
Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

755

 EFFICIENT SCHEDULER AND MULTI THREADING FOR

RESOURCE AWARE EMBEDDED SYSTEM

1
KARTHIKEYAN.V,

2
Dr.S.RAVI

Asst.Professor, ECE Department, Dr.M.G.R.Educational & Research Institute, Chennai

Prof&Head, ECE Department, Dr.M.G.R.Educational & Research Institute, Chennai
keyansethu@gmail.com

ABSTRACT

In embedded system applications the processor is connected to different segments of the hardware and each
hardware is associated with software called task. The scheduler is the part of the software that determines
which task will run next and its implementation is a difficult process in RTOS. Existing scheduling
methods fail to suit real time system requirements. The purpose of this research work is to design a efficient
scheduler in real time. In the proposed method a new round robin scheduling algorithm approach is
presented in µC/OS-II operating system and LPC 1768 environment. µC/OS-II provides two API's that lets
user to enable and disable scheduler within a task. Although it is not advised to use this API's as it is
against the concept of Real time priority scheduling, it may be required in certain situations. The scheduler
designed handles scheduling of multiple tasks efficiently and an analysis of scheduler performance using
threading and non threading approach is made. The experimental result shows improved performance over
the existing methods in terms of various performance criteria. The implication of this research work is that
the scheduler designed can execute tasks based on priorities within the allotted time.
Keywords: Scheduler, multi threading, Alphabet and number sorting, LPC 1768

1. INTRODUCTION

Real time operating systems are a segment or a

part of the whole program that decides the next
task, task priority, handles the task messages and
coordinates all of the tasks. The scheduler, also
called the dispatcher, is the part of the kernel
responsible for determining which task will run
next. Most real-time kernels are priority based.
Each task is assigned a priority based on its
importance. The priority for each task is application
specific. In a priority based kernel, control of the
CPU will always be given to the highest priority
task ready-to-run. When the highest-priority task
gets the CPU, its execution is determined by the
type of kernel used. There are two types of priority-
based kernels: non-preemptive and preemptive.
When a task starts and runs until termination or
giving control willingly are called non preemptive
scheduling and those tasks which are forced to give
the resource are called preemptive scheduling. The
scheduler needs to save the status of the tasks and
after going through the list of tasks having different
priority levels, it switches control to the task having
highest priority. In general the tasks have three
states .The state before running state is called ready
to run state, when the task is in execution is called
Running state and when the task doesn’t have

resources to run then it is sent to a blocked state.
The scheduler function is affected when the task
switches from running to waiting state, switches
from running to ready state ,switches from waiting
to ready state or when the task terminates as
illustrated in fig.1. In sections III & IV different
performance criteria and various algorithms for
Scheduler is discussed. In section V a presentation
is made on the various RTOS functions used and
about development cycle. The obtained
experimental results are shown in section VI and a
detailed discussion on the comparison of
performance of scheduler designed with the
existing methods is presented in chapter VII.

Figure 1: Various states of a task

2. RELATED WORKS

Task scheduling for multiprocessor system

is presented in [12] .In this scheduling algorithm is

New

Task
Ready Running Terminated

Waiting

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

756

task scheduling based and it is queue based
approach to schedule parallel tasks. High energy
consumption is a biggest problem in cloud
computing and it can be minimized by energy
aware task scheduling by considering resource
usage of different nodes [4]. Depending on the
service reliability of grid system an effective
resource scheduling method having fault tolerant
feature is presented in [14]. In the systems that
consists of both critical and non critical sections the
scheduling algorithm needs to minimize average
waiting time of the non critical tasks in the queue
and also it should avoid context switching of
critical tasks [7].In [13] a novel CPU scheduling
algorithm for both pre emptive and non pre emptive
is presented and the results are compared with
existing algorithms and an effort is made to
improve the CPU efficiency in multi programming
operating system. A detailed survey of different
CPU scheduling algorithms and their merits and
demerits are presented in [9].In order to improve
the efficiency of CPU there is a need to manage all
the processes properly and a new round robin
scheduling algorithm for CPU scheduling is
presented in [11].

An efficient memory management using

buddy allocator algorithm in the LPC 1768 and
µC/OS-II environment is presented in [6].Here the
author highlights advanced features of µC/OS-II
and LPC 1768 and a effective memory management
algorithm is designed using them. In [3] the author
presented a priority based round robin algorithm.
The method integrates the features of round robin
and priority scheduling algorithm thereby reducing
various performance parameters. A new scheduling
algorithm based on the integration of round robin
and shortest job first is presented in [8].In this
priority is calculated by SJF and starvation is
reduced by round robin algorithm.

3. PERFORMANCE EVALUATION OF

SCHEDULER ALGORITHMS

The following parameters are the
performance indicators of scheduler.

Utilization : The term describes the fraction

of time a device is in use.
Throughput : It is the number of jobs

completed per second
Service time : It is the time taken by the device

to complete the execution of a
request.

Queuing Time : It is the amount of time a
request waits on a queue to get
service from the device.

Residence Time : It is equal to the sum of service
time and queuing time

Response time : It is the time used by a system to
respond to a submission of
request

Think Time : It is the time taken for figuring
out the next request.

The function of the scheduler is to allocate

CPU to a specific task for a period of time.
Schedulers are basically classified into two basic
types Long term and short term schedulers [1]. The
functionality of schedulers is shown in fig.2. Long
term scheduler selects the required tasks and bring
them into the ready queue. It consumes much time
for the creation of task and eventually slow in
nature. Whereas short term scheduler selects
particular task among the tasks that are ready to
execute and allocate CPU or core to that particular
task. Short term scheduler decides the task that is
going to be executed next and it is fast compared to
long term scheduler.

Figure 2: Functionality of Schedulers

4. TYPES OF SCHEDULING

ALGORITHMS

The different types of scheduling
algorithms are explained below

4.1 First Come First Served

This method is same as that of FIFO and it
is a very simple algorithm. The main drawback in
this is average queuing time is long and residence
time depend on ordering of processes in queue.

4.2 Shortest Job First

 It is suitable for situations where
minimizing queuing time is of prime importance.

Here scheduling is based on logged history and is
hard to implement.

Long term

scheduler
(select and

bring the tasks

to ready
Queue)

Short Term

Scheduler
(Select the task

to be executed

next)

CPU

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

757

4.3 Preemptive Algorithms

 When a Higher priority task is ready for
execution, the execution of current task is stopped
and execution of higher priority task starts. The
algorithm gives first priority to short jobs.

4.4 Priority Based Scheduling

 Here priority is assigned for each and
every task to be executed and highest priority task
is scheduled first. Tasks with same priority are
scheduled using FCFS.

4.5 Round Robin Scheduling

 The task need to complete its execution
within the fixed time slot otherwise the task may
lose its flow, and data generated or it has to wait for
its next turn. In this algorithm choosing the time
quantum is very important.

4.6 Multilevel Queues

 In this each queue has a scheduling
algorithm and a priority based algorithm is used to
arbitrate between the queues..A feedback method is
used to move between queues. The method is
complex but flexible.

4.7 Real Time Scheduling

 This type of scheduling is used when a
critical task is to be executed within a fixed time in
hard real time systems and where critical processes
need higher priority over lower priority tasks in soft
real time systems [10].

5. PROPOSED METHOD

In the proposed method two tasks are
created task 1 with priority 57(high) and Task2
with priority of 58(low).Task1 will read raw rgb
file from the sd card and display it on the lcd. Task
2 will lock the scheduler and wait for key to be
pressed and then unlocks the scheduler. The
flowchart for task1 is shown in fig.3 and flow chart
for task 2 is shown in fig. 4.

Figure 3: Flow sequence for task 1

Figure 4: Flow sequence for Task 2

Task 2

Lock the scheduler

Wait for the user to press key

Unlock the scheduler

End

Task 1

Open directory images on the SD card

Read File names one by one in the

directory

Display the image on the LCD

Delay for 1 sec

If not end of directory

End

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

758

5.1 µCOS API’s and its functions

The various RTOS functions used in this
work is given in table 1.

Table 1 : RTOS functions

µC/OS-II API Functions
App_Task1Create() Create the Application

Task

OSTaskCreate() Creating an Task

OS_TASK_Name_EN Enabling Task Name

OSSchedLock() Prevents tasks
rescheduling

UART0_Send string() Send the string through

UART 0

Static OS_STK align Aligning the state

Static void uctsk_Task() Using the stack in tasks

UART0_Init() Initialize the UART

Port

OSTaskChangePrio() Changes the priority of
task

OSSchedUnlock() Re enables tasks

scheduling

5.2 Development Cycle

The main objective of task scheduler is to
meet the deadline of execution of tasks and also the
real time constraints [5]. The following algorithms
are used for the scheduler design. Two tasks are
chosen to be scheduled. Task 1 consists of opening
different stored images and displaying them
sequentially with a delay of 1 sec. Task 2 is to lock
the scheduler and release the scheduler upon a key
press.

Task 1
1. Open different images one by one in the

directory

2. Display the image on the LCD

3. Delay for 1 sec

4. Go back to step2

5. End

Task 2

1. Lock the scheduler

2. Wait for the user to press a key

3. Unlock the scheduler

4. Go back to step 1

5. End

In order to implement the above two
algorithms RTOS functions App_Task1Create()
and App_Task2Create are used. Stack of sufficient
size is created using OSTaskCreate API in order to

run the task properly. SDCard_Init() to perform the
SD card initialization where the images are stored.

5.3 Code Implementation for Scheduler

The following are the codes for Task
creation, Initialization and ISR Code, Task 1 and
Task 2.

5.3.1. Task creation

Void App_Task1Create(void)
{
 CPU_INT08U os_err;

Os_err = os_err;
UART0_SendString(“Creating Task 1 with priority
57---\r\n”);
Os_err =
OSTaskCreate((void(*)(void*))uctsk_Task1,
 (void *)0,
 (OS_STK
 *)&App_Task1Stk[APP_TASK_STK_SIZ
E-1],
 (INT8U)APP_TASK1_PRIO);

#if OS_TASK_NAME_EN>0

5.3.2. Initialization and ISR code

Void BUTTON_init(void)
{

 LPC_GPIO2->FIODIR &= -(1<<10);
 LPC_GPIOINT->IO2intEnf l = (1<<10);

 NVIC_EnablelRQ(EINT3_IRQn);
}

5.3.3. Task 1

Static void uctsk_Task1(void*pdata)
{

Pdata = pdata;
res = f_opendir(&Dir,”0/images”);

if(res! = FR_OK)
{UART0_SendString(“Unable to open dir\r\n”);
While(1);
}

5.3.4. Task 2

Static void uctsk_Task2(void*pdata)
{
 While(1)

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

759

 {
 UART0_SendString(“Task2 is
Running\r\n”);

 OSSchedLOCK();

 While(UserStatus! = 1)
 {
 Delay();

 }

5.4. Experimental setup

In this work an LPC 1768 board and
µC/OS-II operating system are used. The
LandTiger V2.0 NXP LPC1768 ARM
development board is a 32 bit Microprocessor
and it has the features of 512KB on chip flash
program memory,64KB SRAM for high
performance CPU, Standard JTAG test/debug
interface, Two RS 232 serial interfaces, Two CAN
bus communication interfaces, RS 485
communication interface,RJ45-10/100M Ethernet
network interface, DAC o/p interface and ADC i/p
interface, USB 2.0 interface, SD/MMC card (SPI)
interface, Color LCD display interface etc.

µC/OS-II is a real time multi tasking
operating system kernel version 2. It is used for
inter task communication and synchronization. It
has the features like Portabability, preemptive,
multitasking kernel, can handle 64 tasks, supports
processors up to 64 bit and has deterministic
execution times. µC/OS-II is simple to use and
simple to implement KERNEL. The experimental
setup is shown in fig. 5.

Figure 5: Experimental Setup (1) USB cable of the board
connected to USB port of PC (2) Serial port of the RTOS

board connected to Serial port of the PC

6. IMPLEMENTATION RESULTS

The implementation of multithreading
consists of two case studies

i) Sorting of large set of numbers using

threading and normal approach

ii) Dictionary sorting of alphabetical

words using threading and normal

approach

In both the applications, the number of
threads is varied and time metric is evaluated. It is
established that thread based implementation is fast
particularly in sorting of alphabets. The thread is
implemented in python and openMP platform. In
case (i) multithread implementation of sorting of
numbers is presented and menu to perform
selection of threading or non threading for sorting
application is shown in fig. 6.In fig. 7 two threads
are selected to sort the input numbers in ascending
order. The time taken by the merged output is also
computed and displayed as a metric.

Figure 6: Menu to perform selection of threading or non

threading for sorting application

Figure 7: Sorting of numbers in ascending order using

two threads

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

760

In case (ii) Dictionary sorting of
alphabetical words using threading is presented .In
figure. 8 & 9 sorting of alphabets for dictionary is
implemented using four threads.

Figure 8: Sorted Alphabet in progress for four threads

Figure 9: Continued output of Fig.8(Four thread case)

7. DISCUSSION

In [2] the author presented a optimized round
robin scheduling algorithm for CPU scheduling to
solve the problem encountered in simple round
robin scheduler(i.e., giving equal priority to all
tasks) by decreasing the performance parameters to
a maximum possible extent. The results of designed
scheduler performance shows improvement in

reducing average waiting time and the time taken
for completing the task execution is very small.

The scheduler performance in sorting of numbers
using normal approach and threading is presented
in fig. 10.

Figure 10a: Non-Threading (Non Multitasking) based

implementation (sorting of numbers)

Figure 10b: Threading based implementation - Two

threads (sorting of numbers)

Figure 10c: Threading based implementation -Four

Threads (sorting of numbers)

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

761

The scheduler performance in sorting of alphabets
using normal approach and threading is presented
in fig. 11.

.

Figure 11a: Non-Threading (Non Multitasking) based

implementation (sorting of alphabets)

Figure 11b: Threading based implementation-Two

Threads (sorting of Alphabets)

Figure 11c : Threading based implementation-Four

Threads (Sorting of Alphabets)

The performance analysis of scheduler for
non threading, two threads and four threads for the
two cases is shown in fig. 12.

NON THREADING 2 THREAD 4 THREAD

Figure 12a: Performance analysis of schedulers for

sorting of numbers

Figure 12b: Performance analysis of schedulers for

sorting of Alphabets

8. CONCLUSION

Improving the CPU efficiency in real time
and time sharing operating system is very
important. In this study an effort is made to design
a scheduler using round robin algorithm for
resource awareness embedded system in real time
environment. Two case studies are taken one for
sorting of numbers and one for sorting of alphabets
using non threading and threading concepts and the
scheduler performance is obtained. The scheduler
presented shows improved performance over
existing methods in terms of performance criteria
like Utilization, Throughput, Queuing Time,
Response time etc. The main limitation of the
research work is that its practical implementation
requires multicore units. Future research shall
include use of openMP tools to implement parallel
threads more effectively and to improve the
performance of the scheduler.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

762

REFERENCES

 [1] Abbas noon, Ali kalakech,and Seifedine
kadry, “A new round robin based scheduling
algorithm for operating systems:Dynamic
quantum using the mean
average”,International Journal of Computer

Science Issues,Vol. 8,No. 3, 2011, pp. 224-229.

 [2] Ajit singh, Priyanka goyal and Sahil batra,
“An optimized round robin scheduling
algorithm for CPU Scheduling”,International

Journal on Computer Science and

Engineering,Vol. 2,No. 7, 2010, pp. 2383-
2385.

 [3] Ishwari singh rajput and Deepa gupta, “A
Priority based round robin CPU scheduling
algorithm for real time systems”,International

Journal of Innovations in Engineering and

Technology, Vol. 1,No. 3, 2012, pp. 01-11.

 [4] Jie song, Xuebing Liu,Zhiliang zhu,Dazhe
Zhao and Ge Yu, “A novel task scheduling
approach for reducing energy consumption of
Map reduce cluster”,IET Technical review,Vol.
3,No. 1, 2014, pp. 65-74.

 [5] M.Kaladevi and Dr.S.Sathiyabama, “A
comparative study of scheduling algorithms for
real time task”, International journal of

advances in science and technology, Vol. 1,
No. 4, 2010, pp. 8-14.

 [6] Karthikeyan.V and Dr.S.Ravi, “Robust
memory management using real time
concepts”,Journal of computer science, Vol.
10,No. 9, 2014, pp. 1480-1487.

 [7] G.Muneeswari and K.L.Shunmuganathan, “A
novel hard soft processor affinity scheduling
for multicore architecture using
multiagents”,European journal of scientific

research, Vol. 55, No. 3, 2011, pp. 419-429.

 [8] Neeraj kumar and Nirvikar, “Performance
improvement using CPU Scheduling
Algorithm”,International Journal of Emerging

Trends of Technology in Computer

Science,Vol. 2,No. 2, 2013, pp. 110-113.

 [9] Neetu goel and Dr.R.B.Garg, “A comparative
study of CPU scheduling
algorithms”,International journal of graphics

& image processing, Vol. 2, No. 4, 2012, pp.
245-251.

 [10]Rajkamal, “Embedded system
architecture,programming and design”,Tata

Mcgraw hill publishing company limited,2003.

 [11) Rakesh kumar yadav,Abhishek k
mishra,Navin prakash and Himanshu Sharma,
“An improved round robin scheduling
algorithm for cpu scheduling”,International

journal on computer science and engineering,
Vol. 02, No. 04, 2010, pp. 1064-1066.

 [12] Ranjit Rajak, “A novel approach for task
scheduling in multiprocessor system”,
International journal of computer

applications,Vol. 44,No. 11,2013,pp. 12-16.

 [13] Sukumar babu bandarupalli and Neelima
priyanka nutulapati, “A novel CPU scheduling
algorithm preemptive & non preemptive”,
International journal of modern engineering

research (IJMER), Vol. 2, No. 6, 2012, pp.
4484-4490.

 [14] U.Syed Abudhagir and Dr.S.Shanmugavel,
“A novel dynamic reliability optimized
resource scheduling algorithm with fault
tolerant approach for grid computing system”,
Journal of Theoretical and applied information

technology,Vol.58,No.1, 2013, pp.81-89.

