
Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

736

GENERATION OF REAL WORLD TRAFFIC USING NS2

TRAFFIC AGENTS

SAMI ABBAS NAGAR, SULAIMAN MOHD NOR, MOHAMED SAAD BOBA

Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Malaysia

E-mail: elnajarsami@yahoo.com , s_mohdnor@utm.my , bobba802013@gmail.com

ABSTRACT

There has been substantial interest from researchers in the development and contribution of modules in NS2.
One of the challenges in NS2 modeling is to seamlessly integrate real world traffic data into the NS2
network model. Normally the traffic in NS2 is generated from the traffic agents such as TCP and UDP
agents whose parameters are based on certain statistical distribution. The aim of this paper is to demonstrate
how traffic agents in NS2 simulator are used to generate different types of traffic based on real traffic
network. In this work, a modified sniffer program was used to capture real traffic data from a production
network and output to a traffic text file. This traffic test file is then used by the NS2 traffic agents in the
simulated network model representing the real production network. To validate that the simulation works
accurately, the output trace file of NS2 after simulation is compared with the traffic generated at the
destinations of the production network. Error percentage and t-test data analyses were conducted. It was
found, based on comparisons that the difference was nearly zero for traffic captured for duration of around
15 minutes simultaneously generated from four different production sites.

Keywords: NS2 Simulator, Traffic Agents, TCP, UDP, Real World Traffic Generator, Sniffer, T Test
Validation.

1. INTRODUCTION

In the network research area, it is time

consuming and costly to deploy a complete
experimental testbed containing multiple networked
components such as computers, routers and data
links to validate and verify a specific network
algorithm or a certain network protocol.

The use of network simulators in these cases will
save the time and money in accomplishing this task.
Network simulators are also mostly useful in
allowing the network researchers and designers to
test new or to modify existing networking protocols
in a controlled and reliable manner [1].

Network simulator is a pure event based
simulator and can be of two types [2]:

• Discrete event simulator.

• Continuous event simulator.

Discrete event simulator: In discrete event
simulator, the representation of time is quantified
and the system state changes only when an event
occurs. For example, arrival of person in queue of
railway reservation or departure of person from
ticket booth after taking ticket. Here, state values
are always integer.

Continuous event simulator: Continuous event
simulator models time as a continuous progression.
Here, state values are always real values. For
example, a snake covering distance or water
flowing through the mountain.

Generally network simulators are discrete event
simulators. As shown in table 1, network simulators
can be categorized according to commercial and
open source based.

Network simulator 2 or NS2 is an object-oriented
discrete event network simulator. It offers various
facilities for simulation of network protocols based
on TCP, UDP, routing and multi-distribution
(broadcast and multicast) in the (wired or wireless)
networks [3, 4]. NS2 is very popular in research
because it is open-source with plenty of
components library. Non-benefit organizations
contribute a lot of the components library and this
has made the development NS2 to be very
successful [1]. Figure 1 shows the extensive use of
NS2 compared to other simulation or development
tools [5].

Table 1: Network Simulator.

 Network Simulators Name

Commercial OPNET, QualNet

Open source NS2, NS3, OMneT++ , SSFNet, J-Sim

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

737

27.3%

3.8%

2.5%

6.3%

6.3%
10.0%

43.8%

Self- developed

MATLAB

CSIM

OPNET

QualNET

GloMoSim

NS-2

Figure 1: Simulator Usage.

NS2 simulator contains modules for many
network components such as routing, transport
layer protocol and application. NS2 is used to
investigate network performance such as
congestion or link failure [3].

Despite the popularity of NS2, NS2 has certain
inherent weaknesses, which includes compatibility
between versions, and the required learning curve
in model development under NS2. NS2 uses
numerous distribution models to model inputs, such
as rate of packet arrival. Suppose the researchers
wants to use real value input parameters obtained
from real networks to input into the simulation
model.

 There are numerous occasion where available
distribution model is not sufficient or can
accurately represent the actual parameters of the
real traffic. This necessitates the input to the
simulation model to be from the real traffic and
representing the actual world traffic. However, it is
difficult to obtain from the literature, how real
traffic data can be integrated into NS2 simulation
model.

The aim of this paper is to demonstrate how
traffic agents in NS2 simulator are used to generate
different types of traffic based on real traffic
network. Real traffic data are captured from the
production network, processed and saved in the text
file to be used by internal traffic agents in NS2 in
the modelled network. Thus, real input parameters
of the production network can be used instead of
NS2 available traffic generators. Thus, the
simulated model emulates the behavior of network
under study. Enhancement such as modification to
the routing protocols can then be done to study the
effectiveness of new or modified protocols on the
network.

As an example, consider the packet transmission
time in NS2 default model. In NS2, the packet

transmission time is simply equal to packet size
divided by bandwidth for each link. Also, the
transmission delay or packetization delay or store
and forward delay depend on which queue
mechanism is used, such as DropTail, RED and FQ
(see code fragment as in Figure 2).

Dump the queueing delay on the n0->n1
link
to stdout every second of simulation
time.

proc dump { link interval } {
 global ns integ
 $ns at [expr [$ns now] + $interval]
"dump $link $interval"
 set delay [expr 8 * [$integ set
sum_] / [[$link link] set bandwidth_]]
 puts "[$ns now] delay=$delay"

}

Figure 2: Code Fragment in NS2.

However, in the real world, packet transmission
time, calculated for each link is affected by a number
of elements such as:

• Source CPU time.

• Link transmission packet time.

• Link propagation time.

• Intermediate forwarding time.

• Destination CPU time.

Taking the time of arrival between packets will
provide a more realistic environment for the
simulation model.

The simulated network model using real input

parameters from actual network has to be validated
to actually represent the actual production network.
Validation is done by comparing the output of the
simulation network against that of the production
network using t-test.

2. LITERATURE REVIEW

There are some limitations to network simulation
that even NS3, the successor to NS2 cannot
overcome. One of them is credibility. This will
always be an issue because it is clearly impossible
to guarantee flawless real world behavior of a
simulation. One approach to partially solve this
problem could be a far more detailed formalization
of the validation process. To know the limitation of
upper layer functionality between NS2 and NS3, a
simple comparison instead of validation is needed
[9].

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

738

A. SINGH AND P. DASHORE [10] studied the
two protocols UDP and TCP to recognize the key
difference between them based on their bandwidth
(performance). NS2 simulator was used for
designing and studying wired network, where the
TCP and UDP were compared on the basis of the
data transfer features, basic operation and
applications. Differences in data transfer TCP
provides reliable and ordered delivery of data from
user to server and vice versa. UDP is connection
less protocol and does not ensure the reliable
delivery of data. TCP and UDP are different from
each other on the basis of data transfer features.

To achieve the new requirements of the
MANETs applications such as exponential on/off,
pareto on/off and telnet, A. P. D. S. T. Hasson, A. J.
Kadhim, and Z. S. Talib [11] proposed required
modifications in “cbrgen” file by rebuilding it to
generate additional types of traffics. This file was
used to generate the traffic rates by generating
random connections between source nodes and
destinations. The original "cbrgen" file generated
only CBR and TCP traffics.

N. I. Sarkar [12] investigates the impact of traffic
arrival distributions (Exponential, Pareto, Poisson,
and Constant bit rate) on a typical 802.11 ad hoc
network using simulation and modeling. The
outcome shows that the network performance for
Poisson arrival is almost independent of traffic load
for TCP and UDP but not for Constant bit rate
(CBR). However, for both the Pareto and
Exponential packet arrivals, the network
performance is almost independent of load for TCP,
but is sensitive to UDP

D. Mahrenholz and S. Ivanov [13] proposed a
method to configure the simulation using real-
world parameters and verified by experiment that
emulation behaves the same way as the live
network. The current setup imposes some tight
limitations on the scalability of the simulation
complexity.

In NS2, it is easy to generate the traffic by using
the available distribution model, but it is more
difficult to produce traffic, which can exhibit real
characteristics such as the ones observed in the
Internet, A. Varet and N. Larrieu [14], developed a
tool entitled “SourcesOnOff” by considering
several statistical laws and combined their effects to
model the generated traffic which is closer to
reality.

Network traffic generators are validated by
metrics such as traffic characteristics. However, it
is extremely difficult to evaluate validation results

and compares different traffic generators. Thus,
researchers such as S. Molnar, P. Megyesi, and G.
Szabo [15] advocate the research for finding a
common set of metrics for the validation and
comparative evaluation of traffic generators.

R. G. Sargent [16] gives a general introduction to
verification and validations of simulation models,
define the various validation techniques, and
present a recommended model validation
procedure.

J. P. Kleijnen [17] discusses verification in good

programming practice through modular
programming, checking the simulation output
through tracing and statistical testing such as
Schurben-Turing and t test.

R. G. Sargent [18] discusses practical approaches
on verification and validation of simulation models.
He recommends eight steps to be performed in
verification and validation model such as specify
the acceptable range of accuracy required by the
simulation models, wherein in every model
iteration, at least face validity on the conceptual
model and test are performed.

3. NS2 SIMULATOR

NS2 which is a part of the VINT project (Virtual
Inter Network Testbed) is developed in C++. It uses
IU OTCL interpreter. Through this language, the
user can describe conditional parameters of the
simulation such as network topology, selected from
various physical links, readily used protocols, etc.
The user can also create new objects in C++ and
use them in NS2 by instantiations with OTCL.
Here, the two languages C++and OTCL have both
very close hierarchies to each other [3, 4, 6].

3.1 Communication Entity in NS2

 The node (communicating entity) is the basic
element of NS2 model. A node in NS2 is a class
defined in OTCL which has three entities
containing the classifier, the link and the agent [3].

3.2 Classifier

The function of a node of the fields is examined
by the received packet, and more specifically, the
source address and destination address. According
to contention losses, the node sends the packet on
its outgoing interfaces (Fig. 3). In NS2, then this is
performed by an object called "Classifier". There
are several types of classification that are used for
different purposes:

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

739

• "Address classifiers" is used to treat unicast
packets. It’s role is directly to select packets
addresses, direct the node, and select the link to
the next node.

• "Port classifier" role is to select the agent to the
packet which it is intended.

• "Multicast classifier" classifies packets according
to both source and destination (group) addresses.

• "Multipath classifier" is devised to support equal
cost multipath forwarding, where the node has
multiple equal cost routes to the same destination.

• "Hash classifier" is used to classify a packet as a
member of a particular flow.

3.3 Link

A link is used to connect the nodes to each other
(Fig. 3). A link is defined by several parameters
including: bandwidth, entry point, the lifetime of
each packet, etc.

NS2 has several types of links, so we can
distinguish unidirectional links from bidirectional
links and wired links to wireless networks model
without sound [3].

CBR

UDP Agent

(Sending)

Null Agent

(Receiving)

0

agent

_

Attach-agent

target_

Attach-agent

connectapp

_

target_

app

_

Node 3

dmu

x_

classifi

er_

Node 1

dmu

x_

classifi

er_

Node 2

Application (User demand indication)

Agents (Packet construction and destruction)

Low-Level Network (Packet Fordwarding)

A
 N

e
tw

o
rk

 o
f

N
s

O
b

je
c
ts

Figure 3: The Existing Entities in a Node and the Links

between Entities.

3.4 Agent

Agents represent endpoints where packets in the
network layer are constructed and consumed. These
agents are the third component of the node. In NS2,
the agent's role is to provide the destination
address; its function is to generate the packets and
the interface to the application class (Fig. 3). In
NS2 there are several types of agents, each has a
specified role [3]. The four types of agents and
their roles are defined as follows:

• TCP agent is for emitting TCP traffic.

• UDP agent is for emitting UDP traffic.

• TCPSink agent is for the receipt of TCP traffic.

• NULL Agent is for receiving UDP packets.

3.5 TCL Language

Tool Command Language or Tcl; is a scripting
language created by John Ousterhout. It is
commonly used for rapid prototyping, scripted
applications, GUIs and testing. Tcl is used on
embedded systems platforms, both in its full form
and in several other small-footprint versions [7].

Advantage of using Tcl language in NS2 is, it
does not need special editors, nor does it have any
complex structure that needs to be followed during
coding. The sequence of statements is also not
necessary to be maintained, as it automatically
fetches the required instructions for topology
generation and other task as and when required.

3.6 AWK Language

 The AWK utility is an interpreted programming
language typically used as a data extraction and
reporting tool. It is a standard feature of most Unix-
like operating systems. AWK was created at Bell
Labs in the 1970s, and its name is derived from the
family names of its authors –Alfred Aho, Peter
Weinberger, and Brian Kernighan [8].

AWK uses a data-driven scripting language. It
consists of a set of actions to be taken against
textual data (either in files or data streams) for the
purpose of producing formatted reports. AWK
Scripts are very good in processing the data from
the log (trace files) which we get from NS2. it is
necessary for the researchers to know the
throughput of the network, packet delivery ratio,
calculating the send, received, dropped packets, and
average end to end delay [8] .

4. METHODOLOGY

Our ultimate goal in this work is to integrate real

live traffic parameters from a real production
network into a network simulation model. The
network simulation model is itself a representation
of the production network. If the network model
representation of the real network is accurately
modeled, then together with the real live traffic
parameters, the simulated network model will
produce an output similar to the one generated by
the real production network. Figure 4 gives an
overview of this framework.

The left part of the figure 4 represents the actual
production network where traffic is captured and

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

740

required statistical parameters are extracted. At the
same time, the network topology and architecture is
studied to be emulated in the simulated network
model. The input parameters are then used by NS2
traffic generator. The output of the simulation is
compared with the traffic parameters of the actual
network (validation and verification stage).

System input data Simulation input data

Actual system Simulation model

System output data Model output data
Result

Final Simulation Model

(Verification Stage)

Parameters

Topology

Start

End

Real Network Simulation Model

Figure 4: Overall Methodology.

4.1 Network Data

This section describes how the traffic simulation

parameters are obtained from the actual production
network. The assumptions made in the simulation
model are also stated. The section starts with a brief
description of the production network.

4.1.1 Production Network

The whole communication network, as shown in
Figure 5, is an integration of four local nodes
representing four sites, each site generating and
consuming traffic. The sites are connected together
through public links (ISP) and private link. Each
link will have different speeds.

Site 1 Site 2

Site 3
Site 4

ISP

Fiber optic

Figure 5: Production Network Topology.

The basic design of all these sites is based on the

fact that each building inside the site has two links,
primary and secondary connected through fiber
optic lines and using the Spanning Tree Protocol
(STP) to switch between the two links.

Table 2 shows the links probabilities which
include the links bandwidth and end to end
propagation.

Table 2: Links Probabilities.

Parameter

LINKS

SITE1

�

 SITE 4

SITE1

�

ISP

SITE3

�

ISP

SITE2

�

ISP

SITE4

�

ISP

Cell size (Kb) Variable

Link Speed
(Mbps)

1250 10 2 5 2

Link Distance

(Km)
73.5 15 15 46 30

Propagation

(ms)
0.245 0.05 0.05 0.153 0.1

Link Delay 5 5 10 5 10

Using a modified sniffer program coded in C and
placed at all the sites, the real network traffic
parameters are captured at several intervals, and
saved in a text file. Figure 6 shows a snapshot of
the resulting captured traffic formatted accordingly.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

741

Figure 6: Example of Captured Text File.

4.1.2 Assumptions

To simply the simulation model, certain
assumptions are made. Using NS2 simulator
version 2.34 for simulation and modeling, we run
our simulation with these assumptions:

i. The CPU processing time at sender and
receiver equal to zero.

ii. Propagation Delay for each link equal to
zero.

iii. The CPU time equal to zero for all paths
taken through the ISP network. The ISP
works as intermediate forwarding nodes.

4.1.3 Simulation Parameters

We run our simulation with these parameters:

• Number of nodes.

• Network Topology.

• Link utilization.

• Queue mechanism.

• Real traffic data saved in text file.

• Real captured total time.

4.2 Model Description

The similarity of the generated model to the real
production includes the traffic parameters based on
the traffic generated and the network topology and
parameters of the objects used in the network setup.
Each of these components has to be validated, step
by step, individually before moving to the next
step.

In the final step, we will send and receive the
packets between nodes according to what is
described in the text file for each row elements,
such as source address, destination address, time,
packet type and length. Then we validate the result
by using t-test analysis.

The real network parameters, used as inputs
parameters in the simulation model are the number
of nodes, distance between nodes, link bandwidth,
link delay, and the links probabilities (as previously
shown in Table 2).

The network topology is built based on the real
topology with the nodes linked directly (private)
and publicly, through the Internet Service Provider
(ISP). The links are obtained from the private
network administrator and Internet Service
Provider.

4.3 The Model Code

Each node is attached with all traffic agents. We
disable all traffic generators by default and generate
the traffic from the given data in the captured traffic
file.

Each packet must be sent from source to
destination based on three metrics and two
constraints. The three metrics available from the
captured traffic file are:

• Time on/off.

• Packet size.

• Packet type.

As for the two constraints, the first one depends
on the first metric. The two constraints are:

• During on/off time, only one packet can be sent.

• TCPSink agent cannot send ACK, unless the
packet type is ACK.

Figure 7 shows the model which has three steps.
In the first step, we insert the number of nodes;
describe the node communication type, example as
unicast, and select the queue mechanism, example
as DropTail. In the second step, we create the links
between directs nodes for private networks and
indirect links between nodes via the ISP network.
These two steps must be validated and the result
accepted before moving to the final step. In the
final step, we insert the path of network captured
file and the total captured time file generated during
run time. The modified sniffer program then
generates the tcl simulator file (simulator.tcl). The
model is now ready to be executed.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

742

Figure 7: NS2 Model Emulating Real World Network.

4.4 Sample Exercise

 A sample of this experiment is shown here,
where the traffic was captured in December 2013
with the network topology as shown in Figure 4.
The sample file contains thousands of packets
captured in a duration of 903 seconds.

By executing our tcl file (simulator.tcl), we are
able to generate the output traffic. From here, we
can get NS2 trace file which contains the same
number of packets generated in the 903 seconds
duration, which is the same duration as the real
production network.

From here we select 30 samples from both
captured and trace file for further analysis.

Table 3 shows the sent and received time for 30
packets in the real network (captured file) and
simulation model (trace file).

The average error in percentage, error is given
by,

���������� ���	� =
�� − ��

��

 × 100%

Where Ra is the packet received time in real
network and Rb is the packet received time in
simulation network.

By running the error percentage equation, we
find the average error for packet sent equals to 0%
(Figure 8) and the average error for packet received
to be 3.61% (Figure 9). Table 4 shows the result.

Table 4: Error Percentage between Real and Simulation

Network Parameters.

Parameter Error Average (%)

Packet Sent 0

Packet received 3.61

For validation we run the t-test to find the

enhanced chances (t stat values). Table 5 shows the
enhancing chance equal zero for packets sent and
this means the sent time in both networks are equal.

Table 5: t-test: of Real and Simulation Transmission

Time Calculation.

Parameter Real pkt
sent

Simulation
pkt sent

Mean 278.49739 278.4973948

Variance 93949.647 93949.64709

Observations 30 30

Hypothesized
Mean Difference 0

Degrees of
freedom (df) 58

t Stat 0

Table 6 shows the enhancing chances (t stat

values) equal 0.002097347 for packet received time,
and this value is very small and negligible.

Table 6: t-test: of Real and Simulation Received Time

Calculation.

Parameter Real pkt
received

Simulation
pkt received

Mean 278.6724016 278.5064127

Variance 93956.04178 93948.98886

Observations 30 30

Hypothesized
Mean Difference 0

Degrees of
freedom (df) 58

t Stat 0.002097347

We verify the final model by uses the AWK

language for both captured and trace files (Table 7).

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

743

Table 7: AWK Verification.

 Parameter Real network
Simulation

model

 Total Packets Sent 30 30

 Total Packets Received 30 30

 Total Dropped packets 0 0

 Packet delivery ratio 1 1

 Delay 5.250204 0.270538

 Average end-to-end delay 0.1750068 0.0090179

 Average end-to-end

throughput

0.0240721
0.0240764

5. RESULTS

The evaluation experiment for the NS2 model
was done by comparing the data captured from
production network to the results from the
corresponding simulation scenario.

The overall convergence of the model shows the
sensitivity of the packets sent, received, length and
type percentage in real versus simulated.

The packet type and length are received at the
destination and the sent time in the trace file is
similar to the network captured file. The difference
in receiving time occurs because we put the
intermediate forwarding time and propagation and
CPU processing time equal to zero in the
simulation model. In reality, these have some finite
values which have to be accounted for.

6. CONCLUSION

In this paper we presented the integrated
simulator for the traffic analysis of production
network. A model chain handles the NS2
simulation job inputs coming from GUI, convert
them to a TCL language format and generate a NS2
traffic based on traffic data captured from the
production network.

We have successfully integrated NS2 model with
real traffic parameters to emulate real production
network.

The size of the text file which contains the
captured data from a production network does not
have a direct impact on the complexity of the
simulation, thus making the simulation model to
emulate the actual production network with
accuracy.

 This has been validated using t-test, and verified
by AWK, showing the simulated the NS2 model is
accurately representing the real network.

FUTURE WORK

Propagation delay is also dependent on the
medium of transmission used, examples are copper
and fiber. This has to be integrated automatically in
the model depending on the choice made.

The ultimate aim of work is to modify the
routing protocols used in the NS2 model so as to
enhance the effectiveness of the network under
different scenarios such as link failures and load
balancing. Optimum traffic matrix algorithm can be
used as input for the proposed routing protocol.
Thus, integration of TM algorithm module need to
be done to achieve this objective.

REFRENCES:

[1] J. Pan and R. Jain, "A survey of network
simulation tools: Current status and future
developments," Email: jp10@ cse. wustl.
edu, 2008.

[2] A. M. Gosai and B. H. Goswami,
"Network Simulator for Efficient
Performance Parameter Testing &
Evaluation," National Journal of System
and Information Technology, vol. 5, pp.
89-105, 2012.

[3] T. Issariyakul and E. Hossain, Introduction
to network simulator NS2: Springer, 2011.

[4] I. S. Ahmad, A. Kalakech, and S. Kadry,
"Modified Binary Exponential Backoff
Algorithm to Minimize Mobiles
Communication Time," 2014.

[5] S. Kurkowski, T. Camp, and M.
Colagrosso, "MANET simulation studies:
the incredibles," ACM SIGMOBILE
Mobile Computing and Communications
Review, vol. 9, pp. 50-61, 2005.

[6] "The Network Simulator - NS2
 " http://www.isi.edu/nsnam/ns/.
[7] J. Ousterhout, "Tcl and the Tk Toolkit," p.

460, 1994.
[8] A. Robbins and N. H. Beebe, "A

Bibliography of Classic Shell Scripting,"
2011.

[9] S. Rampfl, "Network Simulation and its
Limitations," in Proceeding zum Seminar
Future Internet (FI), Innovative Internet
Technologien und Mobilkommunikation
(IITM) und Autonomous Communication
Networks (ACN), 2013.

[10] A. Singh and P. Dashore, "A Comparative
Study of UDP and TCP by Using NS2,"
2013.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

744

[11] A. P. D. S. T. Hasson, A. J. Kadhim, and
Z. S. Talib, "Enhancing the NS2 Traffic
Generator for the MANETs," IOSR
Journal of Computer Engineering
(IOSRJCE), ISSN, pp. 2278-0661, 2012.

[12] N. I. Sarkar, "Impact of traffic arrival
distributions on an 802.11 ad hoc network:
modeling and performance study," 2012.

[13] D. Mahrenholz and S. Ivanov, "Adjusting
the NS2 Emulation Mode to a Live
Network," in Kommunikation in Verteilten
Systemen (KiVS), P. Müller, R. Gotzhein,
and J. Schmitt, Eds., ed: Springer Berlin
Heidelberg, 2005, pp. 205-217.

[14] A. Varet and N. Larrieu, "Realistic
network traffic profile generation: theory
and practice," Global Journal of Health
Science, vol. 7, 2014.

[15] S. Molnar, P. Megyesi, and G. Szabo,
"How to validate traffic generators?," in
Communications Workshops (ICC), 2013
IEEE International Conference on, 2013,
pp. 1340-1344.

[16] R. G. Sargent, "An overview of
verification and validation of simulation
models," in Proceedings of the 19th
conference on Winter simulation, 1987,
pp. 33-39.

[17] J. P. Kleijnen, "Verification and validation
of simulation models," European Journal
of Operational Research, vol. 82, pp. 145-
162, 1995.

[18] R. G. Sargent, "Verification and validation
of simulation models," in Proceedings of
the 37th conference on Winter simulation,
2005, pp. 130-143.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

745

Table 3: The Comparison between Network Captured file and Simulator trace file.

Pkt

No.

Production network Simulation network

TX - time RX-time TX - time RX-time

1 0.000000 0.174973 0.000000 0.010515

2 1.696741 1.866716 1.696741 1.707256

3 33.209951 33.379925 33.209951 33.220466

4 34.740718 34.910693 34.740718 34.751233

5 36.100512 36.269485 36.100512 36.111027

6 55.307591 55.477566 55.307591 55.317946

7 69.099495 69.270468 69.099495 69.110010

8 71.312158 71.468135 71.312158 71.322673

9 74.190721 74.360695 74.190721 74.201076

10 81.985536 82.154510 81.985536 81.995891

11 94.561624 94.732598 94.561624 94.571979

12 103.729230 103.899204 103.729230 103.739585

13 108.156557 108.326532 108.156557 108.167072

14 110.196247 110.366221 110.196247 110.206762

15 111.047118 111.220092 111.047118 111.057633

16 133.514702 133.684676 133.514702 133.519703

17 163.279177 163.449152 163.279177 163.289692

18 164.978919 165.148893 164.978919 164.989434

19 165.828790 165.998764 165.828790 165.839305

20 180.240599 180.410573 180.240599 180.251114

21 242.134190 242.304164 242.134190 242.139191

22 402.564800 402.732775 402.564800 402.569801

23 443.518574 443.687549 443.518574 443.523575

24 522.785524 522.953499 522.785524 522.790525

25 633.454700 633.623674 633.454700 633.459701

26 761.246272 761.414247 761.246272 761.251273

27 848.216051 848.553000 848.216051 848.221052

28 902.269834 902.439808 902.269834 902.280349

29 902.439808 902.608782 902.439808 902.450323

30 903.115705 903.284679 903.115705 903.126220

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

746

Figure 8: Time Comparison between Real World Packet Sent and Simulation Packet sent.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

747

Figure 9: Time Comparison between Real World Packet Received and Simulation Packet Received.

