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ABSTRACT 

 
The Artificial Bee Colony Algorithm (ABC) is a heuristic optimization method based on the foraging 
behavior of honey bees. It has been confirmed that this algorithm has good ability to search for the global 
optimum, but it suffers from the fact that the global best solution is not directly used, but the ABC stores it 
at each iteration, unlike the particle swarm optimization (PSO) that can directly use the global best solution 
at each iteration. So the hybrid of artificial bee colony Algorithm (ABC) and PSO resolved the 
aforementioned problem. In this article, Hybrid ABC and PSO is used as new training method for Feed-
forward Neural Networks (FFNNs), in order to get rid of imperfections in traditional training algorithms 
and get the high efficiencies of these algorithms in reducing the computational complexity and the 
problems of Tripping in local minima, also reduction of slow convergence rate of current evolutionary 
learning algorithms. We test the accuracy of our proposal using FFNNs trained with ABC, PSO, and 
Hybrid ABC and PSO. The experimental results show that ABCPSO outperforms both ABC and PSO for 
training FFNNs in terms the aforementioned Imperfections. 
Keywords: Artificial Intelligent (AI); Swarm Intelligence (SI); Feed-forward Neural Network (FFNN); 

Artificial Bee Colony Algorithm (ABC); Particle Swarm Optimization (PSO). 
 

1. INTRODUCTION  

 
Artificial neural networks (ANNs) are the most 

important branches of computational Intelligence; 
they are classified as either supervised Learning 
Neural Networks or Unsupervised Learning Neural 
Networks. The essential difference between these 
two types, is that the first type needs to learn under 
the guidance of a supervisor or teacher, while the 
second type does not need to learn under the 
guidance of a supervisor or teacher [1]. The success 
of the network in its work depends mainly on the 
following factors [2]: the architecture of the 
artificial neural network, the training algorithm and 
the choice of features used in training. All of these 
factors, make the design of optimized artificial 
neural networks a difficult problem [3]. Also, any 
wrong selection in one of these factors could guide 
a training algorithm to be trapped in a local 
minimum. In order to avoid this, several 
metaheuristic based methods in order to obtain a 
good ANN design have been reported [4]. 

Artificial Neural Networks have characteristics 
that help them, to be a successful model to solve a 
lot of problems such as pattern classification, 

forecasting and regression, etc. Among the most 
important of these characteristics are the capability 
of learning by examples, adaptabi-lity, and ability 
to generalize with applicability to solving problems 
in pattern classification, function approximation, 
and optimization [5, 6]. 

Artificial Neural Networks have been developed 
in various multilayer Neural Network types. Most 
applications use feed-forward NNs that use the 
standard back propagation (BP) learning algorithm. 
Feed-forward neural network training has 
traditionally been carried out using the back-
propagation (BP) gradient descent (GD) algorithm 
[7]. The BP algorithm is a method based on 
gradient, and thus some inherent problems are 
frequently encountered in the use of this algorithm. 
Among the most important of these problems is the 
very slow convergence speed in training, easily to 
get stuck in a local minimum [7]. 

 
In addition, the BP learning needs to 

predetermine some important learning parameters 
such as learning rate, momentum and a predeterm-
ined structure. Moreover, the BP algorithm assumes 
a fixed NNs structure and only trains its weights in 
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the fixed NNs structure. Thus, the problem of 
designing a near optimal NNs structure for an 
application remains unsolved [8]. In order to get rid 
of the defects in the standard algorithms that are 
used to teach a neural network, we can outsource to 
global optimum search techniques, they have the 
ability to avoid local minima and are being used to 
adjust weights of MLPs, such as artificial bee 
colony (ABC) [2, 8], particle swarm optimization 
(PSO) [9, 10], evolutionary algorithms (EA), 
simulated annealing (SA), and ant colony 
optimization (ACO). 

The rest of the article is organized as follows: 
Sections 2 presents the materials and methods, and 
includes brief introduction to the concepts of 
FFNN, ABC, PSO, and Hybrid ABC and PSO, 
respectively. Section 3 discusses the method of 
applying ABC, PSO, and Hybrid ABC and PSO to 
FFNNs as evolutionary training algorithms. The 
experimental results are demonstrated in Section 4. 
Finally, Section 5 concludes the article. 

 
 

2. MATERIALS AND METHODS 

2.1 Feed-Forward Artificial Neural Networks 

An ANN consists of a set of processing 
Unites Figure 1, also known as artificial neurons or 
nodes, which are interconnected with each other [3, 

11]. Output of the i
th artificial neuron can be 

described by Equation (1). 
 

 

Each artificial neuron receives inputs (signals) 
either from the environment or from other ANs. To 

each input (signal),  is associated a weight,  
to strengthen or deplete the input signal. The ANs 
computes the net input signal, and uses an 

activation function , to compute the output 

signal,  given the net input. Where  is the 

output of the node,  is the ith input to the node, 

 is the connection weight between the node 

and input ,  is the threshold (or bias) of the 

node, and  is the node activation function. 
Usually, the node activation function is a nonlinear 
function such as a heaviside function, a sigmoid 
function, a Gaussian function, etc. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1. The Processing Unit (Neuron) 

 
Feed-forward neural networks have been widely 

used, with two layers of the FFNNs (Fig. 2). 
Actually, FFNNs with two layers are the most 
popular neural network in practical applications 
such as approximate functions [12, 13, 14], and it is 
suitable for classifications of nonlinearly separable 
patterns [15, 16]. It has been proven that two layer 
FNNs can approximate any continuous and 
discontinuous function [15]. 
 
 
 
 
 
 
 
 
 
Figure 2 A Two-Layered Feed-forward Neural Network 

Structure. 

 
Figure 2. Shows an FFNN with two layers (one 

input, one hidden, and one output layer), where the 
number of input nodes is equal to n, the number of 
hidden nodes is equal to h, and the number of 
output nodes is m. The most important tasks that 
should be focused on, when using FFNNs include: 
First, to obtain an improvement in the method of 
finding a combination of weights and biases which 
provide the minimum error for a FFNN. Second 
task is to find a proper structure for a FFNN. Last 
task is to use an evolutionary algorithm to adjust 
the parameters of a gradient-based learning 
algorithm, such as the learning rate and momentum 
[14]. According to [14, 17], the convergence of the 
BP algorithm is highly dependent on the initial 
values of weights, biases, and its parameters. These 
parameters include learning rate and momentum. In 
the literature, using novel heuristic optimization 
methods or evolutionary algorithms is a popular 
solution to enhance the problems of BP-based 
learning algorithms. 
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2.2 Artificial Bee Colony Algorithm (ABC) 

 
Artificial Bee Colony (ABC) algorithm was 

proposed by Karaboga for optimizing numerical 
problems in 2005 [18]. The author of the algorithm 
with some researchers presented several 
developments [19, 22].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The General Flowchart of the ABC Algorithm. 

 
The ABC is inspired from honey bee swarms, 

which represent the intelligent foraging behavior of 
bee swarms. It is a very simple, robust and 
population based stochastic optimization algorithm. 
In [19], the authors compared the performance of 
the ABC algorithm with those of other well-known 
modern heuristic algorithms such as Particle Swarm 
Optimization (PSO), Genetic Algorithm (GA), and 
Differential Evolution (DE), on unconstrained 
problems. The foraging bees are classified into 
three categories employed, onlookers, and scouts. 
This is obvious from the general flow chart of the 
ABC algorithm, which is given in Figure 3. 

There are many tasks performed by a bee in the 
colonies, and the most important of these tasks is to 
find out locations of food sources. Having obtained 
this information, be evaluated through the 
consideration of the quality of food [18]. In ABC 
algorithm, the location of a food source represents a 
potential solution to the optimization problem and 
the nectar amount of a food source corresponds to 
the quality (fitness) of the associated solution. The 

nectar amount and quality in the food source 
determine the fitness.  

The bees swarm in the colonies is classified into 
three types of bees: employed bees, onlooker bees 
and scout bee. Employed bees are associated with 
food sources, their main task is to search for 
sources of food and get adequate information on the 
location of food and deliver this information to the 
bee hive. While those bees that stay in the hive, 
Receive the information gathered from employed 
bees to make decision to choose a best food source, 
these bees are called onlooker bees. The Number of 
employed bees or onlooker bees is equal to the food 
sources. The scout bee carries out random search 
for discovering new sources [18]. 

In ABC algorithm there are iterative processes. 
There are two fundamental processes which derive 
the evolution of an ABC population: the variation 
process, which enables bees of exploring new 
different areas of the search space and the selection 
process, which guarantees the exploitation of the 
previous experiences. ABC process requires cycle 
of four phases: initialization phase, employed bees 
phase, onlooker bees phase and scout bee phase, 
each of which is explained below: 

 

2.2.1 Initialization Phase and Optimization 

Problem Parameters 

 
In the beginning, ABC algorithm generates a 

uniformly distributed population of SN solutions 
(Solution Number) where each solution Xi (i = 1, 
2... SN) is a D-dimensional vector. Here D is the 
number of variables in the optimization problem 

and xi represents the i
th food source in the 

population. The food source is generated by the 
equation below: 

 (2)         

Where,  are bounds of   in jth 

direction. Additionally, ABC algorithm depends on 
the three control parameters, first one is the 
population size that determines number of food 
sources in population. Second, is the maximum 
cycle number that determines the maximum 
number of generations. Last one, is the Limit that is 
used to determine the number of allowable 
generations after which each non improved food 
source is to be abandoned. After  producing  food  
sources  and assigning  them  to  the  employed  
bees,  the  objective  function  specific  for  the  
optimization  problem  is  operated,  its  value  is  
obtained, and all the fitness values of the food  
sources  are calculated  by  using  Equation  (3). 
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  (3) 

where fiti(t) is fitness  value  of  the  ith  food  source  

and   is  the objective  function  value  specific  for  
the  optimization  problem  and calculated  using  
food  source. 

 

2.2.2 Employed bees phase 
 

In employed bee phase, modifying the current 
solution (individual solution) depend on the 
information of individual experiences and the 
fitness value (nectar amount) of the new solution. If 
the fitness value of the new food source is higher 
than that of the old food source, the bee updates her 
position with the new one and discards the old one 
[23, 24]. The position is updated by the equation 
below: 

 (4) 

Where  is called step size, ∈ {1, 

2 ... SN}, and  ∈ {1, 2 ... D} are two randomly 

chosen indices.  Must be different from so that 

step size has some significant contribution and  

is a random number between [0, 1].Position update 
process in employed bee phase is shown in Figure4. 

 

 

 

 

 

 

 

 

 
 

 

Figure 4. Illustrating a Simple Position Update Equation 
Execution 

 

2.2.3 Onlooker Bees Phase 

Onlooker bee phase is started after finishing 
the employed bee phase, this phase operate on 
sharing the fitness information (nectar amount) that 
has been collected by the employed bee phase, this 
information include updated solutions (food 
sources) and their position information. Onlooker 
bees analyze the available information and select a 

solution with a probability  related to its fitness. 

 

       (5) 

Where is the fitness value of the ith   solution. 

As in the case of the employed bee, an onlooker bee 
produces a modification in the position in her 

memory and checks the fitness of the candidate 
source. If the fitness is higher than that of the 
previous one, the bee memorizes the new location 
and disremembers the old one. 
 

2.2.4 Scout Bees Phase 

In this phase, the employed bee become scout 
bee if the employed bee is associated with an 
abandoned food source, also, the food source is 
replaced by randomly choosing another food source 
from the search space. The scout bees phase is 
started when position of a food source is not 
updated for a predetermined number of cycles, then 
the food source is assumed to be abandoned. In 
ABC, the predetermined number of cycles is a 
crucial control parameter which is called limit for 
abandonment. Assume that the abandoned source is 
xi then the scout bee replaces this food source with 
new xi as follows: 

 
 

Where,   are bounds of   in jth  

direction. 
 

2.3 Particle Swarm Optimization (PSO)  

 
The particle swarm optimization algorithm is 

inspired from the social behavior of swarms such as 
bird flocking, fish schooling, etc. the PSO is 
classified under an evolutionary computation 
technique, which were proposed by kennedy and 
Eberthart [25]. The original algorithm from PSO 
has been modified by Shi and Eberhart [26]. Figure 
5. Illustrates the flowchart of a PSO algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.   Illustrating the Flowchart of a PSO Algorithm 
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Particle swarm optimization (PSO) is a 
computational method that optimizes a problem 
through iteratively trying to improve a candidate 
solution, which fly around in the search space to 
find the best solution. In many aspect the PSO is 
similar to evolutionary computing, but with a 
fundamental difference that there are no evolution 
operators in the PSO [25]. Instead of evolution 
operators, each candidate solution called as particle 
has a velocity, position and searches the solution 
space iteratively. So, each candidate solution is 
represented as a particle. Each particle is associated 

with two properties (position  and velocity ), 

suppose  and  of the ith particle are given as: 

   

 
Where N represents the dimension of the problem. 
 

 

 
Where  is the i

th particle in j
th

 dimension at 

time step ,  is the velocity of the ith particle 

in j
th

 dimension at time step , is the 

individual best solution of the i
th particle in j

th
 

dimension at time step ,  is the global best 

position obtained of the j
th

 dimension at time step , 

 and  are the positive constants, “acceleration 

coefficients” used to scale the contribution of 

cognitive and social component.   And  are 
random numbers that are uniformly distributed in 
the interval [0, 1]. 

In terms of the search for minimization 
problems, the individual best solution of the 

particle at the next time step , is given as 
follows: 

 
 

 
 

Where  is the objective function, specific 

for the minimization problem and  is the 

position of ith 
 particle at the time step , and 

is calculate  as follows: 

 

 
 
By looking at the minimization problems, the 

global best is identified using Equation (11) (N is 
the number of the particles): 

 

 

In [26]  Shi  and  Eberhart, proposed  adding a 

new parameter called as "inertia  weight  ( )" this 
parameter is used to control the exploration and 
exploitation of the abilities of the swarm, the inertia  

weight  ( )  controls  the momentum  of  the  
particle  by  weighing  the  contribution  of  the  
previous  velocity. By adding the inertia weight 

( ), Equation (9) is changed as follows: 
 

 

 
(13) 

 
2.4 Hybrid Approach (ABC-PSO) 

 
In [27] M.S. Kıran and M. Gunduz, proposed a 

hybrid global optimization approach based on 
recombination the two algorithms most popular in 
the field of global optimization algorithms. These 
algorithms are artificial bee colony algorithm and 
particle swarm optimization. ABC has good ability 
to search for the global optimum, but the global 
best solution is not directly used, because the ABC 
stores it at each iteration, unlike the particle swarm 
optimization (PSO) that can directly uses the global 
best solution at each iteration. In order to overcome 
Disadvantages existing in the two algorithms, they 
proposed recombination procedure between ABC 
and PSO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.  Illustrating the flowchart of a 

 Hybrid ABC - PSO  

 

 

 



Journal of Theoretical and Applied Information Technology 
 30

th
 September 2014. Vol. 67 No.3 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
669 

 

Figure 6, describes the method of recombination 

algorithms, where the recombination or crossover 

operation is known as evolution operator. The 

author used this composing for generating a new 

solution called as “TheBest”. TheBest  is  taken  as  

gbest  for  the  PSO  and  neighbor  of  onlooker  

bees for  the  ABC [27].  In  order  to  obtain  

TheBest,  fitness  values  of  gbest  of  the PSO  and  

the  best  solution  of  the  ABC  are  calculated  by  

using  Equation (3),  and  selection  probabilities  

for  two  solutions  are  calculated  by using  these  

fitness  values  and  Equations  (14)  and (15). 

 
Where   is  the  selection  probability  of  

the  solution  of  the ABC,   and   

are  the  fitness  values  of  the  gbest  of  the  PSO 
and  the  best  solution  of  the  ABC  obtained  by  
using  Equation  (2). 

 
Where   is the  of the PSO. 

While  the   is  constructed,  random  
numbers  in  the  range  of [0,1]  are  used  for  the  
dimensions  of  the  problem.  If  the  random 

number  is  less  than  or  equals  to  ,  the  

value  for  this  dimension is  taken  from  the  best  
solution  of  the  ABC;  otherwise,  the  value  for 

this  dimension  is  taken  from   of  the  PSO 
[27].  This is formulated as follows: 

 

 
Where  is  the  i

th  dimension  of  

TheBest,  is  i
th  dimension of  the    

solution  obtained  by  the  employed  bee  

population  of  the ABC,    is  the  i
th  

dimension  of  of  the  PSO. 

In Hybrid ABC and PSO, We provide the 
relationship between particle swarm optimization 
and artificial bee colony. The result of this 
relationship between the two algorithms is the 
emergence of a new parameter called "TheBest". As 
noted, this variable contributes to improving the 
exploitation ability of the ABC through the direct 
use of global best information, also, improving 
ability in the PSO to dispose of local minima 
(Search ability) [27]. 

As clear, from the flowchart of the Hybrid ABC 
and PSO displayed in Figure 5, Gbest  of  the  PSO  
is changed  with  the  best  and  the  best  is  given  
to  onlooker  bees  of  ABC  as  neighbor [27]. In 
the following subsections, mechanism for training 
FFNNs using ABC, PSO and Hybrid ABC and 
PSO, called FFNNABC, FFNNPSO and FFNNHAP 
respectively are introduced and evaluated. 

 
3. ABC, PSO AND HYBRID ABC-PSO FOR 

TRAINING FEED-FORWARD NEURAL 

NETWORKS 

In the last years, many of the researchers have 
used a heuristic algorithm in order to train the feed 
forward neural networks. And replaced the 
traditional algorithm with the heuristic algorithm, 
which showed better results than the traditional 
algorithm. There are three methods of using a 
heuristic algorithm for training FFNNs, these 
methods are as follows: 

1. It is used for finding a combination of weights 

and biases which provide the minimum error 

for an FFNN. 

2. It is used to find a proper structure for an 

FFNN in a particular problem. 

3. It is used to use an evolutionary algorithm to 

tune the parameters of a gradient-based 

learning algorithm, such as the learning rate 

and momentum. 

When using artificial neural networks, the first 
step which must be carried out, is to determine the 
fixed structure for the neural Network, which will 
be trained by the training algorithm. The main 
objective of this algorithm is to find the appropriate 
values for all connection weights and biases, in 
order to reduce error rate in FFNNs. Besides this it 
is possible that a training algorithm is applied to an 
FFNN to determine the best structure for a certain 
problem. Which is made by manipulating the 
connections between neurons, the number of hidden 
layers, and the number of hidden nodes in each 
layer of the FFNN. 

 

3.1 The Two-Layered Feed-Forward Neural 

Network 

 
In this article, our work is based on training an 

artificial neural network, to find the appropriate 
values for all weights and biases in FFNNs. The 
algorithms used in this work are ABC, PSO, and 
hybrid ABC-PSO. These mechanisms are called 
FFNNPSO, FFNNGSA, and FFNNHAP, 
respectively. ABC, PSO and hybrid ABC-PSO are 
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used to find a combination of weights and biases 
which yield the minimum error for the FFNN. 

The structure of the FFNN is fixed; with two 
layered structures. Suppose that the input layer has 

X nodes; the hidden layer has hn hidden nodes and 

the output layer has Y output nodes. Figure 2 shows 
the structure of a two layered feed-forward neural 
network. According to the figure, a corresponding 
fitness function was given. 

Assuming that the hidden transfer function is 
sigmoid function, and the output transfer function is 
a linear activation function. The Fitness function 
using the error of the FFNN should be defined to 
evaluate fitness in FFNNABC, FFNNPSO, and 
FFNNHAP. An encoding strategy should be 
defined to encode the weights and biases of the 
FFNN for the agents of FFNNABC, FFNNPSO, 
and FFNNHAP. These elements are described 
below: 

 

3.1.1 Fitness Function 

 

We follow the same manner that used in [14, 

17] in order to calculate the fitness function. From 

figure 2, we have seen that FFNNs with two layers 

contain one input, one hidden, and one output layer; 

the number of input nodes is equal to (n), the 

number of hidden nodes is equal to (h), and the 

number of output nodes is (m). The output of the ith 

hidden node is calculated as follows: 

 
Where ,  

, n is the number of the input nodes, is the 

connection weight from the i
th node in the input 

layer to the j
th node in the hidden layer, is the 

bias (threshold) of the jth hidden node, and is the 

i
th input. After calculating outputs of the hidden 

nodes, the final output can be defined as follows: 

 
Where  ,  ,is the connection 

weight from the j
th hidden node to the kth output 

node and  is the bias (threshold) of the kth output 

node. Finally, the learning error  (fitness function) 

is calculated as follows: 
 

 

 

Where  is the number of training samples,   

is the desired output of the jth input unit when the kth 

training sample is used, and  is the actual output 

of the ith input unit when the kth training sample is 

used. 

 

 

 

 

 

 

 

Figure 7. FFNN with a 2-2-1 structure 

 

Therefore, the fitness function of the ith training 

sample can be defined as follows: 

Fitness (Xi) = E (Xi) (21) 

 

3.1.2 Encoding Strategy 

Is a strategy used to represent the weights and 
biases of the FFNN [17], we use it to represent the 
weights and biases for agents of the three 
algorithms FFNNABC, FFNNPSO, and 
FFNNHAP. For this, each agent represents all the 
weights and biases of the FFNNs structure. There 
are three strategies for representing the weights and 
biases of FFNNs for every agent in evolutionary 
algorithms (EA). Those strategies are the vector, 
matrix, and binary encoding strategies. In vector 
encoding, every agent is encoded as a vector to 
train an FFNN, in matrix encoding, every agent is 
encoded as a matrix. In binary encoding, agents are 
encoded as binary bits. 

In this article, we use the matrix encoding 
strategy because, this strategy is very suitable for 
the training processes of neural networks, also, the 
encoding strategy makes it easy to execute 
decoding for neural networks [17]. As example, we 
execute encoding strategy for the FFNN on Figure 
7, which is appears as follows: 

 
 
 

1 

2 

3 

4 

5 
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Agent ( ; ; i) = [W1, B1, W2, B2]             (22)  

       W1= , B1= , 

W2= , B2=      (23) 

 
Where W1 is the weight matrix for the hidden 

layer, B1 is the bias matrix for the hidden layer, W2 

and B2 are the weight & bias, respectively, for 
output layer. 

 

4. EXPERIMENTS AND RESULTS 

In this article, we use three benchmark 
problems in order to compare and test the 
performance and abilities of the three algorithms on 
the training Feed-forward neural networks. The 
three problems considered are: three-bit parity, 
function approximation and the Iris classification 
problem, which are presented in the sections that 
follows. But before starting with experiments, we 
must determine some Assumed parameters that are 
used in the algorithms. Such as, in ABC algorithm, 

the value of “limit” is equal to (SN  D), where D 
is the dimension of the population sizes and equals 
to 50. On the other side, for PSO algorithm, In 

Equation (9), the ,  and the initial velocities of 

particles are randomly generated in the interval [0, 

1].  And  are set to 1.95. 

 

4.1 Three Bits Parity Problem  

 
The first experiment was executed on 3bit parity 

as a benchmark problem, which is based on three 
inputs and one output, it has a fixed base in the 
output, where, if the inputs (vector) contain odd 
number of one’s then the output is equal to one, but 
if the inputs (vector) has even number of one’s then 
the output is equal to zero. Such problem is not 
classified as linearly separable. So, when we solve 
it by FFNNs, we must use hidden layers. In this 

experiment, we use FFNNs with the structure 3- hn -

1 to solve this problem, where hn  is the number of 

hidden nodes, and we compare the performance of 

FFNNs with hn  = 5, 6, 9, 10, 20, and 30. 

Each time, we changed the number of nodes in 
the hidden layer, we calculating the average, 
median and standard deviation of the Mean Square 
Error (MSE) for all training samples over 30 runs. 
Symbolized in table 1, A. MSE, M. MSE and 
S.MSE respectively in order to compare the 
performances of the three algorithms (FFNNABC, 

FFNNPOS, and FFNNHAP). The maximum 
number of iterations in each training sample is 
equal to 500. The final results in this experiment 
are shown in table 1. 

Table 1 contains the result of statistical 
variables that are calculated through the implement- 
tation of each algorithm 30 times, independent runs 
while changing the hidden nodes number. These 
statistical variables confirmed that the FFNNHAP 
has the best ability to avoid local minima and more 
stable than other’s.  

 
Table 1.  Average, median, and standard deviation of 

MSE for all training samples, in a 3bit Parity problem. 

h
n
 

FFNNABC 

A.MSE M. MSE S. MSE 

5 8.90E-03 8.55E-04 4.68E-03 

6 6.51E-04 5.18E-06 3.95E-03 

9 2.79E-03 6.50E-06 1.95E-03 

10 3.53E-03 3.99E-06 2.19E-04 

20 4.00E-03 7.92E-07 6.15E-04 

30 2.50E-03 6.42E-07 5.05E-04 

h
n
 

FFNNPSO 

A.MSE M. MSE S. MSE 

5 2.43E-02 2.36E-03 3.91E-02 

6 9.11E-03 8.08E-04 2.33E-02 

9 5.10E-03 3.42E-05 2.45E-02 

10 1.31E-02 4.80E-05 4.83E-02 

20 3.41E-02 3.85E-04 5.61E-02 

30 2.56E-02 6.22E-06 5.36E-02 

h
n
 

FFNNHAP 

A.MSE M. MSE S. MSE 

5 1.26E-04 2.58E-08 2.29E-06 

6 4.53E-05 4.14E-08 1.72E-05 

9 6.51E-08 1.21E-07 2.56E-06 

10 5.23E-08 8.37E-10 2.78E-06 

20 1.78E-04 1.53E-10 3.24E-07 

30 1.65E-05 8.62E-12 2.02E-07 

 
4.2 Function approximation problem  

The second experiment was executed on 

 as a benchmark problem, which is 
called approximation of Function. It is based on one 
inputs and one output, we use FFNNs with the 

structure 1- hn -1 to solve this problem, where hn  is 

the number of hidden nodes, and we compare the 

performances of FFNNs with hn  = 3, 4, 5, 6 and 7. 

In function approximation the parameter  is 

obtained from the range of [0, ], and the training 
set was obtained at an identical sampling interval of 

0.03 from [0, ]; while the test set was obtained at 

an identical sampling interval of 0.1 from 0.02 to . 
The mechanism of implementation in this 
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experiment is similar to previous experience with a 
difference in the number of nodes in the hidden 
layer, as well as, function approximation Instead of 
the 3bit Parity Problem. 

 
Table 2 Average, median and standard deviation of 

MSE for all training samples in the function approxima -

tion problem. 

h
n
 

FFNNABC 

A.MSE M. MSE S. MSE 

3 0.0095251 0.0091536 0.0030985 

4 0.0069885 0.0062537 0.0029346 

5 0.0059892 0.0051484 0.002198 

6 0.0051996 0.0045952 0.0008497 

7 0.0051923 0.0046947 0.001935 

h
n
 

FFNNPSO 

A.MSE M. MSE S. MSE 

3 0.016218 0.012865 0.015364 

4 0.010126 0.0096533 0.003594 

5 0.0072381 0.0071054 0.003982 

6 0.0073983 0.0071134 0.0042967 

7 0.0070151 0.0069238 0.0040153 

h
n
 

FFNNHAP 

A.MSE M. MSE S. MSE 

3 0.0043146 0.0040624 0.0023674 

4 0.0030128 0.0025923 0.0018745 

5 0.0026159 0.0023853 0.001599 

6 0.0018972 0.0015278 0.00098575 

7 0.0014193 0.0011949 0.0010619 

 
Table 2 include the result of statistical 

variables which are respectively, average, median, 
and standard deviation of the MSE over 30 
independent runs. These statistical variables 
confirmed that the FFNNHAP has the best ability 
to avoid local minima and more stable than the 
other algorithms.  

 
4.3    Iris classification problem 

 
In the third experiment, we have used Iris 

classification as a benchmark problem. It has been 
widely used in the FFNN field. It has 150 samples 
that are split between three classes. Each samples 
have 4 features. Accordingly, we trained FFNN 

with the structure of 4-hn-3 to Iris classification 

problem, where n is the number of hidden nodes. 
Change number of hidden nodes used to compare 

the performance of FFNNs with hn = 4, 5, 6, 7, 8, 9 

and 10, respectively. We use left-one cross 
validation to train FFNNs. Where, the samples in 
iris dataset are 150. Consequently, 149 samples are 
used for training the FFNN, and the rest sample, is 
used to test the FFNN. This process is continued to 
cycle 150 times until every sample is made sure to 

have been tested for its generalization capability. 
The results of training FFNNs are presented in 
Table 3. 

 
Table 3 Average, median and standard deviation of 

MSE for all training samples in the Iris classification 

problem. 

h
n
 

FFNNABC 

A.MSE M. MSE S. MSE 

4 0.0044784 0.0058785 0.009969 

5 0.0039286 0.0047864 0.0088458 

6 0.0026374 0.0039673 0.0086391 

7 0.0025982 0.0035129 0.0076127 

8 0.0019245 0.0025234 0.0065912 

9 0.0016952 0.0036541 0.0060262 

10 0.0017215 0.0047625 0.0068273 

h
n
 

FFNNPSO 

A.MSE M. MSE S. MSE 

4 0.026784 0.021295 0.022135 

5 0.025183 0.020563 0.018423 

6 0.020675 0.019824 0.014983 

7 0.062853 0.015286 0.002894 

8 0.019898 0.017992 0.003962 

9 0.023983 0.018154 0.005591 

10 0.028992 0.021925 0.010233 

h
n
 

FFNNHAP 

A.MSE M. MSE S. MSE 

4 0.0024784 0.0018785 0.00097969 

5 0.0019286 0.0017864 0.00085658 

6 0.0016374 0.0015673 0.00080456 

7 0.0015982 0.0015129 0.00077246 

8 0.0019245 0.0015992 0.00065719 

9 0.0016952 0.0016541 0.00055193 

10 0.0017215 0.0017625 0.00075973 

 
Table 3. Is showing the results for all hidden 

nodes, which are divided between three statistical 
variables that are calculated through the 
implementation of each algorithm 30 times, 
independent runs. These results confirm that Hybrid 
algorithm (FFNNHAP) contribute in improving the 
capability of the FFNNs to avoid local minima in 
this benchmark problem. Also, we note from the 
results, that the FFNNHAP and FFNNABC have 
very close results. Nevertheless, FFNNHAP is 
capable of solving the Iris classification problem 
with higher accuracy and reliability than the rest of 
the algorithms mentioned in this article. 

We can deduce from the experiments and their 
results that FFNNHAP has the better recognition 
rate than FFNNABC and FFNNPSO, where the 
best recognition rate for FFNNHAP for all hidden 
nodes is 99.67%, while the best recognition rate of 
FFNNABC for all hidden nodes is 99.33% and that 
of FFNNPSO for most hidden nodes is 98.67%. 
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In general, in all the results generated from the 
three experiments, it could be observed that 
FFNNHAP give a good performance because of 
combining the exploration ability and precise 
exploitation ability, which are obtained from the 
integration of ABC and PSO algorithms. In other 
words, the strength of ABC and PSO has been 
successfully utilized and give Superior performance 
and outstanding in FFNN training. So the hybrid 
algorithm (FFNNHAP) is capable of giving fast 
convergence speed and solving the problem of 
trapping in local minima. 

 

5.  CONCLUSION 

In this article, we introduced a new training 
algorithm adopted on Hybrid Artificial Bee Colony 
algorithm and particle swarm optimization 
algorithm. Which is to combine the Artificial Bee 
Colony (ABC) Algorithm which has good 
exploration and exploitation capabilities in 
searching optimum and particle swarm optimization 
algorithm with strong ability in global search. in 
order to  get rid of imperfections in traditional 
training algorithms and get the high efficiencies of 
these algorithms in reducing the computational 
complexity and the problems of Tripping in local 
minima, also to reduce the  slow convergence rate 
of current evolutionary learning algorithms. We 
used three benchmark problems: 3-bit XOR, 
function approximation, and Iris classification, to 
evaluate the efficiencies of these new learning 
algorithms. For all benchmark problems, 
FFNNHAP shows better performance in terms of 
convergence rate and avoidance of local minima, 
compared to the existing learning algorithms for 
FFNNs. So, a higher accuracy can be achieved by 
the FFNNHAP. 
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