
Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

664

USING HYBRID ARTIFICIAL BEE COLONY ALGORITHM

AND PARTICLE SWARM OPTIMIZATION FOR TRAINING

FEED-FORWARD NEURAL NETWORKS

1
 WAHEED ALI H. M. GHANEM,

 2
 AMAN JANTAN

1, 2 School of Computer Sciences, Universiti Sains Malaysia (USM)

Penang, Malaysia

E-mail: 1 wahm13_com031@student.usm.my , 2
aman@cs.usm.my

ABSTRACT

The Artificial Bee Colony Algorithm (ABC) is a heuristic optimization method based on the foraging
behavior of honey bees. It has been confirmed that this algorithm has good ability to search for the global
optimum, but it suffers from the fact that the global best solution is not directly used, but the ABC stores it
at each iteration, unlike the particle swarm optimization (PSO) that can directly use the global best solution
at each iteration. So the hybrid of artificial bee colony Algorithm (ABC) and PSO resolved the
aforementioned problem. In this article, Hybrid ABC and PSO is used as new training method for Feed-
forward Neural Networks (FFNNs), in order to get rid of imperfections in traditional training algorithms
and get the high efficiencies of these algorithms in reducing the computational complexity and the
problems of Tripping in local minima, also reduction of slow convergence rate of current evolutionary
learning algorithms. We test the accuracy of our proposal using FFNNs trained with ABC, PSO, and
Hybrid ABC and PSO. The experimental results show that ABCPSO outperforms both ABC and PSO for
training FFNNs in terms the aforementioned Imperfections.
Keywords: Artificial Intelligent (AI); Swarm Intelligence (SI); Feed-forward Neural Network (FFNN);

Artificial Bee Colony Algorithm (ABC); Particle Swarm Optimization (PSO).

1. INTRODUCTION

Artificial neural networks (ANNs) are the most

important branches of computational Intelligence;
they are classified as either supervised Learning
Neural Networks or Unsupervised Learning Neural
Networks. The essential difference between these
two types, is that the first type needs to learn under
the guidance of a supervisor or teacher, while the
second type does not need to learn under the
guidance of a supervisor or teacher [1]. The success
of the network in its work depends mainly on the
following factors [2]: the architecture of the
artificial neural network, the training algorithm and
the choice of features used in training. All of these
factors, make the design of optimized artificial
neural networks a difficult problem [3]. Also, any
wrong selection in one of these factors could guide
a training algorithm to be trapped in a local
minimum. In order to avoid this, several
metaheuristic based methods in order to obtain a
good ANN design have been reported [4].

Artificial Neural Networks have characteristics
that help them, to be a successful model to solve a
lot of problems such as pattern classification,

forecasting and regression, etc. Among the most
important of these characteristics are the capability
of learning by examples, adaptabi-lity, and ability
to generalize with applicability to solving problems
in pattern classification, function approximation,
and optimization [5, 6].

Artificial Neural Networks have been developed
in various multilayer Neural Network types. Most
applications use feed-forward NNs that use the
standard back propagation (BP) learning algorithm.
Feed-forward neural network training has
traditionally been carried out using the back-
propagation (BP) gradient descent (GD) algorithm
[7]. The BP algorithm is a method based on
gradient, and thus some inherent problems are
frequently encountered in the use of this algorithm.
Among the most important of these problems is the
very slow convergence speed in training, easily to
get stuck in a local minimum [7].

In addition, the BP learning needs to

predetermine some important learning parameters
such as learning rate, momentum and a predeterm-
ined structure. Moreover, the BP algorithm assumes
a fixed NNs structure and only trains its weights in

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

665

the fixed NNs structure. Thus, the problem of
designing a near optimal NNs structure for an
application remains unsolved [8]. In order to get rid
of the defects in the standard algorithms that are
used to teach a neural network, we can outsource to
global optimum search techniques, they have the
ability to avoid local minima and are being used to
adjust weights of MLPs, such as artificial bee
colony (ABC) [2, 8], particle swarm optimization
(PSO) [9, 10], evolutionary algorithms (EA),
simulated annealing (SA), and ant colony
optimization (ACO).

The rest of the article is organized as follows:
Sections 2 presents the materials and methods, and
includes brief introduction to the concepts of
FFNN, ABC, PSO, and Hybrid ABC and PSO,
respectively. Section 3 discusses the method of
applying ABC, PSO, and Hybrid ABC and PSO to
FFNNs as evolutionary training algorithms. The
experimental results are demonstrated in Section 4.
Finally, Section 5 concludes the article.

2. MATERIALS AND METHODS

2.1 Feed-Forward Artificial Neural Networks

An ANN consists of a set of processing
Unites Figure 1, also known as artificial neurons or
nodes, which are interconnected with each other [3,

11]. Output of the i
th artificial neuron can be

described by Equation (1).

Each artificial neuron receives inputs (signals)
either from the environment or from other ANs. To

each input (signal), is associated a weight,
to strengthen or deplete the input signal. The ANs
computes the net input signal, and uses an

activation function , to compute the output

signal, given the net input. Where is the

output of the node, is the ith input to the node,

 is the connection weight between the node

and input , is the threshold (or bias) of the

node, and is the node activation function.
Usually, the node activation function is a nonlinear
function such as a heaviside function, a sigmoid
function, a Gaussian function, etc.

Figure 1. The Processing Unit (Neuron)

Feed-forward neural networks have been widely

used, with two layers of the FFNNs (Fig. 2).
Actually, FFNNs with two layers are the most
popular neural network in practical applications
such as approximate functions [12, 13, 14], and it is
suitable for classifications of nonlinearly separable
patterns [15, 16]. It has been proven that two layer
FNNs can approximate any continuous and
discontinuous function [15].

Figure 2 A Two-Layered Feed-forward Neural Network

Structure.

Figure 2. Shows an FFNN with two layers (one

input, one hidden, and one output layer), where the
number of input nodes is equal to n, the number of
hidden nodes is equal to h, and the number of
output nodes is m. The most important tasks that
should be focused on, when using FFNNs include:
First, to obtain an improvement in the method of
finding a combination of weights and biases which
provide the minimum error for a FFNN. Second
task is to find a proper structure for a FFNN. Last
task is to use an evolutionary algorithm to adjust
the parameters of a gradient-based learning
algorithm, such as the learning rate and momentum
[14]. According to [14, 17], the convergence of the
BP algorithm is highly dependent on the initial
values of weights, biases, and its parameters. These
parameters include learning rate and momentum. In
the literature, using novel heuristic optimization
methods or evolutionary algorithms is a popular
solution to enhance the problems of BP-based
learning algorithms.

S1

Sh

X1

Xn

n

Y1

Ym

Output Units Input Units

Hidden Units

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

666

2.2 Artificial Bee Colony Algorithm (ABC)

Artificial Bee Colony (ABC) algorithm was

proposed by Karaboga for optimizing numerical
problems in 2005 [18]. The author of the algorithm
with some researchers presented several
developments [19, 22].

Figure 3. The General Flowchart of the ABC Algorithm.

The ABC is inspired from honey bee swarms,

which represent the intelligent foraging behavior of
bee swarms. It is a very simple, robust and
population based stochastic optimization algorithm.
In [19], the authors compared the performance of
the ABC algorithm with those of other well-known
modern heuristic algorithms such as Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), and
Differential Evolution (DE), on unconstrained
problems. The foraging bees are classified into
three categories employed, onlookers, and scouts.
This is obvious from the general flow chart of the
ABC algorithm, which is given in Figure 3.

There are many tasks performed by a bee in the
colonies, and the most important of these tasks is to
find out locations of food sources. Having obtained
this information, be evaluated through the
consideration of the quality of food [18]. In ABC
algorithm, the location of a food source represents a
potential solution to the optimization problem and
the nectar amount of a food source corresponds to
the quality (fitness) of the associated solution. The

nectar amount and quality in the food source
determine the fitness.

The bees swarm in the colonies is classified into
three types of bees: employed bees, onlooker bees
and scout bee. Employed bees are associated with
food sources, their main task is to search for
sources of food and get adequate information on the
location of food and deliver this information to the
bee hive. While those bees that stay in the hive,
Receive the information gathered from employed
bees to make decision to choose a best food source,
these bees are called onlooker bees. The Number of
employed bees or onlooker bees is equal to the food
sources. The scout bee carries out random search
for discovering new sources [18].

In ABC algorithm there are iterative processes.
There are two fundamental processes which derive
the evolution of an ABC population: the variation
process, which enables bees of exploring new
different areas of the search space and the selection
process, which guarantees the exploitation of the
previous experiences. ABC process requires cycle
of four phases: initialization phase, employed bees
phase, onlooker bees phase and scout bee phase,
each of which is explained below:

2.2.1 Initialization Phase and Optimization

Problem Parameters

In the beginning, ABC algorithm generates a

uniformly distributed population of SN solutions
(Solution Number) where each solution Xi (i = 1,
2... SN) is a D-dimensional vector. Here D is the
number of variables in the optimization problem

and xi represents the i
th food source in the

population. The food source is generated by the
equation below:

 (2)

Where, are bounds of in jth

direction. Additionally, ABC algorithm depends on
the three control parameters, first one is the
population size that determines number of food
sources in population. Second, is the maximum
cycle number that determines the maximum
number of generations. Last one, is the Limit that is
used to determine the number of allowable
generations after which each non improved food
source is to be abandoned. After producing food
sources and assigning them to the employed
bees, the objective function specific for the
optimization problem is operated, its value is
obtained, and all the fitness values of the food
sources are calculated by using Equation (3).

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

667

 (3)

where fiti(t) is fitness value of the ith food source

and is the objective function value specific for
the optimization problem and calculated using
food source.

2.2.2 Employed bees phase

In employed bee phase, modifying the current
solution (individual solution) depend on the
information of individual experiences and the
fitness value (nectar amount) of the new solution. If
the fitness value of the new food source is higher
than that of the old food source, the bee updates her
position with the new one and discards the old one
[23, 24]. The position is updated by the equation
below:

 (4)

Where is called step size, ∈ {1,

2 ... SN}, and ∈ {1, 2 ... D} are two randomly

chosen indices. Must be different from so that

step size has some significant contribution and

is a random number between [0, 1].Position update
process in employed bee phase is shown in Figure4.

Figure 4. Illustrating a Simple Position Update Equation
Execution

2.2.3 Onlooker Bees Phase

Onlooker bee phase is started after finishing
the employed bee phase, this phase operate on
sharing the fitness information (nectar amount) that
has been collected by the employed bee phase, this
information include updated solutions (food
sources) and their position information. Onlooker
bees analyze the available information and select a

solution with a probability related to its fitness.

 (5)

Where is the fitness value of the ith solution.

As in the case of the employed bee, an onlooker bee
produces a modification in the position in her

memory and checks the fitness of the candidate
source. If the fitness is higher than that of the
previous one, the bee memorizes the new location
and disremembers the old one.

2.2.4 Scout Bees Phase

In this phase, the employed bee become scout
bee if the employed bee is associated with an
abandoned food source, also, the food source is
replaced by randomly choosing another food source
from the search space. The scout bees phase is
started when position of a food source is not
updated for a predetermined number of cycles, then
the food source is assumed to be abandoned. In
ABC, the predetermined number of cycles is a
crucial control parameter which is called limit for
abandonment. Assume that the abandoned source is
xi then the scout bee replaces this food source with
new xi as follows:

Where, are bounds of in jth

direction.

2.3 Particle Swarm Optimization (PSO)

The particle swarm optimization algorithm is

inspired from the social behavior of swarms such as
bird flocking, fish schooling, etc. the PSO is
classified under an evolutionary computation
technique, which were proposed by kennedy and
Eberthart [25]. The original algorithm from PSO
has been modified by Shi and Eberhart [26]. Figure
5. Illustrates the flowchart of a PSO algorithm.

Figure 5. Illustrating the Flowchart of a PSO Algorithm

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

668

Particle swarm optimization (PSO) is a
computational method that optimizes a problem
through iteratively trying to improve a candidate
solution, which fly around in the search space to
find the best solution. In many aspect the PSO is
similar to evolutionary computing, but with a
fundamental difference that there are no evolution
operators in the PSO [25]. Instead of evolution
operators, each candidate solution called as particle
has a velocity, position and searches the solution
space iteratively. So, each candidate solution is
represented as a particle. Each particle is associated

with two properties (position and velocity),

suppose and of the ith particle are given as:

Where N represents the dimension of the problem.

Where is the i

th particle in j
th

 dimension at

time step , is the velocity of the ith particle

in j
th

 dimension at time step , is the

individual best solution of the i
th particle in j

th

dimension at time step , is the global best

position obtained of the j
th

 dimension at time step ,

 and are the positive constants, “acceleration

coefficients” used to scale the contribution of

cognitive and social component. And are
random numbers that are uniformly distributed in
the interval [0, 1].

In terms of the search for minimization
problems, the individual best solution of the

particle at the next time step , is given as
follows:

Where is the objective function, specific

for the minimization problem and is the

position of ith
 particle at the time step , and

is calculate as follows:

By looking at the minimization problems, the

global best is identified using Equation (11) (N is
the number of the particles):

In [26] Shi and Eberhart, proposed adding a

new parameter called as "inertia weight ()" this
parameter is used to control the exploration and
exploitation of the abilities of the swarm, the inertia

weight () controls the momentum of the
particle by weighing the contribution of the
previous velocity. By adding the inertia weight

(), Equation (9) is changed as follows:

(13)

2.4 Hybrid Approach (ABC-PSO)

In [27] M.S. Kıran and M. Gunduz, proposed a

hybrid global optimization approach based on
recombination the two algorithms most popular in
the field of global optimization algorithms. These
algorithms are artificial bee colony algorithm and
particle swarm optimization. ABC has good ability
to search for the global optimum, but the global
best solution is not directly used, because the ABC
stores it at each iteration, unlike the particle swarm
optimization (PSO) that can directly uses the global
best solution at each iteration. In order to overcome
Disadvantages existing in the two algorithms, they
proposed recombination procedure between ABC
and PSO.

Figure 6. Illustrating the flowchart of a

 Hybrid ABC - PSO

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

669

Figure 6, describes the method of recombination

algorithms, where the recombination or crossover

operation is known as evolution operator. The

author used this composing for generating a new

solution called as “TheBest”. TheBest is taken as

gbest for the PSO and neighbor of onlooker

bees for the ABC [27]. In order to obtain

TheBest, fitness values of gbest of the PSO and

the best solution of the ABC are calculated by

using Equation (3), and selection probabilities

for two solutions are calculated by using these

fitness values and Equations (14) and (15).

Where is the selection probability of

the solution of the ABC, and

are the fitness values of the gbest of the PSO
and the best solution of the ABC obtained by
using Equation (2).

Where is the of the PSO.

While the is constructed, random
numbers in the range of [0,1] are used for the
dimensions of the problem. If the random

number is less than or equals to , the

value for this dimension is taken from the best
solution of the ABC; otherwise, the value for

this dimension is taken from of the PSO
[27]. This is formulated as follows:

Where is the i

th dimension of

TheBest, is i
th dimension of the

solution obtained by the employed bee

population of the ABC, is the i
th

dimension of of the PSO.

In Hybrid ABC and PSO, We provide the
relationship between particle swarm optimization
and artificial bee colony. The result of this
relationship between the two algorithms is the
emergence of a new parameter called "TheBest". As
noted, this variable contributes to improving the
exploitation ability of the ABC through the direct
use of global best information, also, improving
ability in the PSO to dispose of local minima
(Search ability) [27].

As clear, from the flowchart of the Hybrid ABC
and PSO displayed in Figure 5, Gbest of the PSO
is changed with the best and the best is given
to onlooker bees of ABC as neighbor [27]. In
the following subsections, mechanism for training
FFNNs using ABC, PSO and Hybrid ABC and
PSO, called FFNNABC, FFNNPSO and FFNNHAP
respectively are introduced and evaluated.

3. ABC, PSO AND HYBRID ABC-PSO FOR

TRAINING FEED-FORWARD NEURAL

NETWORKS

In the last years, many of the researchers have
used a heuristic algorithm in order to train the feed
forward neural networks. And replaced the
traditional algorithm with the heuristic algorithm,
which showed better results than the traditional
algorithm. There are three methods of using a
heuristic algorithm for training FFNNs, these
methods are as follows:

1. It is used for finding a combination of weights

and biases which provide the minimum error

for an FFNN.

2. It is used to find a proper structure for an

FFNN in a particular problem.

3. It is used to use an evolutionary algorithm to

tune the parameters of a gradient-based

learning algorithm, such as the learning rate

and momentum.

When using artificial neural networks, the first
step which must be carried out, is to determine the
fixed structure for the neural Network, which will
be trained by the training algorithm. The main
objective of this algorithm is to find the appropriate
values for all connection weights and biases, in
order to reduce error rate in FFNNs. Besides this it
is possible that a training algorithm is applied to an
FFNN to determine the best structure for a certain
problem. Which is made by manipulating the
connections between neurons, the number of hidden
layers, and the number of hidden nodes in each
layer of the FFNN.

3.1 The Two-Layered Feed-Forward Neural

Network

In this article, our work is based on training an

artificial neural network, to find the appropriate
values for all weights and biases in FFNNs. The
algorithms used in this work are ABC, PSO, and
hybrid ABC-PSO. These mechanisms are called
FFNNPSO, FFNNGSA, and FFNNHAP,
respectively. ABC, PSO and hybrid ABC-PSO are

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

670

used to find a combination of weights and biases
which yield the minimum error for the FFNN.

The structure of the FFNN is fixed; with two
layered structures. Suppose that the input layer has

X nodes; the hidden layer has hn hidden nodes and

the output layer has Y output nodes. Figure 2 shows
the structure of a two layered feed-forward neural
network. According to the figure, a corresponding
fitness function was given.

Assuming that the hidden transfer function is
sigmoid function, and the output transfer function is
a linear activation function. The Fitness function
using the error of the FFNN should be defined to
evaluate fitness in FFNNABC, FFNNPSO, and
FFNNHAP. An encoding strategy should be
defined to encode the weights and biases of the
FFNN for the agents of FFNNABC, FFNNPSO,
and FFNNHAP. These elements are described
below:

3.1.1 Fitness Function

We follow the same manner that used in [14,

17] in order to calculate the fitness function. From

figure 2, we have seen that FFNNs with two layers

contain one input, one hidden, and one output layer;

the number of input nodes is equal to (n), the

number of hidden nodes is equal to (h), and the

number of output nodes is (m). The output of the ith

hidden node is calculated as follows:

Where ,

, n is the number of the input nodes, is the

connection weight from the i
th node in the input

layer to the j
th node in the hidden layer, is the

bias (threshold) of the jth hidden node, and is the

i
th input. After calculating outputs of the hidden

nodes, the final output can be defined as follows:

Where , ,is the connection

weight from the j
th hidden node to the kth output

node and is the bias (threshold) of the kth output

node. Finally, the learning error (fitness function)

is calculated as follows:

Where is the number of training samples,

is the desired output of the jth input unit when the kth

training sample is used, and is the actual output

of the ith input unit when the kth training sample is

used.

Figure 7. FFNN with a 2-2-1 structure

Therefore, the fitness function of the ith training

sample can be defined as follows:

Fitness (Xi) = E (Xi) (21)

3.1.2 Encoding Strategy

Is a strategy used to represent the weights and
biases of the FFNN [17], we use it to represent the
weights and biases for agents of the three
algorithms FFNNABC, FFNNPSO, and
FFNNHAP. For this, each agent represents all the
weights and biases of the FFNNs structure. There
are three strategies for representing the weights and
biases of FFNNs for every agent in evolutionary
algorithms (EA). Those strategies are the vector,
matrix, and binary encoding strategies. In vector
encoding, every agent is encoded as a vector to
train an FFNN, in matrix encoding, every agent is
encoded as a matrix. In binary encoding, agents are
encoded as binary bits.

In this article, we use the matrix encoding
strategy because, this strategy is very suitable for
the training processes of neural networks, also, the
encoding strategy makes it easy to execute
decoding for neural networks [17]. As example, we
execute encoding strategy for the FFNN on Figure
7, which is appears as follows:

1

2

3

4

5

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

671

Agent (; ; i) = [W1, B1, W2, B2] (22)

 W1= , B1= ,

W2= , B2= (23)

Where W1 is the weight matrix for the hidden

layer, B1 is the bias matrix for the hidden layer, W2

and B2 are the weight & bias, respectively, for
output layer.

4. EXPERIMENTS AND RESULTS

In this article, we use three benchmark
problems in order to compare and test the
performance and abilities of the three algorithms on
the training Feed-forward neural networks. The
three problems considered are: three-bit parity,
function approximation and the Iris classification
problem, which are presented in the sections that
follows. But before starting with experiments, we
must determine some Assumed parameters that are
used in the algorithms. Such as, in ABC algorithm,

the value of “limit” is equal to (SN D), where D
is the dimension of the population sizes and equals
to 50. On the other side, for PSO algorithm, In

Equation (9), the , and the initial velocities of

particles are randomly generated in the interval [0,

1]. And are set to 1.95.

4.1 Three Bits Parity Problem

The first experiment was executed on 3bit parity

as a benchmark problem, which is based on three
inputs and one output, it has a fixed base in the
output, where, if the inputs (vector) contain odd
number of one’s then the output is equal to one, but
if the inputs (vector) has even number of one’s then
the output is equal to zero. Such problem is not
classified as linearly separable. So, when we solve
it by FFNNs, we must use hidden layers. In this

experiment, we use FFNNs with the structure 3- hn -

1 to solve this problem, where hn is the number of

hidden nodes, and we compare the performance of

FFNNs with hn = 5, 6, 9, 10, 20, and 30.

Each time, we changed the number of nodes in
the hidden layer, we calculating the average,
median and standard deviation of the Mean Square
Error (MSE) for all training samples over 30 runs.
Symbolized in table 1, A. MSE, M. MSE and
S.MSE respectively in order to compare the
performances of the three algorithms (FFNNABC,

FFNNPOS, and FFNNHAP). The maximum
number of iterations in each training sample is
equal to 500. The final results in this experiment
are shown in table 1.

Table 1 contains the result of statistical
variables that are calculated through the implement-
tation of each algorithm 30 times, independent runs
while changing the hidden nodes number. These
statistical variables confirmed that the FFNNHAP
has the best ability to avoid local minima and more
stable than other’s.

Table 1. Average, median, and standard deviation of

MSE for all training samples, in a 3bit Parity problem.

h
n

FFNNABC

A.MSE M. MSE S. MSE

5 8.90E-03 8.55E-04 4.68E-03

6 6.51E-04 5.18E-06 3.95E-03

9 2.79E-03 6.50E-06 1.95E-03

10 3.53E-03 3.99E-06 2.19E-04

20 4.00E-03 7.92E-07 6.15E-04

30 2.50E-03 6.42E-07 5.05E-04

h
n

FFNNPSO

A.MSE M. MSE S. MSE

5 2.43E-02 2.36E-03 3.91E-02

6 9.11E-03 8.08E-04 2.33E-02

9 5.10E-03 3.42E-05 2.45E-02

10 1.31E-02 4.80E-05 4.83E-02

20 3.41E-02 3.85E-04 5.61E-02

30 2.56E-02 6.22E-06 5.36E-02

h
n

FFNNHAP

A.MSE M. MSE S. MSE

5 1.26E-04 2.58E-08 2.29E-06

6 4.53E-05 4.14E-08 1.72E-05

9 6.51E-08 1.21E-07 2.56E-06

10 5.23E-08 8.37E-10 2.78E-06

20 1.78E-04 1.53E-10 3.24E-07

30 1.65E-05 8.62E-12 2.02E-07

4.2 Function approximation problem

The second experiment was executed on

 as a benchmark problem, which is
called approximation of Function. It is based on one
inputs and one output, we use FFNNs with the

structure 1- hn -1 to solve this problem, where hn is

the number of hidden nodes, and we compare the

performances of FFNNs with hn = 3, 4, 5, 6 and 7.

In function approximation the parameter is

obtained from the range of [0,], and the training
set was obtained at an identical sampling interval of

0.03 from [0,]; while the test set was obtained at

an identical sampling interval of 0.1 from 0.02 to .
The mechanism of implementation in this

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

672

experiment is similar to previous experience with a
difference in the number of nodes in the hidden
layer, as well as, function approximation Instead of
the 3bit Parity Problem.

Table 2 Average, median and standard deviation of

MSE for all training samples in the function approxima -

tion problem.

h
n

FFNNABC

A.MSE M. MSE S. MSE

3 0.0095251 0.0091536 0.0030985

4 0.0069885 0.0062537 0.0029346

5 0.0059892 0.0051484 0.002198

6 0.0051996 0.0045952 0.0008497

7 0.0051923 0.0046947 0.001935

h
n

FFNNPSO

A.MSE M. MSE S. MSE

3 0.016218 0.012865 0.015364

4 0.010126 0.0096533 0.003594

5 0.0072381 0.0071054 0.003982

6 0.0073983 0.0071134 0.0042967

7 0.0070151 0.0069238 0.0040153

h
n

FFNNHAP

A.MSE M. MSE S. MSE

3 0.0043146 0.0040624 0.0023674

4 0.0030128 0.0025923 0.0018745

5 0.0026159 0.0023853 0.001599

6 0.0018972 0.0015278 0.00098575

7 0.0014193 0.0011949 0.0010619

Table 2 include the result of statistical

variables which are respectively, average, median,
and standard deviation of the MSE over 30
independent runs. These statistical variables
confirmed that the FFNNHAP has the best ability
to avoid local minima and more stable than the
other algorithms.

4.3 Iris classification problem

In the third experiment, we have used Iris

classification as a benchmark problem. It has been
widely used in the FFNN field. It has 150 samples
that are split between three classes. Each samples
have 4 features. Accordingly, we trained FFNN

with the structure of 4-hn-3 to Iris classification

problem, where n is the number of hidden nodes.
Change number of hidden nodes used to compare

the performance of FFNNs with hn = 4, 5, 6, 7, 8, 9

and 10, respectively. We use left-one cross
validation to train FFNNs. Where, the samples in
iris dataset are 150. Consequently, 149 samples are
used for training the FFNN, and the rest sample, is
used to test the FFNN. This process is continued to
cycle 150 times until every sample is made sure to

have been tested for its generalization capability.
The results of training FFNNs are presented in
Table 3.

Table 3 Average, median and standard deviation of

MSE for all training samples in the Iris classification

problem.

h
n

FFNNABC

A.MSE M. MSE S. MSE

4 0.0044784 0.0058785 0.009969

5 0.0039286 0.0047864 0.0088458

6 0.0026374 0.0039673 0.0086391

7 0.0025982 0.0035129 0.0076127

8 0.0019245 0.0025234 0.0065912

9 0.0016952 0.0036541 0.0060262

10 0.0017215 0.0047625 0.0068273

h
n

FFNNPSO

A.MSE M. MSE S. MSE

4 0.026784 0.021295 0.022135

5 0.025183 0.020563 0.018423

6 0.020675 0.019824 0.014983

7 0.062853 0.015286 0.002894

8 0.019898 0.017992 0.003962

9 0.023983 0.018154 0.005591

10 0.028992 0.021925 0.010233

h
n

FFNNHAP

A.MSE M. MSE S. MSE

4 0.0024784 0.0018785 0.00097969

5 0.0019286 0.0017864 0.00085658

6 0.0016374 0.0015673 0.00080456

7 0.0015982 0.0015129 0.00077246

8 0.0019245 0.0015992 0.00065719

9 0.0016952 0.0016541 0.00055193

10 0.0017215 0.0017625 0.00075973

Table 3. Is showing the results for all hidden

nodes, which are divided between three statistical
variables that are calculated through the
implementation of each algorithm 30 times,
independent runs. These results confirm that Hybrid
algorithm (FFNNHAP) contribute in improving the
capability of the FFNNs to avoid local minima in
this benchmark problem. Also, we note from the
results, that the FFNNHAP and FFNNABC have
very close results. Nevertheless, FFNNHAP is
capable of solving the Iris classification problem
with higher accuracy and reliability than the rest of
the algorithms mentioned in this article.

We can deduce from the experiments and their
results that FFNNHAP has the better recognition
rate than FFNNABC and FFNNPSO, where the
best recognition rate for FFNNHAP for all hidden
nodes is 99.67%, while the best recognition rate of
FFNNABC for all hidden nodes is 99.33% and that
of FFNNPSO for most hidden nodes is 98.67%.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

673

In general, in all the results generated from the
three experiments, it could be observed that
FFNNHAP give a good performance because of
combining the exploration ability and precise
exploitation ability, which are obtained from the
integration of ABC and PSO algorithms. In other
words, the strength of ABC and PSO has been
successfully utilized and give Superior performance
and outstanding in FFNN training. So the hybrid
algorithm (FFNNHAP) is capable of giving fast
convergence speed and solving the problem of
trapping in local minima.

5. CONCLUSION

In this article, we introduced a new training
algorithm adopted on Hybrid Artificial Bee Colony
algorithm and particle swarm optimization
algorithm. Which is to combine the Artificial Bee
Colony (ABC) Algorithm which has good
exploration and exploitation capabilities in
searching optimum and particle swarm optimization
algorithm with strong ability in global search. in
order to get rid of imperfections in traditional
training algorithms and get the high efficiencies of
these algorithms in reducing the computational
complexity and the problems of Tripping in local
minima, also to reduce the slow convergence rate
of current evolutionary learning algorithms. We
used three benchmark problems: 3-bit XOR,
function approximation, and Iris classification, to
evaluate the efficiencies of these new learning
algorithms. For all benchmark problems,
FFNNHAP shows better performance in terms of
convergence rate and avoidance of local minima,
compared to the existing learning algorithms for
FFNNs. So, a higher accuracy can be achieved by
the FFNNHAP.

ACKNOWLEDGMENT

This work is supported by MOSTI
ScienceFund grant number 305/PKOMP/613144,
School of Computer Sciences, Universiti Sains
Malaysia (USM).

REFRENCES

[1] Aman Jantan, Abdulghani Ali. "Honeybee
protection system for detecting and preventing
network attacks" journal of theoretical &
applied information technology vol.64 no.1,
(2014).

 [2] Ozturk, Celal, and Dervis Karaboga. "Hybrid
Artificial Bee Colony algorithm for neural
network training." Evolutionary Computation
(CEC), 2011 IEEE Congress on. IEEE, 2011.

[3] X. Yao, “Evolving artificial neural networks,”
in Proceeedings of the IEEE, vol. 87(9), 1999,
pp. 1423–1447.

[4] Garro, Beatriz A., Humberto Sossa, and
Roberto Antonio Vázquez. "Artificial neural
network synthesis by means of artificial bee
colony (abc) algorithm."Evolutionary
Computation (CEC), 2011 IEEE Congress on.
IEEE, 2011.

[5] Dayhoff, Judith E. Neural network
architectures an introduction. Van Nostrand
Reinhold Co., 1990.

[6] Mehrotra, Kishan, Chilukuri K. Mohan, and
Sanjay Ranka. Elements of artificial neural
networks. MIT press, 1997.

[7] Hush, Don R., and Bill G. Horne. "Progress in
supervised neural networks." Signal
Processing Magazine, IEEE 10.1 (1993): 8-
39.

[8] Karaboga, Dervis, Bahriye Akay, and Celal
Ozturk. "Artificial bee colony (ABC)
optimization algorithm for training feed-
forward neural networks." Modeling
decisions for artificial intelligence. Springer
Berlin Heidelberg, 2007. 318-329.

 [9] Carvalho, Marcio and Teresa Bernarda
Ludermir. "Hybrid training of feed-forward
neural networks with particle swarm
optimization." Neural Information Processing.
Springer Berlin Heidelberg, 2006.

[10] Meissner, Michael, Michael Schmuker, and
Gisbert Schneider. "Optimized Particle
Swarm Optimization (OPSO) and its
application to artificial neural network
training." BMC bioinformatics 7.1 (2006):
125.

[11] Svozil, Daniel, Vladimir Kvasnicka, and Jir̂í
Pospichal. "Introduction to multi-layer feed-
forward neural networks." Chemometrics and
intelligent laboratory systems 39.1 (1997):
43-62.

[12] K. Homik, M. Stinchcombe, H. White,
Multilayer feed-forward networks are
universal approximators, Neural Networks 2
(1989) 359–366.

[13] B. Malakooti, Y. Zhou, Approximating
polynomial functions by feed-forward
artificial neural network: capacity analysis
and design, Appl. Math. Comput.90 (1998)
27–52

[14] SA Mirjalili, SZ Mohd Hashim. "Training
feed-forward neural networks using hybrid
particle swarm optimization and gravitational
search algorithm." Applied Mathematics and
Computation218.22 (2012): 11125-11137.

Journal of Theoretical and Applied Information Technology
 30

th
 September 2014. Vol. 67 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

674

[15] C. Lin, Cheng-Hung, C. Lee, A self-adaptive
quantum radial basis function network for
classification applications, in: IEEE
International JointConference on Neural
Networks, 2004, pp. 3263–3268.

[16] N. Mat Isa, Clustered-hybrid multilayer
perceptron network for pattern recognition
application, Applied Soft Computing 11 (1)
(2011).

[17] J.R. Zhang, J. Zhang, T.M. Lock, M.R. Lyu,
A hybrid particle swarm optimization–back-
propagation algorithm for feed-forward
neural network training, Appl. Math.
Comput. 128 (2007) .1026–1037.

[18] D. Karaboga, An idea based on honey bee
swarm for numerical optimization. Vol. 200.
Technical report-tr06, Erciyes University,
engineering faculty, computer engineering
department, 2005.

[19] D. Karaboga, and Bahriye Basturk. "A
powerful and efficient algorithm for
numerical function optimization: artificial
bee colony (ABC) algorithm." Journal of
global ptimization 39.3 (2007): 459-471.

[20] D. Karaboga, and Bahriye Basturk. "On the
performance of artificial bee colony (ABC)
algorithm." Applied soft computing 8.1
(2008): 687-697.

[21] D. Karaboga, and Bahriye Akay. "A
comparative study of artificial bee colony
algorithm.” Applied Mathematics and
Computation 214.1 (2009): 108-132.

[22] D. Karaboga, Ozturk C., Neural networks
training by artificial bee colony algorithm on
pattern classification. Neural Netw World 19
(2009):279–292.

[23] Bansal, Jagdish Chand, Harish Sharma, and
Shimpi Singh Jadon, Artificial bee colony
algorithm: a survey. International Journal of
Advanced Intelligence Paradigms 5.1
(2013): 123-159.

[24] Asaju Bolaji, La'aro, Ahamad Tajudin
Khader, Mohammed Azmi Al-Betar, and
Mohammed A. Awadallah. "Artificial Bee
Colony Algorithm, its Variants AND
Applications: A Survey." Journal of

Theoretical & Applied Information

Technology 47, no. 2 (2013).
[25] J. Kennedy, R.C. Eberhart, Particle swarm

optimization, in: Proceedings of IEEE
International Conference on Neural
Networks, vol. 4, 1995, pp.1942–1948.

[26] Y. Shi and R.C. Eberhart, A modified
Particle Swarm Optimiser, in: IEEE

International Conference on Evolutionary
Computation, Anchorage, Alaska, 1998.

[27] M.S. Kıran, M. Gunduz, A recombination-
based hybridization of particle swarm
optimization and artificial bee colony
algorithm for continuous optimization
problems, Applied Soft Computing 13 (4)
(2013) 2188–2203.

