutation operator 
works. 

In Figure 6, the resulting Child chromosomes do 
not always follow the pattern of their parents or 
follow a certain pattern because they were 
randomly selected from the chromosomes of the 
parents. Figure 7 and 8 show two examples of 
crossover selection models of the children. 

1) Initialize population with random 

2) Evaluate fitness of the population 

3) While (stopping criterion not met) 

// Bees algorithm 

4) Select sites for neighborhood search 

5) Recruit bees for selected sites (more bees 

for the best e sites) and evaluate fitness. 

6) Select the finest bees from each patch 

7) Assign remaining bees to search randomly 

and evaluate their fitness. 

// Genetic algorithm 

8) Randomly select pair of parent individuals 

from a population 

9) Crossover: With a crossover probability 

crossover the parents to generate a new 

individual (children). If no crossover was 

perform, the individual is an exact copy of 

parents 

10) Mutation: With a mutation probability 

mutate new individual at each position in 

chromosome 

11) Evaluate the individual fitness of new 

individuals 

12) Selection: Replace least-fit population 

with new individuals 

13) End while. 

Grade7  …… . Grade 12  



Journal of Theoretical and Applied Information Technology 
 30

th
 September 2014. Vol. 67 No.3 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
793 

 

 

Parent1:  

1 2 3 4 5 6 7 8 

Parent2:  

11 12 13 14 15 16 17 18 

 
Child1:  

1 12 3 14 5 16 7 18 

Child2:  

11 12 13 14 15 16 7 8 

 
Figure 6. An example of the crossover operation 

 

1 2 3 4 5 6 7 8 

  

11 12 13 14 15 16 17 18 

 
Figure 7. Crossover selection model of Child1 

 

1 2 3 4 5 6 7 8 

 

11 12 13 14 15 16 17 18 

 
Figure 8. Crossover selection model of Child2 

 

Before:  

1 2 3 4 5 6 7 8 

 

After:  

1 8 3 4 5 6 7 2 

 
Figure 9. Swap Mutation model  

 
If an individual meets the criteria mutation 
probability, then every allele of its chromosome 
will be swap randomly. So the represented class in 
the individual may be swapped around. 

In order to do the experiments, Figure 10 shows 
the implementation of a user interface (UI) for the 
timetabling solution. Figure 11 shows the UI to 
generate the initial population, and Figure 12 shows 
the UI of the resulting timetable. 

 

 

Figure 10. The User Interface of the Solution 

 

 

Figure 11. The User Interface to Generate the Initial 

Population 

 

 

Figure 12. The User Interface of the Resulting 

Timetable 

 

In this experiment, we used a hold out method to 
find the best combination of the parameters. The 
parameters for the Genetic algorithms are selected 
from the following values based on the previous 
research done in [7]: crossover threshold probability 
{50%, 80%, 90%} and mutation probability of 
{1%, 2%, 3%}. The tests above were performed on 
all possible combinations of the specified values, 
and each experiment was done ten times, and then 
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we use the average values. The best combination of 
parameters for the Genetic algorithm was crossover 
threshold probability of 80% and mutation 
probability of 2%. Total number of generations was 
limited to 100 iterations, and the value 0 is the best 
fitness value. 

The test result of the Genetic algorithm (GA) in 
Figure 13 shows the fitness values over generations 
that form a learning curve. We can see that the 
learning curve of the maximum fitness values has a 
high variance. The possible reason for this is 
because all the operations in the GA, which are the 
crossover and mutation, are done randomly. The 
green curve, which is the average fitness value of 
each generation, tends to improve with lower 
average fitness value at each generation. This 
means in general, we can see that the GA produces 
better population from generation to generation. 
However, the GA could not produce a good enough 
timetabling solution after 100 generations because 
no individual with a fitness value of zero was 
generated.  

 

 

 
Figure 13. The Genetic Algorithm Test Results 

 

For the Bees algorithm, the best combination of 
parameters are selected from the following values: 
the number of scout bees (n) = {20, 30} , the 
number of elite bees (e) = {3, 4} , the number of 
selected sites (m) = {4, 5} , the number elite 
patches (nep) = {4, 5},  the number of other bee 
patches (nsp) = {2, 3}, the size of the patch (ngh) = 
{5, 10}. The tests above were performed on all 
possible combinations of the specified values, and 
each experiment was done ten times, and then we 

use the average values. The best combination of 
parameters for the Bees algorithm was: n = 30, e = 
4, m = 5, nap = 4, nsp = 2, ngh = 10. Total number 
of generations was limited to 100 iterations, and the 
value 0 is the best fitness value.  

As can be seen from the test results of the Bees 
algorithm in Figure 14, the maximum fitness curve 
fell rapidly. That is because of the neighborhood 
search (NS) done by a number of bees that were not 
employed by the elite bees (m-e), and this affected 
the shape of the maximum fitness curve. All elite 
bees ensure that the overall fitness value improves, 
and if the (m-e) bees obtained good results, then the 
fitness curve will drop significantly. The fitness 
curve may go up if the results of the (m-e) bees 
were not good. However, the fitness curve would 
not go up significantly because we use only a small 
number of (m-e) bees. The red curve is a minimal 
fitness curve that was always constant or goes 
down. This is because the elite bees maintain the 
same or better fitness value. To conclude, the Bees 
algorithm has better results on our scheduling 
problem than the genetic algorithm over 100 
generations in our experiments. 

 

 

 

 

 Figure 14. The Bees Algorithm Test Results 

 

For the GA-Bees algorithm, the best combination 
of parameters are: n (the number of scout bees) = 
30, e (the number of elite bees) = 4, m (the number 
of selected sites) = 5, nep (the number of bees 
recruited for patches visited by bees elite e) = 5, nsp 
(the number of bees recruited for the other (m-e) 
selected patches) = 2, and ngh (the size of the 

Fitness 

Generation 

Fitness 

Generation 
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patches) = 10. From the resulting best parameter of 
the combination of Genetic algorithms and Bees 
algorithms, averaging over ten runs, we obtained 
some fitness curves as shown in Figure 15.  

 
 
 

 
 
 

Figure 15. The GA – Bees Test Results 
 

We can see from the experiment results of the 
GA-Bees algorithm in Figure 15 that GA-Bees 
algorithm gave better results compared to the 
results of the previous two algorithms. The average 
minimal fitness curve touches the point 0, which 
means that it was able to produce a timetabling that 
meets all the given constraints before 100 
generations, that is at the 64th generation. We can 
also see that the maximum fitness curve has a 
higher variance than the maximum fitness curve of 
the genetic algorithm. The possible explanation for 
this higher variance is because the randomness of 
the neighborhood search in the Bees algorithm is 
intensified by the randomness of the crossover and 
mutation operators in the Genetic algorithm. 

We also calculated and compared the gradients of 
the learning curves to compare the three algorithms. 
The gradients of the learning curves were calculated 
using the following formula:  

mi = 

ii

ii

xx

yy

−

−

+

+

1

1   (2) 

 

Table 2 shows the results of the calculation of the 
average gradient of the learning curve using 
formula (2) by averaging the results starting with i 

= 1 (the 1st generation) up to i = 100 (the 100th 
generation). In this experiment we also tested each 
algorithm as much as ten times with the same 
variable and the same initial random population. 
Table 2 shows negative numbers because on 
average the gradients were decreasing over 
generations. The larger the negative value, the 
greater the slope of the learning curve and the 
algorithm also gives better results faster. On 
average, the GA-Bees algorithm had the largest 
gradient.  

 
Table 2. The Gradients of the learning curves 

 
 

The average gradient obtained by the Bees 
algorithm was around 37.42% better than the 
average gradient obtained by the Genetic 
algorithms. The average gradient obtained by the 
combined or hybrid GA-Bees algorithm was around 
14.55% and 57.42% better than those of the Bees 
algorithm and the Genetic algorithms respectively. 
Thus, we can conclude that the GA-Bees algorithm 
was the best algorithm for solving our timetabling 
problem.  

There is still an open research issue, whether the 
hybrid GA-Bees algorithm is better than the other 
evolutionary algorithms for other scheduling 
problems.  

The limitation of this study is that we assume on 
each day there is the same number of sessions for 
different class levels. For schools that require 
different session numbers, our methods above can 
still be used by giving additional information to the 
algorithm about the lengths of the alleles in the 
genes.  

 
 

Experiment 
Number 

GA Bees GA-Bees 

1 -17 -23 -22 

2 -19 -21 -23 

3 -15 -15 -21 

4 -17 -20 -25 

5 -13 -29 -41 

6 -14 -22 -22 

7 -15 -20 -21 

8 -18 -21 -19 

9 -14 -22 -23 

10 -13 -19 -27 

Average -15.5 -21.3 -24.4 

Fitness 

Generation 
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5. CONCLUSION 

In this paper, we try to find good solutions to 
the class scheduling problem, which is one of the 
most common combinatorial optimization problems 
in the real world. Specifically, we compared an 
algorithm combined of the Genetic and Bees, which 
is called GA-Bees, with the Genetic algorithms and 
the Bees algorithm alone with a customized fitness 
computation for scheduling problems at a middle 
school in Jakarta. Based on our experiments, the 
hybrid GA-Bees algorithm produced better and 
optimal solutions when applied to the problem of 
academic scheduling of a middle school in Jakarta.  

Some future research in this area includes 
applying the hybrid GA-Bees algorithm for 
scheduling exams, bus scheduling, or scheduling 
the purchase of goods.  
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