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ABSTRACT 

 
In this paper we introduce and analyze a probabilistic distributed algorithm for minimum spanning tree 
construction. Our algorithm is based firstly on the handshake algorithm that produces firstly k sub-spanning 
trees, where k is the size of the maximal matching produced.  Secondly, the merged step of our algorithm is 
executed in a distributed manner and following some roles to reduce the total number of those sub-spanning 
from k to 1. We proof that the residual graph is acyclic and all vertices belong to it. A detailed analysis of 
the number of exchanged messages is carried on to validate the effectiveness of our algorithm. 

Keywords: Distributed Algorithms, Randomized Algorithm Analysis, Handshake, Maximal Matching, 
Minimum Spanning Tree Construction. 

 
 
1. INTRODUCTION  

 
The minimum spanning tree problem is a well-

known combinatorial optimization problem 
concerned in linking all the vertices of an 
undirected and connected graph without creating 
any cycle. The methods for finding a minimum 
spanning tree have played a central role in the 
design of computer algorithm [1]. 

The earliest known algorithm for finding a 
minimum spanning tree (MST) was given by 
Otakar Borüvka back in 1926 [2]. In every step of 
the algorithm each vertex selects its smallest 
adjacent edge. These edges are added to the MST 
without creating any cycle. 

Kruskal's algorithm was given by Joseph Kruskal 
in 1956 [3]. It creates a forest where each vertex in 
the graph is initially a separate tree. For each edge 
(u, v) in sorted order, this algorithm does the 
following: If the vertices u and v belong to two 
different trees, then add (u, v) to the forest, 
combining two trees into a single tree. It proceeds 
until all the edges have been processed. 

Prim's algorithm was conceived by Robert Prim 
in 1957 [4]. It starts from an arbitrary vertex, and 
builds upon a single partial minimum spanning tree, 
at each step adding an edge connecting the vertex 
nearest to, but not already in the current partial 

minimum spanning tree. It grows until the tree 
spans all the vertices in the input graph. 

In this paper, we present and analyze a 
probabilistic distributed algorithm to construct a 
minimum spanning tree without a specific criterion. 
Our algorithm is based on the handshake algorithm 
presented in [5] which is a probabilistic distributed 
algorithm for finding a maximal matching. 

We consider that all edges, where the handshakes 
are occurred, are in the minimum spanning tree. 
Those edges constitute the base for our algorithm to 
construct a minimum spanning tree. In a distributed 
manner, we join those edges and all the isolated 
vertices in a connected graph avoiding any cycle. 
The residual graph is the minimum spanning tree 
that we are looking for. 

The paper is organized as follows: Section 2 
presents some notifications and definitions 
necessary for understanding the rest of the 
document. It exposes also our model and 
assumptions. Section 3 is devoted to describe our 
algorithm whereas Section 4 shows the analysis of 
the introduced algorithm. Finally, Section 5 
concludes the paper and presents our further work.  

 

 



Journal of Theoretical and Applied Information Technology 
 30

th
 September 2014. Vol. 67 No.3 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
676 

 

2. DEFINITIONS AND MODEL 

 

2.1   Definitions and notations 

 
In graph theory, given a graph G=(V,E), a 

matching M in G is a set of pairwise non-adjacent 
edges; that is, no two edges share a common vertex 
where V is the set of all the vertices of G and E is 
the set of the edges linking those vertices. 

A vertex is matched (or saturated) if it is an 
endpoint of one of the edges in the matching. 
Otherwise the vertex is unmatched [6]. 

A maximal matching is a matching M of a graph 
G with the property that if any edge not in M is 
added to M, it is no longer a matching, that is, M is 
maximal if it is not a proper subset of any other 
matching in graph G. In other words, a matching M 
of a graph G is maximal if every edge in G has a 
non-empty intersection with at least one edge in M. 
The following figure shows an example of maximal 
matching (edges in bold) in the graph. 

 

 

Figure 1: Example Of Maximal Matching Where The 

Endpoints Of The Bold Edges Are Matched. 

 

On the other side, a spanning tree T of a 
connected and undirected graph G is a tree 
composed by all vertices and a sub-set of the set E. 
A minimum spanning tree of G is a selection of 
edges of G that form a minimum spanning tree [7]. 
That is, every vertex lies in the tree, but no cycles 
(or loops) are formed. The following figure shows 
an example of the minimum spanning tree obtained 
from the graph in Figure 1. 

 

 

 

 

 

 

 

 

 
 

Figure 2:  Minimum Spanning Tree Of The Graph Of 

The Figure 1. 

 

2.2   Model and Assumptions 

 

In this paper, we consider the standard model of 
communication networks point-to-point [8]-[9]. A 
network is described by a undirected and connected 
graph G=(V,E) where V is the set of all vertices of 
G and E is the set of edges linking those vertices. 
The vertices represent the nodes or network 
processes, the edges represent the communication 
links between processes. 

We assume that each process has a local 
unshared memory with a bounded capacity and at 
least one processor. It can only communicate 
directly with its neighbours by message exchanges. 
Also, it is able to distinguish between its ports (i.e. 
a port from which a message is received or sent).  
The identities (IP addresses on the Internet) of other 
processes, in particular those of its neighbours, are 
unknown (local orientation). 

For our study, processes communicate in the 
network only by message exchanges. The exchange 
of messages is done without loss or alteration or 
modification. How exchanges between processes 
are carried out determines the type of network.  

A global clock is common to all processes, and 
we admit that every event that takes place at a 
certain time is of zero duration, and we suggest that 
communications take no time (i.e. the period 
between the decision of a vertex and notification to 
its neighbours is equal to 0). 

We used graph theory to represent and analyze 
our network. So, a network is described by a 
undirected and connected graph. The vertices 
represent the nodes or network processes, whereas 
the edges represent the communication links 
between those processes. 
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3. ALGORITHM 

 
The main aim behind this study is to suggest and 

analyze a distributed algorithm for creating a 
minimum spanning tree based on handshake 
algorithm.   

Many researches had trait the maximal matching 
problem such as MSZ algorithm [10], Kuhn 
algorithm [11], Heuberger algorithm [12] and   HS 
algorithm [5]. In MSZ algorithm the authors 
proposed and analyzed a randomized algorithm to 
get handshakes between neighbours in an 
anonymous graph, and they also showed the 
efficiency of their algorithm in several types of 
graphs. 

In HS algorithm, the authors had introduced and 
studied a probabilistic distributed algorithm to find 
a maximal matching. This algorithm is based on 
random delays which are generated uniformly in 
the real interval [0, 1]. A handshake takes place 
between a pair of neighbour processors if both 
processors are free at the proposed time. 

In our proposed algorithm, we use the HS 
algorithm because the expected number of 
handshakes found by this algorithm is substantially 
greater than that obtained in other known 
probabilistic distributed algorithms. 

So, our algorithm for finding a minimum 
spanning tree merges two algorithms. The first one 
is for finding the handshakes between a set of pairs 
of vertices, whereas the second one is executed to 
link the founded handshakes with the isolated 
vertices to make one acyclic graph. This algorithm 
can be considered as a distributed various of the 
Borüvka algorithm [2]. 

However, we enrich the HS algorithm by some 
instructions in order to construct an acyclic graph 
which links all the handshakes and the remaining 
isolated vertices. As proven in [5], the HS 
algorithm provides a maximal number of 
handshakes. The informal description of this 
algorithm is as follows: 

• For a given graph G, each vertex  � ∈ � 
generates uniformly a random variable for each 
neighbour. Those random variables generated 
by a vertex for its neighbours belong to the real 
interval [0, 1]. They represent the waiting times 
to get a handshake with its neighbours. The 
number of waiting times generated by all this 
vertices is two-times the number of the edges 
(i.e., one waiting times for each half-edge). The 

vertex agenda is the set of all waiting times 
proposed by this vertex to its neighbours. 

• When the clock reaches the smallest time of all 
the generated times, a handshake occurs 
between the vertex that provides this time and 
the neighbour who is assigned to it. So the two 
vertices remove all other edges with the other 
neighbours. Indeed, their neighbours remove 
from their agendas the times that they offer to 
these two vertices which had a handshake. 

• The algorithm continues to run through the 
remaining process equipped with modified 
agendas until the lap time (unit time) expired. 

The formal description of our algorithm is given in 
Algorithm 1. 

We define the following parameters for each 
vertex	v ∈ G: 

• tu,v the waiting time for a vertex v to get a 
handshake with a neighbour u. It is a random 
variable uniformly chosen by the vertex v in the 
real interval [0, 1] for a neighbour u. 

• A
v
 the agendas of v. It is the set of all values 

generated by v to its neighbours. 

• ��,� � �� 	∪ 	��	\		���,�, ��,��. The set of 
shared agendas between the two neighbours v 
and u. 

• ����	the minimum waiting time of the vertex v. 
This value is equal to: ���� � min	����. 

• ����	the minimum waiting time of all the value 
generated by the neighbours u and v. This value 
is equal to:  ���� � min	���,��. 

• ��,� the state of the edge {v, u}, it is a Boolean 
variable initiated to false (i.e. the edge {v, u} is 
not initially in the minimum spanning tree). 
When it becomes true, the   edge {v, u} is in the 
minimum spanning tree. 

• �� the state of the vertex v. If it is true, the 
vertex v is in the minimum spanning tree. 

• ����
�  is the set of the minimum waiting times 

proposed by vertices. This set is used to be sure 
that no cycle is formed. 

• ��� � �����, ���1, ���2  		the form of the 
exchanged messages by vertices. 
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Our algorithm works as follows: 

Each vertex v waits until one of the following 
events happened: 

• If v receives the message ��� � 0, ∅, ∅   from 
a neighbour u then it removes the value ��,�		from its set		��. 

• If v receives the message		��� � 1, ��, ����
�    

from a neighbour u then it changes the states �� 		and ��,�	to true. There is a handshake 
between v and u. Consequently, the edge {v, u} 
belongs to the minimum spanning tree. In this 
case,  one of the two following cases occurs: 

1. If  ���� 	 ∈ 	��		where					���� � min#��,�	$, 
then the edge {v, u'} will belong to the 
minimum spanning tree. The 
message		��� � 2, ∅, ����

�  	will be sent 
to u' to inform it that the edge {v, u'} will 
belong to the minimum spanning tree. Then ��,��	 affects the value of		����. 

2. Otherwise, v sends the message          ��� � 3, ∅, ����
�  		to u to give it the 

option of choosing the edge that will connect 
with the edge {v, u} in the minimum 
spanning tree. In the same time, v sends the 
message		��� � 0, ∅, ∅   to others. 

• If v receives the message  ��� � 2, ∅, ����
�   

from a neighbour u then if ����
� ∪	����

� � ∅, 
which means that the edge {v, u} doesn't 
construct any cycle, v sends the 
message		��� � 4, ∅, ∅  	to  u and changes its 
state ��,�	 to true. 

• If v receives the message ��� � 3, ∅, ����
�  	from a neighbour u then v adds the set ����
� 	 to ����

� 	and sends the message		��� � 2,∅, ����
�  		 to a neighbour u' which verify ��,�� � 	����. 

• If v receives the message		��� � 4, ∅, ∅  	 
from a neighbour u then v turns its state ��,�	 to 
true. However, this test is to guarantee that no 
cycle will be created by adding the edge {v, u} 
to the minimum spanning tree. 

• If � � ��,�  and �� ( true then v turns the states ��		and ��,�		 to true and sends the 
message		��� � 1, �� , ����

�  	to u such that  ��,� � 	 ����. In addition, v sends		��� �0, ∅, ∅  		to all other neighbours. There is a 
handshake between v and u. 

• Otherwise (* t = 1 which means that v is an 
isolated vertex *), v sends the message		��� �2, ∅, ∅  	to u such that ��,� � 	min	���

� �. 
Consequently, v changes its states the states ��		and ��,�	 to true. 
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4. ALGORITHM ANALYSES  

 
The algorithm starts by generating uniformly 

2|E| real independent random variables in the real 
interval [0, 1]: a random variable for each half 
edge. We assume that (2|E|)! permutations on the 
set of these real numbers  have the same 
probability. This is the main assumption on which 
is based the result of our analysis. 

In order to maintain this hypothesis, we simply 
assume that, for each edge	� � ��, �� ∈ �, the 
algorithm will produce two continuous r.v.  ��,�	and ��,�, we assume that those r.v. associated to the 
edges are independents. The probability to generate 
the same values tends to zero. 

The first handshake takes place on an edge � � ��, ��, if at least one of the two associated 
random variables.  ��,�	or ��,� is minimal in the 
whole graph. Thus, for the first handshake of G, 
each edge has the same chance 1/|E| to be chosen. 

The attribution of the first handshake on the edge 
{u, v} implies that the incident edges of the vertices 
u and v are removed from the graph except the edge 
{u, v}. The algorithm continues to run on the 
residual graph (preserving the random generation of 
the remaining edges) until only the edges on the 
handshakes occur remain. 

The number of handshakes in a round is simply 
the total number of edges on which handshake are 
assigned. We denote by N(G)  this number. It takes 
the value 0 with probability 1 if	) � ∅, the value 1 
with probability 1 if |E| = 1. Generally, it takes a 
value of the set of all maximal matching 
cardinalities in G, with a certain probability. 

4.1   Sub-Spanning Trees 

Proposition 4.1: Let G= (V, E) be a graph with 
|V|=n and |E|=m, the probability to have initially k 

sub-spanning trees is: Pr�,��� � -� � �

�
∑Pr�,��	� � - / 1� ,	∀- 1 1, 

where G
 is a residual graph that contains all the 
edges of G except e and it incident edges. 

 

4.2   Expected Number of Sub-Spanning Trees 

In a randomized distributed algorithm, an 
important parameter which measures the efficiency 
is the expected number of events which can take 
place in a unit of time. We study this parameter for 
our new algorithm. So, let �(G) be the 
mathematical expectation of N(G) and let 2	���	 a 
r.v. that equals  1 if the edge e={v, u} is in the 

minimum spanning tree  and 0 otherwise, for the 
edge e in the graph G = (V, E). 

Proposition 4.2: Initially, the number of the   
sub-spanning trees can be written as: 

,��� �32	

	∈�

���. 
Proposition 4.3: The mathematical expectation 

of the number of sub-spanning trees, noted 4(N(G)), is given by the following formula: 

4�,��� �3-56



�,��� � -� 
														� 	34#2	���$.							

�∈�

 

It is clear that the construction of the spanning 
tree of the graph G is done by merging several sub-
spanning trees. The sub-spanning trees are basically 
produced by the edges where the handshakes are 
occurred. Initially the number of sub-spanning trees 
is equal to the number of maximal matching. 
Through the time the algorithm adds to those sub-
spanning trees the isolated vertices and sometimes 
merges some one of them. In the end of the 
algorithm all sub-spanning trees are merged on one 
minimum spanning tree. We recall that the edges 
that used to merge the handshake edges are not 
used in the HS algorithm. 

4.3   Minimality Proof 

It is easy to see that the spanning tree produced is 
minimal. Indeed, the HS algorithm selects the 
edges, as a sub-spanning tree, which has the 
minimum values in the whole graph. However, the 
second step uses the minimum edges to merge them 
with the spanning tree. Consequently, the produced 
spanning tree is minimal. 

 

4.4   Message Complexity 

One of the parameters of complexity measures, 
we found the number of exchanged messages. In 
the next we will calculate the number of the 
maximum exchanged messages for the algorithm of 
the spanning tree construction. The number of 
exchanged messages depends on each topology. So 
we will analyze this number in some topologies. 

4.4.1 Star Graph 

In graph theory, a star graph �� is a complete 
bipartite graph with one internal node and k-1 
leaves. Let the graph G=(V, E)  be a star graph such 
that V represents the set of its vertices and E  
represents it edges. In this case the maximal 
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matching is equal to 1, for odd or even number of 
vertices. 

• For an odd star, let |V|=n and |E|= n-1 
where		7	 ∈ 	8. The cardinal of maximal 
matching is equal to 1. So we need exactly 
another n-2 edges to reconstruct the minimum 
spanning tree. 

• For an even star, let |V|=n and |E|=n-1 where 	7	 ∈ 	8. We need exactly n-2 edges to 
reconstruct the minimal spanning tree since the 
cardinal of maximum matching is equal to 1. 

The Figure 3 shows an example of a maximal 
matching in a star graph with |V|=13. 

 

Figure 3: Example Of A Maximal Matching In A Star 

Graph. 

Proposition 4.4: The upper-bound of the number 
of maximal exchanged messages in the star graph, 
noted		,����7�, is given by the following formula: 

9 ,����1� � 0																											,����2� � 2																											,����7� : 27 / 1,			∀7 1 3, 
 

where n is the size of the graph (|V|=n). 

Proof: Let the graph G=(V, E) be a star graph 
(|V|=n, |E|=m) and let ;�		be the  arithmetic 
sequence that verify: ;� � 5, and  ;� � 27 / 1. 

 

For n=3, it is clear that the number of maximal 
exchanged messages for |V|=3 is less than or equal 
to 5		�,����3� 	: 5�. By adding a new vertex this 
number will increase by 2. However, for n=4, the 
number of maximal exchanged messages 

		,����4�	 is equal to 7. Let propose now that 		,����7� 	: 27 / 1		and prove that		,����7 =1� 	: 27 = 1. In the worst case by adding a new 
vertex to G, the number of maximal exchanged 
messages will increase by 2.  

So,	,����7 = 1� 	: 27 / 1 = 2 � 27 = 1	which 
proves the proposition. 

 

4.4.2   Chain Graph 

In graph theory, a chain graph is a sequence of 
edges that connect a set of vertices which, by most 
definitions, are all distinct from one to another and 
they are not creating any cycle. Let the graph 
G=(V, E) be a chain  such that V represents the set 
of its vertices and E  represents it edges.  

We distinguish between several cases: 

 

• For an odd chain, let |V|=n and |E|=n-1 such 
that		7	 ∈ 	8. The cardinal of maximum 

matching is equal to 	>�
2
?	. So we need exactly 

another 	>�
2
?	edges to reconstruct the minimum 

spanning tree. 

 

• For an even chain, let |V|=n and |E|=n-1 such 
that		7	 ∈ 	8. 

 

- In the bets case the cardinal of maximal 
matching is equal to	�

2
	. So we need exactly 

another		�
2
	� 1	edges to reconstruct the 

minimum spanning tree. 

 

- In the worst case, the cardinal of maximal 
matching is	�

2
	� 1. So we need exactly 

another 	�
2
		edges to reconstruct the minimum 

spanning tree. 

 

The Figure 4 presents an example of a maximal 
matching in a chain with |V | = 7. 

 

Figure 4: Example Of A Maximal Matching In A 
Chain Graph. 
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Proposition 4.5: The upper-bound of the number 
of maximal exchanged messages in the chain graph, 
noted		,����7�, is given by the following formula:  

@,����1� � 0																												,����7� : 37 / 4,			∀7 1 2, 
where n is the size of the graph (|V| = n). 

 

Proof: Let the graph G = (V, E) be a chain (|V | = 

n and |E| = n - 1) and let ;� be the arithmetic 
sequence that verify: 

 ;� � 2, and		;� � 37 / 4,			∀7 1 2. 

For n=2, it is clear that the number of maximal 
exchanged messages for is less than or equal to 2 
(,����2� : 2). By adding a new vertex this 
number will increase by 3. However, for n=3, the 
number of maximal exchanged messages (,���,�) 
is equal to 5. Let propose now that ,����7� :37 / 4	 and prove that		,����7 = 1� : 37 / 1. In 
the worst case, the addition of a new vertex to G, 
the number of maximal exchanged messages will 
increase by 2. So,		,����7 = 1� : 37 / 4 = 3 �37 / 1	 this proves the proposition. 

 

4.4.3   Ring Graph 

In graph theory, a ring is a graph consists of a 
sequence of vertices starting and ending at the same 
vertex, with each two consecutive vertices in the 
sequence adjacent to each other in the graph. 

We distinguish between several cases (even, odd, 
best case, worst case):  

• For an odd ring, let |V|=|E|= n, such that 7	 ∈ 	8. The cardinal of maximum matching is 

equal to	>�
2
?. So we need exactly another		>�

2
?	 

edges to reconstruct the spanning tree. 

• For an even ring, let |V|=|E|=n, such that 7	 ∈ 	8. In the bets case, the cardinal of 
maximum matching is equal to	�

2
 . So we need 

exactly another 
�

�
� 1 edges to reconstruct the 

spanning tree. 

The Figure 5 shows an example of a maximal 
matching in a ring with |V| = 5. 

 
Figure 5: Example Of A Maximal Matching In A Ring 

Graph. 

 

Proposition 4.6: The upper-bound of the number 
of maximal exchanged messages in the ring graph, 
noted	,����7�, is given by the following formula: 

@,����1� � 0																													,����7� : 47 / 6,			∀7 1 2, 
where n is the size of the graph. 

 

4.4.4   Double-Star Graph 

Let G=(V, E) be a double-star graph where |V|=n 
and |E|= n-1. In this case the maximal matching is 

equal to	>�
2
?. So we need exactly another 	>�

2
? edges 

to reconstruct the minimum spanning tree. 

The Figure 6 presents an example of a maximal 
matching in a double-star graph with |V|=25. 

 

Figure 6: Example Of A Maximal Matching In A Double-

Star Graph. 
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Proposition 4.7: The upper-bound of the number 
of maximal exchanged messages in a double-star 
graph, is given by the following formula: 

@,����1� � 0																												,����7� : 37 / 4,			∀7 1 2 

where n is the size of the graph. 

 

5. CONCLUSION  
 

In this paper, we have introduced and analyzed a 
probabilistic distributed algorithm for the minimum 
spanning tree construction based on a handshake 
algorithm. According to our algorithm, each vertex 
executes, firstly, a set of instructions and decides if 
it is matched or not. 

The edges on which the handshakes occurred 
constitute a set of sub-spanning trees. Moreover, 
the second step of the proposed algorithm is 
lunched to merge those sub-spanning trees until 
reduce their number to one. The residual graph 
obtained is the minimal spanning tree that we are 
looking for. 

As perspective of this work, we attend to 
calculate both the lower and upper bounds of the 
expectation time duration of the minimum spanning 
tree construction, and this for any type of graph. In 
addition, we attend to modelize the process of the 
minimum spanning tree construction by a Markov-
chain process in continuous time. 
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